u-boot/arch/arm/cpu/armv7/mx6/clock.c

764 lines
18 KiB
C
Raw Normal View History

/*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <div64.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
enum pll_clocks {
PLL_SYS, /* System PLL */
PLL_BUS, /* System Bus PLL*/
PLL_USBOTG, /* OTG USB PLL */
PLL_ENET, /* ENET PLL */
};
struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
#ifdef CONFIG_MXC_OCOTP
void enable_ocotp_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR2);
if (enable)
reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
else
reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
__raw_writel(reg, &imx_ccm->CCGR2);
}
#endif
#ifdef CONFIG_NAND_MXS
void setup_gpmi_io_clk(u32 cfg)
{
/* Disable clocks per ERR007177 from MX6 errata */
clrbits_le32(&imx_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
clrsetbits_le32(&imx_ccm->cs2cdr,
MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
cfg);
setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
setbits_le32(&imx_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
}
#endif
void enable_usboh3_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_USBOH3_MASK;
else
reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
__raw_writel(reg, &imx_ccm->CCGR6);
}
#if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
void enable_enet_clk(unsigned char enable)
{
u32 mask = MXC_CCM_CCGR1_ENET_CLK_ENABLE_MASK;
if (enable)
setbits_le32(&imx_ccm->CCGR1, mask);
else
clrbits_le32(&imx_ccm->CCGR1, mask);
}
#endif
#ifdef CONFIG_MXC_UART
void enable_uart_clk(unsigned char enable)
{
u32 mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
if (enable)
setbits_le32(&imx_ccm->CCGR5, mask);
else
clrbits_le32(&imx_ccm->CCGR5, mask);
}
#endif
#ifdef CONFIG_SPI
/* spi_num can be from 0 - 4 */
int enable_cspi_clock(unsigned char enable, unsigned spi_num)
{
u32 mask;
if (spi_num > 4)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK << (spi_num * 2);
if (enable)
setbits_le32(&imx_ccm->CCGR1, mask);
else
clrbits_le32(&imx_ccm->CCGR1, mask);
return 0;
}
#endif
#ifdef CONFIG_MMC
int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
{
u32 mask;
if (bus_num > 3)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
if (enable)
setbits_le32(&imx_ccm->CCGR6, mask);
else
clrbits_le32(&imx_ccm->CCGR6, mask);
return 0;
}
#endif
#ifdef CONFIG_SYS_I2C_MXC
/* i2c_num can be from 0 - 2 */
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
{
u32 reg;
u32 mask;
if (i2c_num > 2)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK
<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET + (i2c_num << 1));
reg = __raw_readl(&imx_ccm->CCGR2);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, &imx_ccm->CCGR2);
return 0;
}
#endif
/* spi_num can be from 0 - SPI_MAX_NUM */
int enable_spi_clk(unsigned char enable, unsigned spi_num)
{
u32 reg;
u32 mask;
if (spi_num > SPI_MAX_NUM)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
reg = __raw_readl(&imx_ccm->CCGR1);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, &imx_ccm->CCGR1);
return 0;
}
static u32 decode_pll(enum pll_clocks pll, u32 infreq)
{
u32 div;
switch (pll) {
case PLL_SYS:
div = __raw_readl(&imx_ccm->analog_pll_sys);
div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
return (infreq * div) >> 1;
case PLL_BUS:
div = __raw_readl(&imx_ccm->analog_pll_528);
div &= BM_ANADIG_PLL_528_DIV_SELECT;
return infreq * (20 + (div << 1));
case PLL_USBOTG:
div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
return infreq * (20 + (div << 1));
case PLL_ENET:
div = __raw_readl(&imx_ccm->analog_pll_enet);
div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
return 25000000 * (div + (div >> 1) + 1);
default:
return 0;
}
/* NOTREACHED */
}
static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
{
u32 div;
u64 freq;
switch (pll) {
case PLL_BUS:
if (pfd_num == 3) {
/* No PFD3 on PPL2 */
return 0;
}
div = __raw_readl(&imx_ccm->analog_pfd_528);
freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
break;
case PLL_USBOTG:
div = __raw_readl(&imx_ccm->analog_pfd_480);
freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
break;
default:
/* No PFD on other PLL */
return 0;
}
return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
ANATOP_PFD_FRAC_SHIFT(pfd_num));
}
static u32 get_mcu_main_clk(void)
{
u32 reg, freq;
reg = __raw_readl(&imx_ccm->cacrr);
reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
freq = decode_pll(PLL_SYS, MXC_HCLK);
return freq / (reg + 1);
}
u32 get_periph_clk(void)
{
u32 reg, freq = 0;
reg = __raw_readl(&imx_ccm->cbcdr);
if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
reg = __raw_readl(&imx_ccm->cbcmr);
reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
switch (reg) {
case 0:
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
break;
case 1:
case 2:
freq = MXC_HCLK;
break;
default:
break;
}
} else {
reg = __raw_readl(&imx_ccm->cbcmr);
reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
switch (reg) {
case 0:
freq = decode_pll(PLL_BUS, MXC_HCLK);
break;
case 1:
freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 2:
freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
case 3:
/* static / 2 divider */
freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
break;
default:
break;
}
}
return freq;
}
static u32 get_ipg_clk(void)
{
u32 reg, ipg_podf;
reg = __raw_readl(&imx_ccm->cbcdr);
reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
return get_ahb_clk() / (ipg_podf + 1);
}
static u32 get_ipg_per_clk(void)
{
u32 reg, perclk_podf;
reg = __raw_readl(&imx_ccm->cscmr1);
perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
return get_ipg_clk() / (perclk_podf + 1);
}
static u32 get_uart_clk(void)
{
u32 reg, uart_podf;
u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
reg = __raw_readl(&imx_ccm->cscdr1);
#if (defined(CONFIG_MX6SL) || defined(CONFIG_MX6SX))
if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
freq = MXC_HCLK;
#endif
reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
return freq / (uart_podf + 1);
}
static u32 get_cspi_clk(void)
{
u32 reg, cspi_podf;
reg = __raw_readl(&imx_ccm->cscdr2);
reg &= MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK;
cspi_podf = reg >> MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
}
static u32 get_axi_clk(void)
{
u32 root_freq, axi_podf;
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
else
root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
} else
root_freq = get_periph_clk();
return root_freq / (axi_podf + 1);
}
static u32 get_emi_slow_clk(void)
{
u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
cscmr1 = __raw_readl(&imx_ccm->cscmr1);
emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
switch (emi_clk_sel) {
case 0:
root_freq = get_axi_clk();
break;
case 1:
root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
break;
case 2:
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 3:
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
}
return root_freq / (emi_slow_podf + 1);
}
#if (defined(CONFIG_MX6SL) || defined(CONFIG_MX6SX))
static u32 get_mmdc_ch0_clk(void)
{
u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
u32 freq, podf;
podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) \
>> MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
switch ((cbcmr & MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
case 0:
freq = decode_pll(PLL_BUS, MXC_HCLK);
break;
case 1:
freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 2:
freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
case 3:
/* static / 2 divider */
freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
}
return freq / (podf + 1);
}
#else
static u32 get_mmdc_ch0_clk(void)
{
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
u32 mmdc_ch0_podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
return get_periph_clk() / (mmdc_ch0_podf + 1);
}
#endif
#ifdef CONFIG_FEC_MXC
int enable_fec_anatop_clock(enum enet_freq freq)
{
u32 reg = 0;
s32 timeout = 100000;
struct anatop_regs __iomem *anatop =
(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
if (freq < ENET_25MHz || freq > ENET_125MHz)
return -EINVAL;
reg = readl(&anatop->pll_enet);
reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
reg |= freq;
if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
(!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
writel(reg, &anatop->pll_enet);
while (timeout--) {
if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
break;
}
if (timeout < 0)
return -ETIMEDOUT;
}
/* Enable FEC clock */
reg |= BM_ANADIG_PLL_ENET_ENABLE;
reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
writel(reg, &anatop->pll_enet);
#ifdef CONFIG_MX6SX
/*
* Set enet ahb clock to 200MHz
* pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
*/
reg = readl(&imx_ccm->chsccdr);
reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
| MXC_CCM_CHSCCDR_ENET_PODF_MASK
| MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
/* PLL2 PFD2 */
reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
/* Div = 2*/
reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
writel(reg, &imx_ccm->chsccdr);
/* Enable enet system clock */
reg = readl(&imx_ccm->CCGR3);
reg |= MXC_CCM_CCGR3_ENET_MASK;
writel(reg, &imx_ccm->CCGR3);
#endif
return 0;
}
#endif
static u32 get_usdhc_clk(u32 port)
{
u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
switch (port) {
case 0:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
break;
case 1:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
break;
case 2:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
break;
case 3:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
break;
default:
break;
}
if (clk_sel)
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
else
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
