Commit graph

1275 commits

Author SHA1 Message Date
Marco Buono
f8db1a6d4b Use De Morgan's laws to make #[cfg()] more readable 2023-10-08 19:49:47 -03:00
Marco Buono
30eec56e81 Use SCREEN_SPACE_SPECULAR_TRANSMISSION_* name (kinda verbose?) 2023-10-08 18:52:22 -03:00
Marco Buono
5c4f00b120 Rename the blur taps shader def 2023-10-08 18:40:53 -03:00
Marco Buono
5fe0258e79 Apply additional feedback on names and comments 2023-10-08 18:22:16 -03:00
Marco Buono
f2b34dc741 Add missing use statement 2023-09-26 02:38:42 -03:00
Marco Buono
0b51e120d9 Add transmissive quality controls 2023-09-26 02:25:44 -03:00
Marco Buono
e973e17660 Rename transmission to specular_transmission 2023-09-26 01:00:25 -03:00
Marco Buono
20bced86ef Use default font in example 2023-09-24 16:45:21 -03:00
Marco Buono
f02bba3684 Flip horizontal camera controls 2023-09-24 16:34:07 -03:00
Marco Buono
1edab1145c Tweak camera controls, move roughness to E/R 2023-09-24 16:32:50 -03:00
Marco Buono
c157a25e08 Merge branch 'main' into transmission 2023-09-24 12:12:03 -03:00
Robert Swain
5c884c5a15
Automatic batching/instancing of draw commands (#9685)
# Objective

- Implement the foundations of automatic batching/instancing of draw
commands as the next step from #89
- NOTE: More performance improvements will come when more data is
managed and bound in ways that do not require rebinding such as mesh,
material, and texture data.

## Solution

- The core idea for batching of draw commands is to check whether any of
the information that has to be passed when encoding a draw command
changes between two things that are being drawn according to the sorted
render phase order. These should be things like the pipeline, bind
groups and their dynamic offsets, index/vertex buffers, and so on.
  - The following assumptions have been made:
- Only entities with prepared assets (pipelines, materials, meshes) are
queued to phases
- View bindings are constant across a phase for a given draw function as
phases are per-view
- `batch_and_prepare_render_phase` is the only system that performs this
batching and has sole responsibility for preparing the per-object data.
As such the mesh binding and dynamic offsets are assumed to only vary as
a result of the `batch_and_prepare_render_phase` system, e.g. due to
having to split data across separate uniform bindings within the same
buffer due to the maximum uniform buffer binding size.
- Implement `GpuArrayBuffer` for `Mesh2dUniform` to store Mesh2dUniform
in arrays in GPU buffers rather than each one being at a dynamic offset
in a uniform buffer. This is the same optimisation that was made for 3D
not long ago.
- Change batch size for a range in `PhaseItem`, adding API for getting
or mutating the range. This is more flexible than a size as the length
of the range can be used in place of the size, but the start and end can
be otherwise whatever is needed.
- Add an optional mesh bind group dynamic offset to `PhaseItem`. This
avoids having to do a massive table move just to insert
`GpuArrayBufferIndex` components.

## Benchmarks

All tests have been run on an M1 Max on AC power. `bevymark` and
`many_cubes` were modified to use 1920x1080 with a scale factor of 1. I
run a script that runs a separate Tracy capture process, and then runs
the bevy example with `--features bevy_ci_testing,trace_tracy` and
`CI_TESTING_CONFIG=../benchmark.ron` with the contents of
`../benchmark.ron`:
```rust
(
    exit_after: Some(1500)
)
```
...in order to run each test for 1500 frames.

The recent changes to `many_cubes` and `bevymark` added reproducible
random number generation so that with the same settings, the same rng
will occur. They also added benchmark modes that use a fixed delta time
for animations. Combined this means that the same frames should be
rendered both on main and on the branch.

The graphs compare main (yellow) to this PR (red).

### 3D Mesh `many_cubes --benchmark`

<img width="1411" alt="Screenshot 2023-09-03 at 23 42 10"
src="https://github.com/bevyengine/bevy/assets/302146/2088716a-c918-486c-8129-090b26fd2bc4">
The mesh and material are the same for all instances. This is basically
the best case for the initial batching implementation as it results in 1
draw for the ~11.7k visible meshes. It gives a ~30% reduction in median
frame time.

The 1000th frame is identical using the flip tool:

![flip many_cubes-main-mesh3d many_cubes-batching-mesh3d 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/2511f37a-6df8-481a-932f-706ca4de7643)

```
     Mean: 0.000000
     Weighted median: 0.000000
     1st weighted quartile: 0.000000
     3rd weighted quartile: 0.000000
     Min: 0.000000
     Max: 0.000000
     Evaluation time: 0.4615 seconds
```

### 3D Mesh `many_cubes --benchmark --material-texture-count 10`

<img width="1404" alt="Screenshot 2023-09-03 at 23 45 18"
src="https://github.com/bevyengine/bevy/assets/302146/5ee9c447-5bd2-45c6-9706-ac5ff8916daf">
This run uses 10 different materials by varying their textures. The
materials are randomly selected, and there is no sorting by material
bind group for opaque 3D so any batching is 'random'. The PR produces a
~5% reduction in median frame time. If we were to sort the opaque phase
by the material bind group, then this should be a lot faster. This
produces about 10.5k draws for the 11.7k visible entities. This makes
sense as randomly selecting from 10 materials gives a chance that two
adjacent entities randomly select the same material and can be batched.

