bottom/src/canvas.rs

759 lines
30 KiB
Rust
Raw Normal View History

use itertools::izip;
use std::{collections::HashMap, str::FromStr};
2020-02-29 03:24:24 +00:00
use tui::{
backend::Backend,
layout::{Constraint, Direction, Layout, Rect},
text::{Span, Spans},
widgets::Paragraph,
Frame, Terminal,
2019-09-11 03:37:20 +00:00
};
2019-09-12 02:10:49 +00:00
2020-02-08 23:00:50 +00:00
use canvas_colours::*;
2020-02-10 02:34:44 +00:00
2020-02-29 03:24:24 +00:00
use crate::{
app::{
self,
layout_manager::{BottomColRow, BottomLayout, BottomWidgetType},
App,
},
2020-02-29 22:07:47 +00:00
constants::*,
data_conversion::{ConvertedBatteryData, ConvertedCpuData, ConvertedProcessData, TableData},
options::Config,
2020-02-29 22:07:47 +00:00
utils::error,
utils::error::BottomError,
Pid,
2020-02-29 03:24:24 +00:00
};
refactor: consolidate time graph components This consolidates all the time graph drawing to one main location, as well as some small improvements. This is helpful in that I don't have to reimplement the same thing across three locations if I have to make one change that in theory should affect them all. In particular, the CPU graph, memory graph, and network graph are all now using the same, generic implementation for drawing, which we call (for now) a component. Note this only affects drawing - it accepts some parameters affecting style and labels, as well as data points, and draw similarly to how it used to before. Widget-specific actions, or things affecting widget state, should all be handled by the widget-specific code instead. For example, our current implementation of x-axis autohide is still controlled by the widget, not the component, even if some of the code is shared. Components are, again, only responsible for drawing (at least for now). For that matter, the graph component does not have mutable access to any form of state outside of tui-rs' `Frame`. Note this *might* change in the future, where we might give the component state. Note that while functionally, the graph behaviour for now is basically the same, a few changes were made internally other than the move to components. The big change is that rather than using tui-rs' `Chart` for the underlying drawing, we now use a tweaked custom `TimeChart` tui-rs widget, which also handles all interpolation steps and some extra customization. Personally, I don't like having to deviate from the library's implementation, but this gives us more flexibility and allows greater control. For example, this allows me to move away from the old hacks required to do interpolation (where I had to mutate the existing list to avoid having to reallocate an extra vector just to insert one extra interpolated point). I can also finally allow customizable legends (which will be added in the future).
2022-04-27 06:13:48 +00:00
pub use self::components::Point;
2020-02-29 03:24:24 +00:00
mod canvas_colours;
refactor: consolidate time graph components This consolidates all the time graph drawing to one main location, as well as some small improvements. This is helpful in that I don't have to reimplement the same thing across three locations if I have to make one change that in theory should affect them all. In particular, the CPU graph, memory graph, and network graph are all now using the same, generic implementation for drawing, which we call (for now) a component. Note this only affects drawing - it accepts some parameters affecting style and labels, as well as data points, and draw similarly to how it used to before. Widget-specific actions, or things affecting widget state, should all be handled by the widget-specific code instead. For example, our current implementation of x-axis autohide is still controlled by the widget, not the component, even if some of the code is shared. Components are, again, only responsible for drawing (at least for now). For that matter, the graph component does not have mutable access to any form of state outside of tui-rs' `Frame`. Note this *might* change in the future, where we might give the component state. Note that while functionally, the graph behaviour for now is basically the same, a few changes were made internally other than the move to components. The big change is that rather than using tui-rs' `Chart` for the underlying drawing, we now use a tweaked custom `TimeChart` tui-rs widget, which also handles all interpolation steps and some extra customization. Personally, I don't like having to deviate from the library's implementation, but this gives us more flexibility and allows greater control. For example, this allows me to move away from the old hacks required to do interpolation (where I had to mutate the existing list to avoid having to reallocate an extra vector just to insert one extra interpolated point). I can also finally allow customizable legends (which will be added in the future).