return root_freq / (usdhc_podf + 1);
}
u32 imx_get_uartclk(void)
{
return get_uart_clk();
}
u32 imx_get_fecclk(void)
{
return mxc_get_clock(MXC_IPG_CLK);
}
static int enable_enet_pll(uint32_t en)
{
struct mxc_ccm_reg *const imx_ccm
= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
s32 timeout = 100000;
u32 reg = 0;
/* Enable PLLs */
reg = readl(&imx_ccm->analog_pll_enet);
reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
writel(reg, &imx_ccm->analog_pll_enet);
reg |= BM_ANADIG_PLL_SYS_ENABLE;
while (timeout--) {
if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
break;
}
if (timeout <= 0)
return -EIO;
reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
writel(reg, &imx_ccm->analog_pll_enet);
reg |= en;
writel(reg, &imx_ccm->analog_pll_enet);
return 0;
}
#ifndef CONFIG_MX6SX
static void ungate_sata_clock(void)
{
struct mxc_ccm_reg *const imx_ccm =
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* Enable SATA clock. */
setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
}
#endif
static void ungate_pcie_clock(void)
{
struct mxc_ccm_reg *const imx_ccm =
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* Enable PCIe clock. */
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
}
#ifndef CONFIG_MX6SX
int enable_sata_clock(void)
{
ungate_sata_clock();
return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
}
#endif
int enable_pcie_clock(void)
{
struct anatop_regs *anatop_regs =
(struct anatop_regs *)ANATOP_BASE_ADDR;
struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
u32 lvds1_clk_sel;
/*
* Here be dragons!
*
* The register ANATOP_MISC1 is not documented in the Freescale
* MX6RM. The register that is mapped in the ANATOP space and
* marked as ANATOP_MISC1 is actually documented in the PMU section
* of the datasheet as PMU_MISC1.
*
* Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
* mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
* for PCI express link that is clocked from the i.MX6.
*/
#define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
#define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
if (is_cpu_type(MXC_CPU_MX6SX))
lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
else
lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
clrsetbits_le32(&anatop_regs->ana_misc1,
ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
/* PCIe reference clock sourced from AXI. */
clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
/* Party time! Ungate the clock to the PCIe. */
#ifndef CONFIG_MX6SX
ungate_sata_clock();
#endif
ungate_pcie_clock();
return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
BM_ANADIG_PLL_ENET_ENABLE_PCIE);
}
#ifdef CONFIG_SECURE_BOOT
void hab_caam_clock_enable(unsigned char enable)
{
u32 reg;
/* CG4 ~ CG6, CAAM clocks */
reg = __raw_readl(&imx_ccm->CCGR0);
if (enable)
reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
else
reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
__raw_writel(reg, &imx_ccm->CCGR0);
/* EMI slow clk */
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
else
reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
__raw_writel(reg, &imx_ccm->CCGR6);
}
#endif
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_mcu_main_clk();
case MXC_PER_CLK:
return get_periph_clk();
case MXC_AHB_CLK:
return get_ahb_clk();
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_IPG_PERCLK:
case MXC_I2C_CLK:
return get_ipg_per_clk();
case MXC_UART_CLK:
return get_uart_clk();
case MXC_CSPI_CLK:
return get_cspi_clk();
case MXC_AXI_CLK:
return get_axi_clk();
case MXC_EMI_SLOW_CLK:
return get_emi_slow_clk();
case MXC_DDR_CLK:
return get_mmdc_ch0_clk();
case MXC_ESDHC_CLK:
return get_usdhc_clk(0);
case MXC_ESDHC2_CLK:
return get_usdhc_clk(1);
case MXC_ESDHC3_CLK:
return get_usdhc_clk(2);
case MXC_ESDHC4_CLK:
return get_usdhc_clk(3);
case MXC_SATA_CLK:
return get_ahb_clk();
default:
break;
}
return -1;
}
/*
* Dump some core clockes.
*/
int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
u32 freq;
freq = decode_pll(PLL_SYS, MXC_HCLK);
printf("PLL_SYS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_BUS, MXC_HCLK);
printf("PLL_BUS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
printf("PLL_OTG %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_ENET, MXC_HCLK);
printf("PLL_NET %8d MHz\n", freq / 1000000);
printf("\n");
printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
#ifdef CONFIG_MXC_SPI
printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
#endif
printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
return 0;
}
#ifndef CONFIG_MX6SX
void enable_ipu_clock(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
reg = readl(&mxc_ccm->CCGR3);
reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
writel(reg, &mxc_ccm->CCGR3);
}
#endif
/***************************************************/
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
"display clocks",
""
);