The 1000th frame is identical in flip:

![flip many_cubes-main-mesh3d-mtc10 many_cubes-batching-mesh3d-mtc10
67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/2b3a8614-9466-4ed8-b50c-d4aa71615dbb)

```
     Mean: 0.000000
     Weighted median: 0.000000
     1st weighted quartile: 0.000000
     3rd weighted quartile: 0.000000
     Min: 0.000000
     Max: 0.000000
     Evaluation time: 0.4537 seconds
```

### 3D Mesh `many_cubes --benchmark --vary-per-instance`

<img width="1394" alt="Screenshot 2023-09-03 at 23 48 44"
src="https://github.com/bevyengine/bevy/assets/302146/f02a816b-a444-4c18-a96a-63b5436f3b7f">
This run varies the material data per instance by randomly-generating
its colour. This is the worst case for batching and that it performs
about the same as `main` is a good thing as it demonstrates that the
batching has minimal overhead when dealing with ~11k visible mesh
entities.

The 1000th frame is identical according to flip:

![flip many_cubes-main-mesh3d-vpi many_cubes-batching-mesh3d-vpi 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/ac5f5c14-9bda-4d1a-8219-7577d4aac68c)

```
     Mean: 0.000000
     Weighted median: 0.000000
     1st weighted quartile: 0.000000
     3rd weighted quartile: 0.000000
     Min: 0.000000
     Max: 0.000000
     Evaluation time: 0.4568 seconds
```

### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode
mesh2d`

<img width="1412" alt="Screenshot 2023-09-03 at 23 59 56"
src="https://github.com/bevyengine/bevy/assets/302146/cb02ae07-237b-4646-ae9f-fda4dafcbad4">
This spawns 160 waves of 1000 quad meshes that are shaded with
ColorMaterial. Each wave has a different material so 160 waves currently
should result in 160 batches. This results in a 50% reduction in median
frame time.

Capturing a screenshot of the 1000th frame main vs PR gives:

![flip bevymark-main-mesh2d bevymark-batching-mesh2d 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/80102728-1217-4059-87af-14d05044df40)

```
     Mean: 0.001222
     Weighted median: 0.750432
     1st weighted quartile: 0.453494
     3rd weighted quartile: 0.969758
     Min: 0.000000
     Max: 0.990296
     Evaluation time: 0.4255 seconds
```

So they seem to produce the same results. I also double-checked the
number of draws. `main` does 160000 draws, and the PR does 160, as
expected.

### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode
mesh2d --material-texture-count 10`

<img width="1392" alt="Screenshot 2023-09-04 at 00 09 22"
src="https://github.com/bevyengine/bevy/assets/302146/4358da2e-ce32-4134-82df-3ab74c40849c">
This generates 10 textures and generates materials for each of those and
then selects one material per wave. The median frame time is reduced by
50%. Similar to the plain run above, this produces 160 draws on the PR
and 160000 on `main` and the 1000th frame is identical (ignoring the fps
counter text overlay).

![flip bevymark-main-mesh2d-mtc10 bevymark-batching-mesh2d-mtc10 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/ebed2822-dce7-426a-858b-b77dc45b986f)

```
     Mean: 0.002877
     Weighted median: 0.964980
     1st weighted quartile: 0.668871
     3rd weighted quartile: 0.982749
     Min: 0.000000
     Max: 0.992377
     Evaluation time: 0.4301 seconds
```

### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode
mesh2d --vary-per-instance`

<img width="1396" alt="Screenshot 2023-09-04 at 00 13 53"
src="https://github.com/bevyengine/bevy/assets/302146/b2198b18-3439-47ad-919a-cdabe190facb">
This creates unique materials per instance by randomly-generating the
material's colour. This is the worst case for 2D batching. Somehow, this
PR manages a 7% reduction in median frame time. Both main and this PR
issue 160000 draws.

The 1000th frame is the same:

![flip bevymark-main-mesh2d-vpi bevymark-batching-mesh2d-vpi 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/a2ec471c-f576-4a36-a23b-b24b22578b97)

```
     Mean: 0.001214
     Weighted median: 0.937499
     1st weighted quartile: 0.635467
     3rd weighted quartile: 0.979085
     Min: 0.000000
     Max: 0.988971
     Evaluation time: 0.4462 seconds
```

### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode
sprite`

<img width="1396" alt="Screenshot 2023-09-04 at 12 21 12"
src="https://github.com/bevyengine/bevy/assets/302146/8b31e915-d6be-4cac-abf5-c6a4da9c3d43">
This just spawns 160 waves of 1000 sprites. There should be and is no
notable difference between main and the PR.

### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode
sprite --material-texture-count 10`

<img width="1389" alt="Screenshot 2023-09-04 at 12 36 08"
src="https://github.com/bevyengine/bevy/assets/302146/45fe8d6d-c901-4062-a349-3693dd044413">
This spawns the sprites selecting a texture at random per instance from
the 10 generated textures. This has no significant change vs main and
shouldn't.

### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode
sprite --vary-per-instance`

<img width="1401" alt="Screenshot 2023-09-04 at 12 29 52"
src="https://github.com/bevyengine/bevy/assets/302146/762c5c60-352e-471f-8dbe-bbf10e24ebd6">
This sets the sprite colour as being unique per instance. This can still
all be drawn using one batch. There should be no difference but the PR
produces median frame times that are 4% higher. Investigation showed no
clear sources of cost, rather a mix of give and take that should not
happen. It seems like noise in the results.

