dioxus/packages/core/src/nodes.rs

497 lines
15 KiB
Rust
Raw Normal View History

2021-02-03 07:26:04 +00:00
//! Virtual Node Support
//! VNodes represent lazily-constructed VDom trees that support diffing and event handlers.
//!
//! These VNodes should be *very* cheap and *very* fast to construct - building a full tree should be insanely quick.
2021-03-11 00:42:10 +00:00
use crate::{
events::VirtualEvent,
innerlude::{Context, Properties, Scope, ScopeIdx, FC},
nodebuilder::{text3, NodeCtx},
virtual_dom::RealDomNode,
2021-03-11 00:42:10 +00:00
};
2021-02-03 07:26:04 +00:00
use bumpalo::Bump;
2021-06-03 14:42:28 +00:00
use std::{
any::Any,
cell::{Cell, RefCell},
2021-06-03 14:42:28 +00:00
fmt::{Arguments, Debug},
marker::PhantomData,
rc::Rc,
};
2021-02-21 02:59:16 +00:00
2021-02-03 07:26:04 +00:00
/// Tools for the base unit of the virtual dom - the VNode
/// VNodes are intended to be quickly-allocated, lightweight enum values.
///
/// Components will be generating a lot of these very quickly, so we want to
/// limit the amount of heap allocations / overly large enum sizes.
2021-03-11 00:42:10 +00:00
pub enum VNode<'src> {
/// An element node (node type `ELEMENT_NODE`).
Element(&'src VElement<'src>),
2021-02-03 07:26:04 +00:00
2021-03-11 00:42:10 +00:00
/// A text node (node type `TEXT_NODE`).
Text(VText<'src>),
2021-03-11 00:42:10 +00:00
2021-06-03 17:57:41 +00:00
/// A fragment is a "virtual position" in the DOM
/// Fragments may have children and keys
2021-06-03 14:42:28 +00:00
Fragment(&'src VFragment<'src>),
2021-03-11 00:42:10 +00:00
/// A "suspended component"
/// This is a masqeurade over an underlying future that needs to complete
/// When the future is completed, the VNode will then trigger a render
Suspended,
/// A User-defined componen node (node type COMPONENT_NODE)
Component(&'src VComponent<'src>),
}
// it's okay to clone because vnodes are just references to places into the bump
impl<'a> Clone for VNode<'a> {
fn clone(&self) -> Self {
match self {
VNode::Element(element) => VNode::Element(element),
VNode::Text(old) => VNode::Text(old.clone()),
VNode::Fragment(fragment) => VNode::Fragment(fragment),
VNode::Component(component) => VNode::Component(component),
VNode::Suspended => VNode::Suspended,
}
}
2021-03-11 00:42:10 +00:00
}
2021-02-03 07:26:04 +00:00
2021-03-11 00:42:10 +00:00
impl<'a> VNode<'a> {
/// Low-level constructor for making a new `Node` of type element with given
/// parts.
///
/// This is primarily intended for JSX and templating proc-macros to compile
/// down into. If you are building nodes by-hand, prefer using the
/// `dodrio::builder::*` APIs.
#[inline]
pub fn element(
bump: &'a Bump,
2021-04-01 04:01:42 +00:00
key: NodeKey<'a>,
2021-03-11 00:42:10 +00:00
tag_name: &'a str,
listeners: &'a [Listener<'a>],
attributes: &'a [Attribute<'a>],
children: &'a [VNode<'a>],
namespace: Option<&'a str>,
) -> VNode<'a> {
let element = bump.alloc_with(|| VElement {
key,
tag_name,
listeners,
attributes,
children,
namespace,
dom_id: Cell::new(RealDomNode::empty()),
2021-03-11 00:42:10 +00:00
});
VNode::Element(element)
}
/// Construct a new text node with the given text.