2022-04-27 06:13:48 +00:00
mod components;
mod dialogs;
2020-02-10 02:34:44 +00:00
mod drawing_utils;
mod widgets;
2019-09-12 02:10:49 +00:00
#[derive(Default)]
2020-02-02 04:49:44 +00:00
pub struct DisplayableData {
2020-02-29 22:05:01 +00:00
pub rx_display: String,
pub tx_display: String,
pub total_rx_display: String,
pub total_tx_display: String,
pub network_data_rx: Vec<Point>,
pub network_data_tx: Vec<Point>,
pub disk_data: TableData,
pub temp_sensor_data: TableData,
pub single_process_data: HashMap<Pid, ConvertedProcessData>, // Contains single process data, key is PID
pub finalized_process_data_map: HashMap<u64, Vec<ConvertedProcessData>>, // What's actually displayed, key is the widget ID.
pub stringified_process_data_map: HashMap<u64, Vec<(Vec<(String, Option<String>)>, bool)>>, // Represents the row and whether it is disabled, key is the widget ID
pub mem_labels: Option<(String, String)>,
pub swap_labels: Option<(String, String)>,
pub mem_data: Vec<Point>, // TODO: Switch this and all data points over to a better data structure...
pub swap_data: Vec<Point>,
pub load_avg_data: [f32; 3],
2020-02-29 22:05:01 +00:00
pub cpu_data: Vec<ConvertedCpuData>,
2020-04-17 00:06:50 +00:00
pub battery_data: Vec<ConvertedBatteryData>,
2019-09-12 02:10:49 +00:00
}
#[derive(Debug)]
pub enum ColourScheme {
Default,
DefaultLight,
Gruvbox,
GruvboxLight,
Nord,
NordLight,
Custom,
}
impl FromStr for ColourScheme {
type Err = BottomError;
fn from_str(s: &str) -> error::Result<Self> {
let lower_case = s.to_lowercase();
match lower_case.as_str() {
"default" => Ok(ColourScheme::Default),
"default-light" => Ok(ColourScheme::DefaultLight),
"gruvbox" => Ok(ColourScheme::Gruvbox),
"gruvbox-light" => Ok(ColourScheme::GruvboxLight),
"nord" => Ok(ColourScheme::Nord),
"nord-light" => Ok(ColourScheme::NordLight),
_ => Err(BottomError::ConfigError(format!(
"\"{}\" is an invalid built-in color scheme.",
s
))),
}
}
}
/// Handles the canvas' state. TODO: [OPT] implement this.
2020-02-05 04:21:44 +00:00
pub struct Painter {
pub colours: CanvasColours,
2020-02-29 22:05:01 +00:00
height: u16,
width: u16,
styled_help_text: Vec<Spans<'static>>,
is_mac_os: bool, // FIXME: This feels out of place...
row_constraints: Vec<Constraint>,
col_constraints: Vec<Vec<Constraint>>,
col_row_constraints: Vec<Vec<Vec<Constraint>>>,
layout_constraints: Vec<Vec<Vec<Vec<Constraint>>>>,
derived_widget_draw_locs: Vec<Vec<Vec<Vec<Rect>>>>,
widget_layout: BottomLayout,
table_height_offset: u16,
}
impl Painter {
pub fn init(
widget_layout: BottomLayout, table_gap: u16, is_basic_mode: bool, config: &Config,
colour_scheme: ColourScheme,
) -> anyhow::Result<Self> {
// Now for modularity; we have to also initialize the base layouts!
// We want to do this ONCE and reuse; after this we can just construct
// based on the console size.