### Summary

| Benchmark  | % change in median frame time |
| ------------- | ------------- |
| many_cubes  | 🟩 -30%  |
| many_cubes 10 materials  | 🟩 -5%  |
| many_cubes unique materials  | 🟩 ~0%  |
| bevymark mesh2d  | 🟩 -50%  |
| bevymark mesh2d 10 materials  | 🟩 -50%  |
| bevymark mesh2d unique materials  | 🟩 -7%  |
| bevymark sprite  | 🟥 2%  |
| bevymark sprite 10 materials  | 🟥 0.6%  |
| bevymark sprite unique materials  | 🟥 4.1%  |

---

## Changelog

- Added: 2D and 3D mesh entities that share the same mesh and material
(same textures, same data) are now batched into the same draw command
for better performance.

---------

Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Nicola Papale <nico@nicopap.ch>
2023-09-21 22:12:34 +00:00
Rob Parrett
bdb063497d
Use radsort for Transparent2d PhaseItem sorting (#9882)
# Objective

Fix a performance regression in the "[bevy vs
pixi](https://github.com/SUPERCILEX/bevy-vs-pixi)" benchmark.

This benchmark seems to have a slightly pathological distribution of `z`
values -- Sprites are spawned with a random `z` value with a child
sprite at `f32::EPSILON` relative to the parent.

See discussion here:
https://github.com/bevyengine/bevy/issues/8100#issuecomment-1726978633

## Solution

Use `radsort` for sorting `Transparent2d` `PhaseItem`s.

Use random `z` values in bevymark to stress the phase sort. Add an
`--ordered-z` option to `bevymark` that uses the old behavior.

## Benchmarks

mac m1 max

| benchmark | fps before | fps after | diff |
| - | - | - | - |
| bevymark --waves 120 --per-wave 1000 --random-z | 42.16 | 47.06 | 🟩
+11.6% |
| bevymark --waves 120 --per-wave 1000 | 52.50 | 52.29 | 🟥 -0.4% |
| bevymark --waves 120 --per-wave 1000 --mode mesh2d --random-z | 9.64 |
10.24 | 🟩 +6.2% |
| bevymark --waves 120 --per-wave 1000 --mode mesh2d | 15.83 | 15.59 | 🟥
-1.5% |
| bevy-vs-pixi | 39.71 | 59.88 | 🟩 +50.1% |

## Discussion

It's possible that `TransparentUi` should also change. We could probably
use `slice::sort_unstable_by_key` with the current sort key though, as
its items are always sorted and unique. I'd prefer to follow up later to
look into that.

Here's a survey of sorts used by other `PhaseItem`s

#### slice::sort_by_key
`Transparent2d`, `TransparentUi`

#### radsort
`Opaque3d`, `AlphaMask3d`, `Transparent3d`, `Opaque3dPrepass`,
`AlphaMask3dPrepass`, `Shadow`

I also tried `slice::sort_unstable_by_key` with a compound sort key
including `Entity`, but it didn't seem as promising and I didn't test it
as thoroughly.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-21 17:53:20 +00:00
Marco Buono
d3d73ec5cf Fix TemporalJitter import 2023-09-21 01:03:21 -03:00
Marco Buono
9608094585 Merge branch 'main' into transmission 2023-09-21 00:20:38 -03:00
Nicola Papale
7163aabf29
Use a single line for of large binding lists (#9849)
# Objective

- When adding/removing bindings in large binding lists, git would
generate very difficult-to-read diffs

## Solution

- Move the `@group(X) @binding(Y)` into the same line as the binding
type declaration
2023-09-19 22:17:44 +00:00
Trashtalk217
e4b368721d
One Shot Systems (#8963)
I'm adopting this ~~child~~ PR.

# Objective

- Working with exclusive world access is not always easy: in many cases,
a standard system or three is more ergonomic to write, and more
modularly maintainable.
- For small, one-off tasks (commonly handled with scripting), running an
event-reader system incurs a small but flat overhead cost and muddies
the schedule.
- Certain forms of logic (e.g. turn-based games) want very fine-grained
linear and/or branching control over logic.
- SystemState is not automatically cached, and so performance can suffer
and change detection breaks.
- Fixes https://github.com/bevyengine/bevy/issues/2192.
- Partial workaround for https://github.com/bevyengine/bevy/issues/279.

## Solution

- Adds a SystemRegistry resource to the World, which stores initialized
systems keyed by their SystemSet.
- Allows users to call world.run_system(my_system) and
commands.run_system(my_system), without re-initializing or losing state
(essential for change detection).
- Add a Callback type to enable convenient use of dynamic one shot
systems and reduce the mental overhead of working with Box<dyn
SystemSet>.
- Allow users to run systems based on their SystemSet, enabling more
complex user-made abstractions.

## Future work

- Parameterized one-shot systems would improve reusability and bring
them closer to events and commands. The API could be something like
run_system_with_input(my_system, my_input) and use the In SystemParam.
- We should evaluate the unification of commands and one-shot systems
since they are two different ways to run logic on demand over a World.