#[inline]
pub fn text(text: &'a str) -> VNode<'a> {
VNode::Text(VText {
text,
dom_id: Cell::new(RealDomNode::empty()),
})
2021-03-11 00:42:10 +00:00
}
2021-02-03 07:26:04 +00:00
2021-06-03 17:57:41 +00:00
pub fn text_args(bump: &'a Bump, args: Arguments) -> VNode<'a> {
text3(bump, args)
2021-06-03 14:42:28 +00:00
}
2021-03-11 00:42:10 +00:00
#[inline]
pub(crate) fn key(&self) -> NodeKey {
match &self {
VNode::Text { .. } => NodeKey::NONE,
2021-03-11 00:42:10 +00:00
VNode::Element(e) => e.key,
2021-06-03 14:42:28 +00:00
VNode::Fragment(frag) => frag.key,
2021-03-18 22:54:26 +00:00
VNode::Component(c) => c.key,
2021-06-03 17:57:41 +00:00
// todo suspend should be allowed to have keys
VNode::Suspended => NodeKey::NONE,
2021-02-08 00:14:04 +00:00
}
2021-02-03 07:26:04 +00:00
}
fn get_child(&self, id: u32) -> Option<VNode<'a>> {
todo!()
}
2021-02-03 07:26:04 +00:00
}
#[derive(Clone)]
pub struct VText<'src> {
pub text: &'src str,
pub dom_id: Cell<RealDomNode>,
}
2021-03-11 00:42:10 +00:00
// ========================================================
// VElement (div, h1, etc), attrs, keys, listener handle
// ========================================================
pub struct VElement<'a> {
/// Elements have a tag name, zero or more attributes, and zero or more
2021-04-01 04:01:42 +00:00
pub key: NodeKey<'a>,
2021-03-11 00:42:10 +00:00
pub tag_name: &'a str,
pub listeners: &'a [Listener<'a>],
pub attributes: &'a [Attribute<'a>],
pub children: &'a [VNode<'a>],
pub namespace: Option<&'a str>,
pub dom_id: Cell<RealDomNode>,
2021-03-11 00:42:10 +00:00
}
2021-02-03 07:26:04 +00:00
2021-03-11 00:42:10 +00:00
/// An attribute on a DOM node, such as `id="my-thing"` or
/// `href="https://example.com"`.
#[derive(Clone, Debug)]
2021-03-11 00:42:10 +00:00
pub struct Attribute<'a> {
pub name: &'static str,
pub value: &'a str,
}
2021-02-03 07:26:04 +00:00
2021-03-11 00:42:10 +00:00
impl<'a> Attribute<'a> {
/// Get this attribute's name, such as `"id"` in `<div id="my-thing" />`.
#[inline]
pub fn name(&self) -> &'a str {
self.name
}
2021-02-03 07:26:04 +00:00
2021-03-11 00:42:10 +00:00
/// The attribute value, such as `"my-thing"` in `<div id="my-thing" />`.
#[inline]
pub fn value(&self) -> &'a str {
self.value
}
2021-02-03 07:26:04 +00:00
2021-03-11 00:42:10 +00:00
/// Certain attributes are considered "volatile" and can change via user
/// input that we can't see when diffing against the old virtual DOM. For
/// these attributes, we want to always re-set the attribute on the physical
/// DOM node, even if the old and new virtual DOM nodes have the same value.
#[inline]
pub(crate) fn is_volatile(&self) -> bool {
match self.name {
"value" | "checked" | "selected" => true,
_ => false,
2021-02-03 07:26:04 +00:00
}
}
2021-03-11 00:42:10 +00:00
}
2021-02-03 07:26:04 +00:00
2021-03-11 00:42:10 +00:00
pub struct ListenerHandle {
pub event: &'static str,
pub scope: ScopeIdx,
pub id: usize,
}
2021-03-03 07:27:26 +00:00
2021-03-11 00:42:10 +00:00
/// An event listener.
pub struct Listener<'bump> {
/// The type of event to listen for.
pub(crate) event: &'static str,
2021-02-15 19:14:28 +00:00
2021-03-11 00:42:10 +00:00
pub scope: ScopeIdx,
pub id: usize,
2021-02-15 19:14:28 +00:00
/// The callback to invoke when the event happens.
2021-03-11 00:42:10 +00:00
pub(crate) callback: &'bump (dyn Fn(VirtualEvent)),
}
2021-02-03 07:26:04 +00:00
2021-03-11 00:42:10 +00:00
/// The key for keyed children.
///
/// Keys must be unique among siblings.
///
/// If any sibling is keyed, then they all must be keyed.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
2021-04-01 04:01:42 +00:00
pub struct NodeKey<'a>(pub(crate) Option<&'a str>);
2021-02-03 07:26:04 +00:00
2021-04-01 04:01:42 +00:00
impl<'a> Default for NodeKey<'a> {
fn default() -> NodeKey<'a> {
2021-03-11 00:42:10 +00:00
NodeKey::NONE
}
}
2021-04-01 04:01:42 +00:00
impl<'a> NodeKey<'a> {
2021-03-11 00:42:10 +00:00
/// The default, lack of a key.
2021-04-01 04:01:42 +00:00
pub const NONE: NodeKey<'a> = NodeKey(None);
2021-03-11 00:42:10 +00:00
/// Is this key `NodeKey::NONE`?
#[inline]
pub fn is_none(&self) -> bool {
*self == Self::NONE
2021-02-03 07:26:04 +00:00
}
2021-03-11 00:42:10 +00:00
/// Is this key not `NodeKey::NONE`?
#[inline]
pub fn is_some(&self) -> bool {
!self.is_none()
2021-02-03 07:26:04 +00:00
}
2021-03-11 00:42:10 +00:00
/// Create a new `NodeKey`.
///
/// `key` must not be `u32::MAX`.