let mut row_constraints = Vec::new();
let mut col_constraints = Vec::new();
let mut col_row_constraints = Vec::new();
let mut layout_constraints = Vec::new();
widget_layout.rows.iter().for_each(|row| {
if row.canvas_handle_height {
row_constraints.push(Constraint::Length(0));
} else {
row_constraints.push(Constraint::Ratio(
row.row_height_ratio,
widget_layout.total_row_height_ratio,
));
}
let mut new_col_constraints = Vec::new();
let mut new_widget_constraints = Vec::new();
let mut new_col_row_constraints = Vec::new();
row.children.iter().for_each(|col| {
if col.canvas_handle_width {
new_col_constraints.push(Constraint::Length(0));
} else {
new_col_constraints
.push(Constraint::Ratio(col.col_width_ratio, row.total_col_ratio));
}
let mut new_new_col_row_constraints = Vec::new();
let mut new_new_widget_constraints = Vec::new();
col.children.iter().for_each(|col_row| {
if col_row.canvas_handle_height {
new_new_col_row_constraints.push(Constraint::Length(0));
} else if col_row.flex_grow {
new_new_col_row_constraints.push(Constraint::Min(0));
} else {
new_new_col_row_constraints.push(Constraint::Ratio(
col_row.col_row_height_ratio,
col.total_col_row_ratio,
));
}
let mut new_new_new_widget_constraints = Vec::new();
col_row.children.iter().for_each(|widget| {
if widget.canvas_handle_width {
new_new_new_widget_constraints.push(Constraint::Length(0));
} else if widget.flex_grow {
new_new_new_widget_constraints.push(Constraint::Min(0));
} else {
new_new_new_widget_constraints.push(Constraint::Ratio(
widget.width_ratio,
col_row.total_widget_ratio,
));
}
});
new_new_widget_constraints.push(new_new_new_widget_constraints);
});
new_col_row_constraints.push(new_new_col_row_constraints);
new_widget_constraints.push(new_new_widget_constraints);
});
col_row_constraints.push(new_col_row_constraints);
layout_constraints.push(new_widget_constraints);
col_constraints.push(new_col_constraints);
});
let mut painter = Painter {
colours: CanvasColours::default(),
height: 0,
width: 0,
styled_help_text: Vec::default(),
is_mac_os: cfg!(target_os = "macos"),
row_constraints,
col_constraints,
col_row_constraints,
layout_constraints,
widget_layout,
derived_widget_draw_locs: Vec::default(),
table_height_offset: if is_basic_mode { 2 } else { 4 } + table_gap,
};
if let ColourScheme::Custom = colour_scheme {
painter.generate_config_colours(config)?;
} else {
painter.generate_colour_scheme(colour_scheme)?;
}
painter.complete_painter_init();
Ok(painter)
}
refactor: consolidate time graph components This consolidates all the time graph drawing to one main location, as well as some small improvements. This is helpful in that I don't have to reimplement the same thing across three locations if I have to make one change that in theory should affect them all. In particular, the CPU graph, memory graph, and network graph are all now using the same, generic implementation for drawing, which we call (for now) a component. Note this only affects drawing - it accepts some parameters affecting style and labels, as well as data points, and draw similarly to how it used to before. Widget-specific actions, or things affecting widget state, should all be handled by the widget-specific code instead. For example, our current implementation of x-axis autohide is still controlled by the widget, not the component, even if some of the code is shared. Components are, again, only responsible for drawing (at least for now). For that matter, the graph component does not have mutable access to any form of state outside of tui-rs' `Frame`. Note this *might* change in the future, where we might give the component state. Note that while functionally, the graph behaviour for now is basically the same, a few changes were made internally other than the move to components. The big change is that rather than using tui-rs' `Chart` for the underlying drawing, we now use a tweaked custom `TimeChart` tui-rs widget, which also handles all interpolation steps and some extra customization. Personally, I don't like having to deviate from the library's implementation, but this gives us more flexibility and allows greater control. For example, this allows me to move away from the old hacks required to do interpolation (where I had to mutate the existing list to avoid having to reallocate an extra vector just to insert one extra interpolated point). I can also finally allow customizable legends (which will be added in the future).
2022-04-27 06:13:48 +00:00
/// Determines the border style.
pub fn get_border_style(&self, widget_id: u64, selected_widget_id: u64) -> tui::style::Style {
let is_on_widget = widget_id == selected_widget_id;
if is_on_widget {
self.colours.highlighted_border_style
} else {
self.colours.border_style
}
}
fn generate_config_colours(&mut self, config: &Config) -> anyhow::Result<()> {
if let Some(colours) = &config.colors {
self.colours.set_colours_from_palette(colours)?;
}
Ok(())
}
fn generate_colour_scheme(&mut self, colour_scheme: ColourScheme) -> anyhow::Result<()> {
match colour_scheme {
ColourScheme::Default => {
// Don't have to do anything.