### Prior attempts

- https://github.com/bevyengine/bevy/pull/2234
- https://github.com/bevyengine/bevy/pull/2417
- https://github.com/bevyengine/bevy/pull/4090
- https://github.com/bevyengine/bevy/pull/7999

This PR continues the work done in
https://github.com/bevyengine/bevy/pull/7999.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
Co-authored-by: Aevyrie <aevyrie@gmail.com>
Co-authored-by: Alejandro Pascual Pozo <alejandro.pascual.pozo@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Dmytro Banin <banind@cs.washington.edu>
Co-authored-by: James Liu <contact@jamessliu.com>
2023-09-19 20:17:05 +00:00
Nico Burns
b995827013
Have a separate implicit viewport node per root node + make viewport node Display::Grid (#9637)
# Objective

Make `bevy_ui` "root" nodes more intuitive to use/style by:
- Removing the implicit flexbox styling (such as stretch alignment) that
is applied to them, and replacing it with more intuitive CSS Grid
styling (notably with stretch alignment disabled in both axes).
- Making root nodes layout independently of each other. Instead of there
being a single implicit "viewport" node that all root nodes are children
of, there is now an implicit "viewport" node *per root node*. And layout
of each tree is computed separately.

## Solution

- Remove the global implicit viewport node, and instead create an
implicit viewport node for each user-specified root node.
- Keep track of both the user-specified root nodes and the implicit
viewport nodes in a separate `Vec`.
- Use the window's size as the `available_space` parameter to
`Taffy.compute_layout` rather than setting it on the implicit viewport
node (and set the viewport to `height: 100%; width: 100%` to make this
"just work").

---

## Changelog

- Bevy UI now lays out root nodes independently of each other in
separate layout contexts.
- The implicit viewport node (which contains each user-specified root
node) is now `Display::Grid` with `align_items` and `justify_items` both
set to `Start`.

## Migration Guide

- Bevy UI now lays out root nodes independently of each other in
separate layout contexts. If you were relying on your root nodes being
able to affect each other's layouts, then you may need to wrap them in a
single root node.
- The implicit viewport node (which contains each user-specified root
node) is now `Display::Grid` with `align_items` and `justify_items` both
set to `Start`. You may need to add `height: Val::Percent(100.)` to your
root nodes if you were previously relying on being implicitly set.
2023-09-19 15:14:46 +00:00
Rob Parrett
73e06e33da
Use a seeded rng for custom_skinned_mesh example (#9846)
# Objective

Make the output of this example repeatable so it can be utilized by
automated screenshot diffing.

## Solution

- Use a seeded RNG for the random colors
- Offset the meshes slightly in z so they don't intersect each other at
the extents of their animations.
2023-09-19 05:57:25 +00:00
Rob Parrett
d3f612c376
Fix ambiguities in transform example (#9845)
# Objective

Fix these

```
 -- rotate_cube and move_cube
    conflict on: ["bevy_transform::components::transform::Transform", "transform::CubeState"]
 -- rotate_cube and scale_down_sphere_proportional_to_cube_travel_distance
    conflict on: ["bevy_transform::components::transform::Transform", "transform::CubeState"]
 -- move_cube and scale_down_sphere_proportional_to_cube_travel_distance
    conflict on: ["bevy_transform::components::transform::Transform", "transform::CubeState"]
```

The three systems in this example depend on the results of the others.
This leads to minor but detectable differences in output between runs by
automated screenshot diffing depending on the order of the schedule.

We don't necessarily need to be able to do this for **every** example,
but I think this is a case where fixing it is easy / maybe the right
thing to do anyway.

## Solution

Chain the three systems
2023-09-19 05:57:21 +00:00
Rob Parrett
26359f9b37
Remove some old references to CoreSet (#9833)
# Objective

Remove some references to `CoreSet` which was removed in #8079.
2023-09-18 01:07:11 +00:00
louis-le-cam
9ee9d627d7
Rename RemovedComponents::iter/iter_with_id to read/read_with_id (#9778)
# Objective

Rename RemovedComponents::iter/iter_with_id to read/read_with_id to make
it clear that it consume the data

Fixes #9755.

(It's my first pull request, if i've made any mistake, please let me
know)

## Solution

Refactor RemovedComponents::iter/iter_with_id to read/read_with_id



## Changelog

Refactor RemovedComponents::iter/iter_with_id to read/read_with_id

Deprecate RemovedComponents::iter/iter_with_id

Remove IntoIterator implementation

Update removal_detection example accordingly

---

## Migration Guide

Rename calls of RemovedComponents::iter/iter_with_id to
read/read_with_id

Replace IntoIterator iteration (&mut <RemovedComponents>) with .read()

---------

Co-authored-by: denshi_ika <mojang2824@gmail.com>
2023-09-15 12:37:20 +00:00
Rob Parrett
8681d1cb04
Fix animate_scale scaling z value in text2d example (#9769)
# Objective

I noticed this while testing #9733.

It's not causing any problems, but we shouldn't teach users to scale 2d
stuff in z.

## Solution

Only scale in x and y.
2023-09-13 19:25:44 +00:00
Bruce Mitchener
5eb6889832
examples: Remove unused doc comments. (#9795)
# Objective

- Compile all targets without warnings about unused doc comments.

## Solution

- Turn unused doc comments into regular comments. Doc comments aren't
supported on expressions, so they can just be regular comments.
2023-09-13 19:21:23 +00:00
A-Walrus
1a7fc57a8c
Fix comment in scene example FromResources (#9743)
Comment references non existent `FromResources` instead of `FromWorld`

---------

Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
2023-09-11 19:50:38 +00:00
IceSentry
027ff9f378
Wait before making window visible (#9692)
# Objective

- The current example still has one white frame before it starts
rendering.