#[inline]
2021-04-01 04:01:42 +00:00
pub fn new(key: &'a str) -> Self {
NodeKey(Some(key))
2021-03-11 00:42:10 +00:00
}
2021-02-03 07:26:04 +00:00
}
2021-03-11 00:42:10 +00:00
// ==============================
// Custom components
// ==============================
2021-02-03 07:26:04 +00:00
/// Virtual Components for custom user-defined components
/// Only supports the functional syntax
pub type StableScopeAddres = Option<u32>;
pub type VCompAssociatedScope = Option<ScopeIdx>;
2021-03-11 00:42:10 +00:00
pub struct VComponent<'src> {
2021-04-01 04:01:42 +00:00
pub key: NodeKey<'src>,
2021-03-14 00:11:06 +00:00
2021-06-20 06:16:42 +00:00
pub mounted_root: Cell<RealDomNode>,
pub ass_scope: RefCell<VCompAssociatedScope>,
// pub comparator: Rc<dyn Fn(&VComponent) -> bool + 'src>,
2021-06-07 18:14:49 +00:00
pub caller: Rc<dyn Fn(&Scope) -> VNode>,
2021-05-31 22:55:56 +00:00
pub children: &'src [VNode<'src>],
pub comparator: Option<&'src dyn Fn(&VComponent) -> bool>,
// a pointer into the bump arena (given by the 'src lifetime)
2021-06-02 15:07:30 +00:00
// raw_props: Box<dyn Any>,
raw_props: *const (),
// a pointer to the raw fn typ
2021-03-14 00:11:06 +00:00
pub user_fc: *const (),
2021-03-11 00:42:10 +00:00
}
2021-02-12 05:29:46 +00:00
2021-03-11 00:42:10 +00:00
impl<'a> VComponent<'a> {
// use the type parameter on props creation and move it into a portable context
// this lets us keep scope generic *and* downcast its props when we need to:
// - perform comparisons when diffing (memoization)
// TODO: lift the requirement that props need to be static
// we want them to borrow references... maybe force implementing a "to_static_unsafe" trait
2021-06-02 15:07:30 +00:00
pub fn new<P: Properties + 'a>(
2021-06-08 18:00:29 +00:00
// bump: &'a Bump,
ctx: &NodeCtx<'a>,
2021-06-02 15:07:30 +00:00
component: FC<P>,
// props: bumpalo::boxed::Box<'a, P>,
props: P,
key: Option<&'a str>,
2021-06-08 18:00:29 +00:00
children: &'a [VNode<'a>],
2021-06-02 15:07:30 +00:00
) -> Self {
// pub fn new<P: Properties + 'a>(component: FC<P>, props: P, key: Option<&'a str>) -> Self {
// let bad_props = unsafe { transmogrify(props) };
2021-06-08 18:00:29 +00:00
let bump = ctx.bump();
let caller_ref = component as *const ();
let props = bump.alloc(props);
let raw_props = props as *const P as *const ();
let comparator: Option<&dyn Fn(&VComponent) -> bool> = {
if P::CAN_BE_MEMOIZED {
Some(bump.alloc(move |other: &VComponent| {
// Safety:
// We are guaranteed that the props will be of the same type because
// there is no way to create a VComponent other than this `new` method.
//
// Therefore, if the render functions are identical (by address), then so will be
// props type paramter (because it is the same render function). Therefore, we can be
// sure
if caller_ref == other.user_fc {
// let g = other.raw_ctx.downcast_ref::<P>().unwrap();
let real_other = unsafe { &*(other.raw_props as *const _ as *const P) };
&props == &real_other
} else {
false
}
}))
} else {
None
}
};
2021-06-02 15:07:30 +00:00
// let prref: &'a P = props.as_ref();
2021-06-07 18:14:49 +00:00
// let r = create_closure(component, raw_props);
// let caller: Rc<dyn for<'g> Fn(&'g Scope) -> VNode<'g>> = Rc::new(move |scope| {
// // r(scope);
// //
// // let props2 = bad_props;
// // props.as_ref();
// // let ctx = Context {
// // props: prref,
// // scope,
// // };
// // let ctx: Context<'g, P> = todo!();
// // todo!()
// // let r = component(ctx);
// todo!()
// });
let caller = create_closure(component, raw_props);
// let caller: Rc<dyn Fn(&Scope) -> VNode> = Rc::new(create_closure(component, raw_props));
2021-03-11 00:42:10 +00:00
2021-04-01 04:01:42 +00:00
let key = match key {
Some(key) => NodeKey::new(key),
None => NodeKey(None),
};
// raw_props: Box::new(props),
// comparator: Rc::new(props_comparator),
Self {
2021-04-01 04:01:42 +00:00
key,
ass_scope: RefCell::new(None),