}
ColourScheme::DefaultLight => {
self.colours
.set_colours_from_palette(&*DEFAULT_LIGHT_MODE_COLOUR_PALETTE)?;
}
ColourScheme::Gruvbox => {
self.colours
.set_colours_from_palette(&*GRUVBOX_COLOUR_PALETTE)?;
}
ColourScheme::GruvboxLight => {
self.colours
.set_colours_from_palette(&*GRUVBOX_LIGHT_COLOUR_PALETTE)?;
}
ColourScheme::Nord => {
self.colours
.set_colours_from_palette(&*NORD_COLOUR_PALETTE)?;
}
ColourScheme::NordLight => {
self.colours
.set_colours_from_palette(&*NORD_LIGHT_COLOUR_PALETTE)?;
}
ColourScheme::Custom => {
// This case should never occur, just do nothing.
}
}
Ok(())
}
2020-02-29 22:05:01 +00:00
/// Must be run once before drawing, but after setting colours.
/// This is to set some remaining styles and text.
fn complete_painter_init(&mut self) {
let mut styled_help_spans = Vec::new();
2020-02-29 22:05:01 +00:00
2020-04-24 23:17:58 +00:00
// Init help text:
(*HELP_TEXT).iter().enumerate().for_each(|(itx, section)| {
if itx == 0 {
styled_help_spans.extend(
section
.iter()
.map(|&text| Span::styled(text, self.colours.text_style))
.collect::<Vec<_>>(),
);
} else {
// Not required check but it runs only a few times... so whatever ig, prevents me from
// being dumb and leaving a help text section only one line long.
if section.len() > 1 {
styled_help_spans.push(Span::raw(""));
styled_help_spans
.push(Span::styled(section[0], self.colours.table_header_style));
styled_help_spans.extend(
section[1..]
.iter()
.map(|&text| Span::styled(text, self.colours.text_style))
.collect::<Vec<_>>(),
);
}
}
});
self.styled_help_text = styled_help_spans.into_iter().map(Spans::from).collect();
2020-02-29 22:05:01 +00:00
}
fn draw_frozen_indicator<B: Backend>(&self, f: &mut Frame<'_, B>, draw_loc: Rect) {
f.render_widget(
Paragraph::new(Span::styled(
"Frozen, press 'f' to unfreeze",
self.colours.currently_selected_text_style,
)),
Layout::default()
.horizontal_margin(1)
.constraints([Constraint::Length(1)])
.split(draw_loc)[0],
)
}
pub fn draw_data<B: Backend>(
2020-02-29 22:05:01 +00:00
&mut self, terminal: &mut Terminal<B>, app_state: &mut app::App,
) -> error::Result<()> {
use BottomWidgetType::*;
terminal.draw(|f| {
let (terminal_size, frozen_draw_loc) = if app_state.is_frozen {
let split_loc = Layout::default()
.constraints([Constraint::Min(0), Constraint::Length(1)])
.split(f.size());
(split_loc[0], Some(split_loc[1]))
} else {
(f.size(), None)
};
let terminal_height = terminal_size.height;
let terminal_width = terminal_size.width;
if (self.height == 0 && self.width == 0)
|| (self.height != terminal_height || self.width != terminal_width)
{
app_state.is_force_redraw = true;
self.height = terminal_height;
self.width = terminal_width;
}
if app_state.should_get_widget_bounds() {
// If we're force drawing, reset ALL mouse boundaries.
for widget in app_state.widget_map.values_mut() {
widget.top_left_corner = None;
widget.bottom_right_corner = None;
}
// Reset dd_dialog...
app_state.delete_dialog_state.button_positions = vec![];
// Reset battery dialog...
for battery_widget in app_state.battery_state.widget_states.values_mut() {
battery_widget.tab_click_locs = None;
}
// Reset column headers for sorting in process widget...