## Solution

- Wait 3 frames before toggling visibility
2023-09-11 19:09:55 +00:00
ickshonpe
625d386940
impl From<String> and From<&str> for TextSection (#8856)
# Objective

Implement `From<String>` and `From<&str>` for `TextSection`

Example from something I was working on earlier:
```rust
parent.spawn(TextBundle::from_sections([
    TextSection::new("press ".to_string(), TextStyle::default()),
    TextSection::new("space".to_string(), TextStyle { color: Color::YELLOW, ..default() }),
    TextSection::new(" to advance frames".to_string(), TextStyle::default()),
]));
```

After an `impl From<&str> for TextSection` :

```rust
parent.spawn(TextBundle::from_sections([
    "press ".into(),
    TextSection::new("space".to_string(), TextStyle { color: Color::YELLOW, ..default() }),
    " to advance frames".into(),
]));
```

* Potentially unhelpful without a default font, so behind the
`default_font` feature.

 Co-authored-by: [hate](https://github.com/hate)

---------

Co-authored-by: hate <15314665+hate@users.noreply.github.com>
2023-09-11 19:00:50 +00:00
ira
f3ab38a802
Add example for Camera::viewport_to_world (#7179)
Fixes #7177

---------

Co-authored-by: Rob Parrett <robparrett@gmail.com>
2023-09-11 18:52:11 +00:00
Carter Anderson
17edf4f7c7
Copy on Write AssetPaths (#9729)
# Objective

The `AssetServer` and `AssetProcessor` do a lot of `AssetPath` cloning
(across many threads). To store the path on the handle, to store paths
in dependency lists, to pass an owned path to the offloaded thread, to
pass a path to the LoadContext, etc , etc. Cloning multiple string
allocations multiple times like this will add up. It is worth optimizing
this.

Referenced in #9714 

## Solution

Added a new `CowArc<T>` type to `bevy_util`, which behaves a lot like
`Cow<T>`, but the Owned variant is an `Arc<T>`. Use this in place of
`Cow<str>` and `Cow<Path>` on `AssetPath`.

---

## Changelog

- `AssetPath` now internally uses `CowArc`, making clone operations much
cheaper
- `AssetPath` now serializes as `AssetPath("some_path.extension#Label")`
instead of as `AssetPath { path: "some_path.extension", label:
Some("Label) }`


## Migration Guide

```rust
// Old
AssetPath::new("logo.png", None);

// New
AssetPath::new("logo.png");

// Old
AssetPath::new("scene.gltf", Some("Mesh0");

// New
AssetPath::new("scene.gltf").with_label("Mesh0");
```

`AssetPath` now serializes as `AssetPath("some_path.extension#Label")`
instead of as `AssetPath { path: "some_path.extension", label:
Some("Label) }`

---------

Co-authored-by: Pascal Hertleif <killercup@gmail.com>
2023-09-09 23:15:10 +00:00
Joseph
8eb6ccdd87
Remove useless single tuples and trailing commas (#9720)
# Objective

Title
2023-09-08 21:46:54 +00:00
ickshonpe
73447b6d72
many_buttons enhancements (#9712)
# Objective

`many_buttons` enhancements:
* use `argh` to manage the commandline arguments like the other stress
tests
* add an option to set the number of buttons
* add a grid layout option
* centre the grid properly
* use viewport coords for the layout's style constraints
* replace use of absolute positioning

includes the changes from #9636

Displaying an image isn't actually about stress testing image rendering.
Without a second texture (the first is used by the text) the entire grid
will be drawn in a single batch. The extra texture used by the image
forces the renderer to break up the batches at every button displaying
an image, where it has to switch between the font atlas texture and the
image texture.

## Solution

<img width="401" alt="many_buttons_new"
src="https://github.com/bevyengine/bevy/assets/27962798/82140c6d-d72c-4e4f-b9b6-dd204176e51d">

---

## Changelog

 `many_buttons` stress test example enhancements:
* uses `argh` to the manage the commandline arguments.
* New commandline args:
  - `--help` display info & list all commandline options
  - `--buttons`  set the number of buttons.
  - `--image-freq` set the frequency of buttons displaying images
  - `--grid` use a grid layout
* style constraints are specified in viewport coords insead of
percentage values
* margins and nested bundles are used to construct the layout, instead
of absolute positioning
* the button grid centered in the window, the empty gap along the bottom
and right is removed
* an image is drawn as the background to every Nth button where N is set
using the `--image-freq` commandline option.

---------

Co-authored-by: Rob Parrett <robparrett@gmail.com>
2023-09-08 15:02:05 +00:00
Carter Anderson
5eb292dc10
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal

## Why Does Bevy Need A New Asset System?

Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:

* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.

These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.

## Bevy Asset V2

Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types

## Using The New Asset System

### Normal Unprocessed Asset Loading

By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.

If you are defining a custom asset, first derive `Asset`:

```rust
#[derive(Asset)]
struct Thing {
    value: String,
}
```

Initialize the asset:
```rust
app.init_asset:<Thing>()
```

Implement a new `AssetLoader` for it:

```rust
#[derive(Default)]
struct ThingLoader;

#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
    some_setting: bool,
}

impl AssetLoader for ThingLoader {
    type Asset = Thing;
    type Settings = ThingSettings;

    fn load<'a>(
        &'a self,
        reader: &'a mut Reader,
        settings: &'a ThingSettings,
        load_context: &'a mut LoadContext,
    ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
        Box::pin(async move {
            let mut bytes = Vec::new();
            reader.read_to_end(&mut bytes).await?;
            // convert bytes to value somehow
            Ok(Thing {
                value 
            })
        })
    }

    fn extensions(&self) -> &[&str] {
        &["thing"]
    }
}
```

Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.