2021-03-14 00:11:06 +00:00
user_fc: caller_ref,
comparator,
raw_props,
2021-06-08 18:00:29 +00:00
children,
2021-03-18 22:54:26 +00:00
caller,
2021-06-20 06:16:42 +00:00
mounted_root: Cell::new(RealDomNode::empty()),
}
2021-02-03 07:26:04 +00:00
}
}
2021-06-03 14:42:28 +00:00
2021-06-07 18:14:49 +00:00
type Captured<'a> = Rc<dyn for<'r> Fn(&'r Scope) -> VNode<'r> + 'a>;
fn create_closure<'a, P: Properties + 'a>(
component: FC<P>,
raw_props: *const (),
) -> Rc<dyn for<'r> Fn(&'r Scope) -> VNode<'r>> {
// ) -> impl for<'r> Fn(&'r Scope) -> VNode<'r> {
let g: Captured = Rc::new(move |scp: &Scope| -> VNode {
// cast back into the right lifetime
let safe_props: &'_ P = unsafe { &*(raw_props as *const P) };
// let ctx: Context<P2> = todo!();
let ctx: Context<P> = Context {
props: safe_props,
scope: scp,
};
let g = component(ctx);
let g2 = unsafe { std::mem::transmute(g) };
g2
});
let r: Captured<'static> = unsafe { std::mem::transmute(g) };
r
}
2021-06-03 14:42:28 +00:00
pub struct VFragment<'src> {
pub key: NodeKey<'src>,
pub children: &'src [VNode<'src>],
}
2021-06-08 18:00:29 +00:00
impl<'a> VFragment<'a> {
pub fn new(key: Option<&'a str>, children: &'a [VNode<'a>]) -> Self {
let key = match key {
Some(key) => NodeKey::new(key),
None => NodeKey(None),
};
Self { key, children }
}
}
/// This method converts a list of nested real/virtual nodes into a stream of nodes that are definitely associated
/// with the real dom.
///
/// Why?
/// ---
/// Fragments are seen as virtual nodes but are actually a list of possibly-real nodes.
/// JS implementations normalize their node lists when fragments are present. Here, we just create a new iterator
/// that iterates through the recursive nesting of fragments.
///
/// Fragments are stupid and I wish we didn't need to support them.
///
/// This iterator only supports 3 levels of nested fragments
///
pub fn iterate_real_nodes<'a>(nodes: &'a [VNode<'a>]) -> RealNodeIterator<'a> {
RealNodeIterator::new(nodes)
}
struct RealNodeIterator<'a> {
nodes: &'a [VNode<'a>],
// an idx for each level of nesting
// it's highly highly unlikely to hit 4 levels of nested fragments
// so... we just don't support it
nesting_idxs: [Option<u32>; 3],
}
impl<'a> RealNodeIterator<'a> {
fn new(nodes: &'a [VNode<'a>]) -> Self {
Self {
nodes,
nesting_idxs: [None, None, None],
}
}
// advances the cursor to the next element, panicing if we're on the 3rd level and still finding fragments
fn advance_cursor(&mut self) {
match self.nesting_idxs {
[None, ..] => {}
}
}
fn get_current_node(&self) -> Option<&VNode<'a>> {
match self.nesting_idxs {
[None, None, None] => None,
[Some(a), None, None] => Some(&self.nodes[a as usize]),
[Some(a), Some(b), None] => {
//
*&self.nodes[a as usize].get_child(b).as_ref()
}
[Some(a), Some(b), Some(c)] => {
//
*&self.nodes[a as usize]
.get_child(b)
.unwrap()
.get_child(c)
.as_ref()
}
}
}
}
impl<'a> Iterator for RealNodeIterator<'a> {
type Item = &'a VNode<'a>;
fn next(&mut self) -> Option<Self::Item> {
todo!()
// let top_idx = self.nesting_idxs.get_mut(0).unwrap();
// let node = &self.nodes.get_mut(*top_idx as usize);
// if node.is_none() {
// return None;
// }
// let node = node.unwrap();
// match node {
// VNode::Element(_) | VNode::Text(_) => {
// *top_idx += 1;
// return Some(node);
// }
// VNode::Suspended => todo!(),
// // we need access over the scope map
// VNode::Component(_) => todo!(),
// VNode::Fragment(frag) => {
// let nest_idx = self.nesting_idxs.get_mut(1).unwrap();
// let node = &frag.children.get_mut(*nest_idx as usize);
// match node {
// VNode::Element(_) | VNode::Text(_) => {
// *nest_idx += 1;
// return Some(node);
// }
// VNode::Fragment(_) => todo!(),
// VNode::Suspended => todo!(),
// VNode::Component(_) => todo!(),
// }
// }
// }
}
}
mod tests {
use crate::nodebuilder::LazyNodes;
#[test]
fn iterate_nodes() {
// let t1 = LazyNodes::new(|b| {
// //
// });
}
}