for proc_widget in app_state.proc_state.widget_states.values_mut() {
proc_widget.columns.column_header_y_loc = None;
proc_widget.columns.column_header_x_locs = None;
}
}
2020-02-29 22:05:01 +00:00
if app_state.help_dialog_state.is_showing_help {
let gen_help_len = GENERAL_HELP_TEXT.len() as u16 + 3;
let border_len = terminal_height.saturating_sub(gen_help_len) / 2;
2020-02-29 22:05:01 +00:00
let vertical_dialog_chunk = Layout::default()
.direction(Direction::Vertical)
.constraints([
Constraint::Length(border_len),
Constraint::Length(gen_help_len),
Constraint::Length(border_len),
])
.split(terminal_size);
2020-02-29 22:05:01 +00:00
let middle_dialog_chunk = Layout::default()
.direction(Direction::Horizontal)
.constraints(if terminal_width < 100 {
// TODO: [REFACTOR] The point we start changing size at currently hard-coded in.
[
Constraint::Percentage(0),
Constraint::Percentage(100),
Constraint::Percentage(0),
]
} else {
[
Constraint::Percentage(20),
Constraint::Percentage(60),
Constraint::Percentage(20),
]
})
2020-02-29 22:05:01 +00:00
.split(vertical_dialog_chunk[1]);
self.draw_help_dialog(f, app_state, middle_dialog_chunk[1]);
2020-02-29 22:05:01 +00:00
} else if app_state.delete_dialog_state.is_showing_dd {
// TODO: This needs the paragraph wrap feature from tui-rs to be pushed to complete... but for now it's pretty close!
// The main problem right now is that I cannot properly calculate the height offset since
// line-wrapping is NOT the same as taking the width of the text and dividing by width.
// So, I need the height AFTER wrapping.
// See: https://github.com/fdehau/tui-rs/pull/349. Land this after this pushes to release.
let dd_text = self.get_dd_spans(app_state);
let text_width = if terminal_width < 100 {
terminal_width * 90 / 100
} else {
terminal_width * 50 / 100
};
let text_height = if cfg!(target_os = "windows")
|| !app_state.app_config_fields.is_advanced_kill
{
7
} else {
22
};
// let (text_width, text_height) = if let Some(dd_text) = &dd_text {
// let width = if current_width < 100 {
// current_width * 90 / 100
// } else {
// let min_possible_width = (current_width * 50 / 100) as usize;
// let mut width = dd_text.width();
// // This should theoretically never allow width to be 0... we can be safe and do an extra check though.
// while width > (current_width as usize) && width / 2 > min_possible_width {
// width /= 2;
// }
// std::cmp::max(width, min_possible_width) as u16
// };
// (
// width,
// (dd_text.height() + 2 + (dd_text.width() / width as usize)) as u16,
// )
// } else {
// // AFAIK this shouldn't happen, unless something went wrong...
// (
// if current_width < 100 {
// current_width * 90 / 100
// } else {
// current_width * 50 / 100
// },
// 7,
// )
// };
let vertical_bordering = terminal_height.saturating_sub(text_height) / 2;
2020-02-29 22:05:01 +00:00
let vertical_dialog_chunk = Layout::default()
.direction(Direction::Vertical)
.constraints([
Constraint::Length(vertical_bordering),
Constraint::Length(text_height),
Constraint::Length(vertical_bordering),
])
.split(terminal_size);
2020-02-29 22:05:01 +00:00
let horizontal_bordering = terminal_width.saturating_sub(text_width) / 2;
2020-02-29 22:05:01 +00:00
let middle_dialog_chunk = Layout::default()
.direction(Direction::Horizontal)
.constraints([
Constraint::Length(horizontal_bordering),
Constraint::Length(text_width),
Constraint::Length(horizontal_bordering),
])
2020-02-29 22:05:01 +00:00
.split(vertical_dialog_chunk[1]);
// This is a bit nasty, but it works well... I guess.