Then just register the loader in your Bevy app:

```rust
app.init_asset_loader::<ThingLoader>()
```

Now just add your `Thing` asset files into the `assets` folder and load
them like this:

```rust
fn system(asset_server: Res<AssetServer>) {
    let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```

You can check load states directly via the asset server:

```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```

You can also listen for events:

```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
    for event in events.iter() {
        if event.is_loaded_with_dependencies(&handle) {
        }
    }
}
```

Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.

Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:

```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```

### Processed Assets

Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```

This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.

When deploying processed Bevy apps, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```

This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.

When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:

```rust
(
    meta_format_version: "1.0",
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.

In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 12415480888597742505,
        full_hash: 14344495437905856884,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.

When the processor is enabled, you can use the `Process` metadata
config:

```rust
(
    meta_format_version: "1.0",
    asset: Process(
        processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
        settings: (
            loader_settings: (
                format: FromExtension,
            ),
            saver_settings: (
                generate_mipmaps: true,
            ),
        ),
    ),
)
```

This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.

`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 905599590923828066,
        full_hash: 9948823010183819117,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: Format(Basis),
        ),
    ),
)
```

To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.

To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.

You can configure default processors for file extensions like this:

```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```

There is one more metadata type to be aware of:

```rust
(
    meta_format_version: "1.0",
    asset: Ignore,
)
```

This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.

The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!

`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.

## Open Questions

There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:

### Implied Dependencies vs Dependency Enumeration

There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).

This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.

However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)

### Eager ProcessorDev Asset Loading

I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.

Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.

### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?

In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.

Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.

The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.

I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.

### Folder / File Naming Conventions

All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?

### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?

Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.

### Discuss on_loaded High Level Interface:

This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern

```rust
fn main() {
    App::new()
        .init_asset::<MyAssets>()
        .add_systems(Update, on_loaded(create_array_texture))
        .run();
}

#[derive(Asset, Clone)]
struct MyAssets {
    #[dependency]
    picture_of_my_cat: Handle<Image>,
    #[dependency]
    picture_of_my_other_cat: Handle<Image>,
}

impl FromWorld for ArrayTexture {
    fn from_world(world: &mut World) -> Self {
        picture_of_my_cat: server.load("meow.png"),
        picture_of_my_other_cat: server.load("meeeeeeeow.png"),
    }
}

fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_cat.clone(),  
        ..default()
    });
    
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_other_cat.clone(),  
        ..default()
    });
}

```

The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).

We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.

## Clarifying Questions

### What about Assets as Entities?

This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.

However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)

In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.

### Why not Distill?

[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".

It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).

However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)

Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".

### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?

"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).

Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).

## Draft TODO

- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x]  Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog

## Followup TODO

- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix 
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429

## Next Steps

* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.

---------

Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
Rob Parrett
04885eb49c
Fix doc link in transparent_window example (#9697)
# Objective

This link became invalid after #5589.

## Solution

The docs that were being linked to still exist, but they're on `Window`
now.

This PR just updates that link.
2023-09-05 05:43:26 +00:00
Robert Swain
e9b3aeb38f
Enhance bevymark (#9674)
# Objective

- In preparation for an initial 2D/3D mesh batching/instancing PR,
enhance `bevymark` to support some different test modes that enable
comparison and optimisation of performance
 
## Solution

- Use `argh` for command line interface options
- Use seeded `StdRng` for reproducible random number generation
- Add a mode for testing 2D meshes that includes an option to uniquely
vary the data of each material by setting a random flat colour on the
`ColorMaterial`.
- Add a way of specifying the number of different textures to use for
sprites or meshes. These are generated at the same resolution as the
Bevy bird icon, but are just random flat colours for testing.
- Add a benchmark mode that spawns all entities during setup, and
animates the entities using a fixed delta time for reproducible
animation. The initially-spawned entities are still spawned in waves and
animated as they would have been had they spawned at intervals.

---------

Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2023-09-02 19:16:44 +00:00
Rob Parrett
870d46ec2e
Use default resolution for viewport_debug example (#9666)
# Objective

The `viewport_debug` example opens a window that is physically very
large. Probably larger than the screen for the majority of machines.

## Solution

Remove the custom resolution and adjust the pixel coordinates so that
everything lines up.

At the default resolution, everything is still whole numbers even
without adjusting the viewport coordinates.
2023-09-02 18:43:56 +00:00
Robert Swain
40c6b3b91e
Enhance many_cubes stress test use cases (#9596)
# Objective

- Make `many_cubes` suitable for testing various parts of the upcoming
batching work.

## Solution

- Use `argh` for CLI.
- Default to the sphere layout as it is more useful for benchmarking.
- Add a benchmark mode that advances the camera by a fixed step to
render the same frames across runs.
- Add an option to vary the material data per-instance. The color is
randomized.
- Add an option to generate a number of textures and randomly choose one
per instance.
- Use seeded `StdRng` for deterministic random numbers.
2023-09-02 14:49:32 +00:00
Joseph
02b520b4e8
Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497)
# Objective

Fix #8267.
Fixes half of #7840.

The `ComputedVisibility` component contains two flags: hierarchy
visibility, and view visibility (whether its visible to any cameras).
Due to the modular and open-ended way that view visibility is computed,
it triggers change detection every single frame, even when the value
does not change. Since hierarchy visibility is stored in the same
component as view visibility, this means that change detection for
inherited visibility is completely broken.

At the company I work for, this has become a real issue. We are using
change detection to only re-render scenes when necessary. The broken
state of change detection for computed visibility means that we have to
to rely on the non-inherited `Visibility` component for now. This is
workable in the early stages of our project, but since we will
inevitably want to use the hierarchy, we will have to either:

1. Roll our own solution for computed visibility.
2. Fix the issue for everyone.

## Solution

Split the `ComputedVisibility` component into two: `InheritedVisibilty`
and `ViewVisibility`.
This allows change detection to behave properly for
`InheritedVisibility`.
View visiblity is still erratic, although it is less useful to be able
to detect changes
for this flavor of visibility.

Overall, this actually simplifies the API. Since the visibility system
consists of
self-explaining components, it is much easier to document the behavior
and usage.
This approach is more modular and "ECS-like" -- one could
strip out the `ViewVisibility` component entirely if it's not needed,
and rely only on inherited visibility.

---

## Changelog

- `ComputedVisibility` has been removed in favor of:
`InheritedVisibility` and `ViewVisiblity`.

## Migration Guide

The `ComputedVisibilty` component has been split into
`InheritedVisiblity` and
`ViewVisibility`. Replace any usages of
`ComputedVisibility::is_visible_in_hierarchy`
with `InheritedVisibility::get`, and replace
`ComputedVisibility::is_visible_in_view`
 with `ViewVisibility::get`.
 
 ```rust
 // Before:
 commands.spawn(VisibilityBundle {
     visibility: Visibility::Inherited,
     computed_visibility: ComputedVisibility::default(),
 });
 
 // After:
 commands.spawn(VisibilityBundle {
     visibility: Visibility::Inherited,
     inherited_visibility: InheritedVisibility::default(),
     view_visibility: ViewVisibility::default(),
 });
 ```
 
 ```rust
 // Before:
 fn my_system(q: Query<&ComputedVisibilty>) {
     for vis in &q {
         if vis.is_visible_in_hierarchy() {
     
 // After:
 fn my_system(q: Query<&InheritedVisibility>) {
     for inherited_visibility in &q {
         if inherited_visibility.get() {
 ```
 
 ```rust
 // Before:
 fn my_system(q: Query<&ComputedVisibilty>) {
     for vis in &q {
         if vis.is_visible_in_view() {
     
 // After:
 fn my_system(q: Query<&ViewVisibility>) {
     for view_visibility in &q {
         if view_visibility.get() {
 ```
 
 ```rust
 // Before:
 fn my_system(mut q: Query<&mut ComputedVisibilty>) {
     for vis in &mut q {
         vis.set_visible_in_view();
     
 // After:
 fn my_system(mut q: Query<&mut ViewVisibility>) {
     for view_visibility in &mut q {
         view_visibility.set();
 ```

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
lelo
42e6dc8987
Refactor EventReader::iter to read (#9631)
# Objective

- The current `EventReader::iter` has been determined to cause confusion
among new Bevy users. It was suggested by @JoJoJet to rename the method
to better clarify its usage.
- Solves #9624 

## Solution

- Rename `EventReader::iter` to `EventReader::read`.
- Rename `EventReader::iter_with_id` to `EventReader::read_with_id`.
- Rename `ManualEventReader::iter` to `ManualEventReader::read`.
- Rename `ManualEventReader::iter_with_id` to
`ManualEventReader::read_with_id`.

---

## Changelog

- `EventReader::iter` has been renamed to `EventReader::read`.
- `EventReader::iter_with_id` has been renamed to
`EventReader::read_with_id`.
- `ManualEventReader::iter` has been renamed to
`ManualEventReader::read`.
- `ManualEventReader::iter_with_id` has been renamed to
`ManualEventReader::read_with_id`.
- Deprecated `EventReader::iter`
- Deprecated `EventReader::iter_with_id`
- Deprecated `ManualEventReader::iter`
- Deprecated `ManualEventReader::iter_with_id`

## Migration Guide

- Existing usages of `EventReader::iter` and `EventReader::iter_with_id`
will have to be changed to `EventReader::read` and
`EventReader::read_with_id` respectively.
- Existing usages of `ManualEventReader::iter` and
`ManualEventReader::iter_with_id` will have to be changed to
`ManualEventReader::read` and `ManualEventReader::read_with_id`
respectively.
2023-08-30 14:20:03 +00:00
Ame :]
f2f39c835a
Check for bevy_internal imports in CI (#9612)
# Objective

- Avoid using bevy_internal imports in examples. 

## Solution

- Add CI to check for bevy_internal imports like suggested in
https://github.com/bevyengine/bevy/pull/9547#issuecomment-1689377999
- Fix another import

I don't know much about CI so I don't know if this is the better
approach, but I think is better than doing a pull request every time I
found this lol, any suggestion is welcome.

---------

Co-authored-by: Rob Parrett <robparrett@gmail.com>
2023-08-29 19:11:06 +00:00
Ame :]
1399078f12
remove VecSwizzles imports (#9629)
# Objective

- Since #9387, there is no need to import VecSwizzles separately, it is
already included in the prelude.