app_state.delete_dialog_state.is_showing_dd =
self.draw_dd_dialog(f, dd_text, app_state, middle_dialog_chunk[1]);
2020-02-29 22:05:01 +00:00
} else if app_state.is_expanded {
if let Some(frozen_draw_loc) = frozen_draw_loc {
self.draw_frozen_indicator(f, frozen_draw_loc);
}
2020-02-29 22:05:01 +00:00
let rect = Layout::default()
.margin(0)
.constraints([Constraint::Percentage(100)])
.split(terminal_size);
match &app_state.current_widget.widget_type {
Cpu => self.draw_cpu(f, app_state, rect[0], app_state.current_widget.widget_id),
CpuLegend => self.draw_cpu(
f,
app_state,
rect[0],
app_state.current_widget.widget_id - 1,
),
Mem | BasicMem => self.draw_memory_graph(
f,
app_state,
rect[0],
app_state.current_widget.widget_id,
),
Disk => self.draw_disk_table(
f,
app_state,
rect[0],
true,
app_state.current_widget.widget_id,
),
Temp => self.draw_temp_table(
f,
app_state,
rect[0],
true,
app_state.current_widget.widget_id,
),
Net => self.draw_network_graph(
f,
app_state,
rect[0],
app_state.current_widget.widget_id,
2020-04-19 01:11:20 +00:00
false,
),
Proc | ProcSearch | ProcSort => {
let widget_id = app_state.current_widget.widget_id
- match &app_state.current_widget.widget_type {
ProcSearch => 1,
ProcSort => 2,
_ => 0,
};
self.draw_process_features(f, app_state, rect[0], true, widget_id);
}
2020-04-17 00:06:50 +00:00
Battery => self.draw_battery_display(
f,
2020-04-17 00:06:50 +00:00
app_state,
rect[0],
2020-04-27 19:52:39 +00:00
true,
2020-04-17 00:06:50 +00:00
app_state.current_widget.widget_id,
),
_ => {}
2020-02-29 22:05:01 +00:00
}
} else if app_state.app_config_fields.use_basic_mode {
// Basic mode. This basically removes all graphs but otherwise
// the same info.
if let Some(frozen_draw_loc) = frozen_draw_loc {
self.draw_frozen_indicator(f, frozen_draw_loc);
}
let actual_cpu_data_len = app_state.canvas_data.cpu_data.len().saturating_sub(1);
// This fixes #397, apparently if the height is 1, it can't render the CPU bars...
let cpu_height = {
let c = (actual_cpu_data_len / 4) as u16
+ (if actual_cpu_data_len % 4 == 0 { 0 } else { 1 });
if c <= 1 {
1
} else {
c
}
};
let vertical_chunks = Layout::default()
.direction(Direction::Vertical)
.margin(0)
.constraints([
Constraint::Length(cpu_height),
Constraint::Length(2),
Constraint::Length(2),
Constraint::Min(5),
])
.split(terminal_size);
let middle_chunks = Layout::default()
.direction(Direction::Horizontal)
.constraints([Constraint::Percentage(50), Constraint::Percentage(50)])
.split(vertical_chunks[1]);
if vertical_chunks[0].width >= 2 {
self.draw_basic_cpu(f, app_state, vertical_chunks[0], 1);
}
if middle_chunks[0].width >= 2 {
self.draw_basic_memory(f, app_state, middle_chunks[0], 2);
}
if middle_chunks[1].width >= 2 {
self.draw_basic_network(f, app_state, middle_chunks[1], 3);
}
let mut later_widget_id: Option<u64> = None;
if let Some(basic_table_widget_state) = &app_state.basic_table_widget_state {
let widget_id = basic_table_widget_state.currently_displayed_widget_id;
later_widget_id = Some(widget_id);
if vertical_chunks[3].width >= 2 {
match basic_table_widget_state.currently_displayed_widget_type {
Disk => self.draw_disk_table(
f,
app_state,
vertical_chunks[3],
false,
widget_id,
),
Proc | ProcSort => {
let wid = widget_id
- match basic_table_widget_state.currently_displayed_widget_type
{
ProcSearch => 1,
ProcSort => 2,
_ => 0,
};
self.draw_process_features(
f,
app_state,
vertical_chunks[3],
false,
wid,
);
}
Temp => self.draw_temp_table(
f,
app_state,
vertical_chunks[3],
false,
widget_id,
),
Battery => self.draw_battery_display(
f,
app_state,
vertical_chunks[3],
false,
widget_id,
),
_ => {}
}
}
}
if let Some(widget_id) = later_widget_id {
self.draw_basic_table_arrows(f, app_state, vertical_chunks[2], widget_id);
}
2020-02-29 22:05:01 +00:00
} else {
// Draws using the passed in (or default) layout.
if let Some(frozen_draw_loc) = frozen_draw_loc {
self.draw_frozen_indicator(f, frozen_draw_loc);
}
2020-04-24 23:17:58 +00:00
if self.derived_widget_draw_locs.is_empty() || app_state.is_force_redraw {
let draw_locs = Layout::default()
.margin(0)
.constraints(self.row_constraints.as_slice())
.direction(Direction::Vertical)
.split(terminal_size);
self.derived_widget_draw_locs = izip!(
draw_locs,
&self.col_constraints,
&self.col_row_constraints,
&self.layout_constraints,
&self.widget_layout.rows
)
.map(
|(
draw_loc,
col_constraint,
col_row_constraint,
row_constraint_vec,
cols,
)| {
izip!(
Layout::default()
.constraints(col_constraint.as_slice())
.direction(Direction::Horizontal)
.split(draw_loc)
.into_iter(),
col_row_constraint,
row_constraint_vec,
&cols.children
)
.map(|(split_loc, constraint, col_constraint_vec, col_rows)| {
izip!(
Layout::default()
.constraints(constraint.as_slice())
.direction(Direction::Vertical)
.split(split_loc)
.into_iter(),
col_constraint_vec,
&col_rows.children
)
.map(|(draw_loc, col_row_constraint_vec, widgets)| {
// Note that col_row_constraint_vec CONTAINS the widget constraints
let widget_draw_locs = Layout::default()
.constraints(col_row_constraint_vec.as_slice())
.direction(Direction::Horizontal)
.split(draw_loc);
// Side effect, draw here.
self.draw_widgets_with_constraints(
f,
app_state,
widgets,
&widget_draw_locs,
);
widget_draw_locs
})
.collect()
})
.collect()
},
)
.collect();
} else {
self.widget_layout
.rows
.iter()
2021-12-28 19:31:42 +00:00
.flat_map(|row| &row.children)
.flat_map(|col| &col.children)
.zip(self.derived_widget_draw_locs.iter().flatten().flatten())
.for_each(|(widgets, widget_draw_locs)| {
self.draw_widgets_with_constraints(
f,
app_state,
widgets,
widget_draw_locs,
);
});
}
2020-02-29 22:05:01 +00:00
}
})?;
if let Some(updated_current_widget) = app_state
.widget_map
.get(&app_state.current_widget.widget_id)
{
app_state.current_widget = updated_current_widget.clone();
}
2020-04-24 23:17:58 +00:00
app_state.is_force_redraw = false;
app_state.is_determining_widget_boundary = false;
2020-02-29 22:05:01 +00:00
Ok(())
}
fn draw_widgets_with_constraints<B: Backend>(
&self, f: &mut Frame<'_, B>, app_state: &mut App, widgets: &BottomColRow,
widget_draw_locs: &[Rect],
) {
use BottomWidgetType::*;
for (widget, widget_draw_loc) in widgets.children.iter().zip(widget_draw_locs) {
if widget_draw_loc.width >= 2 && widget_draw_loc.height >= 2 {
match &widget.widget_type {
Empty => {}
Cpu => self.draw_cpu(f, app_state, *widget_draw_loc, widget.widget_id),
Mem => self.draw_memory_graph(f, app_state, *widget_draw_loc, widget.widget_id),
Net => self.draw_network(f, app_state, *widget_draw_loc, widget.widget_id),
Temp => {
self.draw_temp_table(f, app_state, *widget_draw_loc, true, widget.widget_id)
}
Disk => {
self.draw_disk_table(f, app_state, *widget_draw_loc, true, widget.widget_id)
}
Proc => self.draw_process_features(
f,
app_state,
*widget_draw_loc,
true,
widget.widget_id,
),
Battery => self.draw_battery_display(
f,
app_state,
*widget_draw_loc,
true,
widget.widget_id,
),
_ => {}
}
}
}
}
}