## Solution

- Remove the imports.
2023-08-29 18:59:10 +00:00
ickshonpe
2b2abcef97
Replace uses of entity.insert with tuple bundles in game_menu example (#9619)
# Objective

Change two places where `entity.insert` is used to add components
individually to spawn a tuple bundle instead.
2023-08-29 12:30:02 +00:00
jnhyatt
087a345579
Rename Bezier to CubicBezier for clarity (#9554)
# Objective

A Bezier curve is a curve defined by two or more control points. In the
simplest form, it's just a line. The (arguably) most common type of
Bezier curve is a cubic Bezier, defined by four control points. These
are often used in animation, etc. Bevy has a Bezier curve struct called
`Bezier`. However, this is technically a misnomer as it only represents
cubic Bezier curves.

## Solution

This PR changes the struct name to `CubicBezier` to more accurately
reflect the struct's usage. Since it's exposed in Bevy's prelude, it can
potentially collide with other `Bezier` implementations. While that
might instead be an argument for removing it from the prelude, there's
also something to be said for adding a more general `Bezier` into Bevy,
in which case we'd likely want to use the name `Bezier`. As a final
motivator, not only is the struct located in `cubic_spines.rs`, there
are also several other spline-related structs which follow the
`CubicXxx` naming convention where applicable. For example,
`CubicSegment` represents a cubic Bezier curve (with coefficients
pre-baked).

---

## Migration Guide

- Change all `Bezier` references to `CubicBezier`
2023-08-28 17:37:42 +00:00
DevinLeamy
db5f80b2be
API updates to the AnimationPlayer (#9002)
# Objective

Added `AnimationPlayer` API UX improvements. 

- Succestor to https://github.com/bevyengine/bevy/pull/5912
- Fixes https://github.com/bevyengine/bevy/issues/5848

_(Credits to @asafigan for filing #5848, creating the initial pull
request, and the discussion in #5912)_
## Solution

- Created `RepeatAnimation` enum to describe an animation repetition
behavior.
- Added `is_finished()`, `set_repeat()`, and `is_playback_reversed()`
methods to the animation player.
- ~~Made the animation clip optional as per the comment from #5912~~
> ~~My problem is that the default handle [used the initialize a
`PlayingAnimation`] could actually refer to an actual animation if an
AnimationClip is set for the default handle, which leads me to ask,
"Should animation_clip should be an Option?"~~
- Added an accessor for the animation clip `animation_clip()` to the
animation player.

To determine if an animation is finished, we use the number of times the
animation has completed and the repetition behavior. If the animation is
playing in reverse then `elapsed < 0.0` counts as a completion.
Otherwise, `elapsed > animation.duration` counts as a completion. This
is what I would expect, personally. If there's any ambiguity, perhaps we
could add some `AnimationCompletionBehavior`, to specify that kind of
completion behavior to use.

Update: Previously `PlayingAnimation::elapsed` was being used as the
seek time into the animation clip. This was misleading because if you
increased the speed of the animation it would also increase (or
decrease) the elapsed time. In other words, the elapsed time was not
actually the elapsed time. To solve this, we introduce
`PlayingAnimation::seek_time` to serve as the value we manipulate the
move between keyframes. Consequently, `elapsed()` now returns the actual
elapsed time, and is not effected by the animation speed. Because
`set_elapsed` was being used to manipulate the displayed keyframe, we
introduce `AnimationPlayer::seek_to` and `AnimationPlayer::replay` to
provide this functionality.

## Migration Guide

- Removed `set_elapsed`.
- Removed `stop_repeating` in favour of
`AnimationPlayer::set_repeat(RepeatAnimation::Never)`.
- Introduced `seek_to` to seek to a given timestamp inside of the
animation.
- Introduced `seek_time` accessor for the `PlayingAnimation::seek_to`.
- Introduced `AnimationPlayer::replay` to reset the `PlayingAnimation`
to a state where no time has elapsed.

---------

Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
2023-08-28 16:43:04 +00:00
Joseph
474b55a29c
Add system.map(...) for transforming the output of a system (#8526)
# Objective

Any time we wish to transform the output of a system, we currently use
system piping to do so:

```rust
my_system.pipe(|In(x)| do_something(x))
```

Unfortunately, system piping is not a zero cost abstraction. Each call
to `.pipe` requires allocating two extra access sets: one for the second
system and one for the combined accesses of both systems. This also adds
extra work to each call to `update_archetype_component_access`, which
stacks as one adds multiple layers of system piping.

## Solution

Add the `AdapterSystem` abstraction: similar to `CombinatorSystem`, this
allows you to implement a trait to generically control how a system is
run and how its inputs and outputs are processed. Unlike
`CombinatorSystem`, this does not have any overhead when computing world
accesses which makes it ideal for simple operations such as inverting or
ignoring the output of a system.

Add the extension method `.map(...)`: this is similar to `.pipe(...)`,
only it accepts a closure as an argument instead of an `In<T>` system.

```rust
my_system.map(do_something)
```

This has the added benefit of making system names less messy: a system
that ignores its output will just be called `my_system`, instead of
`Pipe(my_system, ignore)`

---

## Changelog

TODO

## Migration Guide

The `system_adapter` functions have been deprecated: use `.map` instead,
which is a lightweight alternative to `.pipe`.

```rust
// Before:
my_system.pipe(system_adapter::ignore)
my_system.pipe(system_adapter::unwrap)
my_system.pipe(system_adapter::new(T::from))

// After:
my_system.map(std::mem::drop)
my_system.map(Result::unwrap)
my_system.map(T::from)

// Before:
my_system.pipe(system_adapter::info)
my_system.pipe(system_adapter::dbg)
my_system.pipe(system_adapter::warn)
my_system.pipe(system_adapter::error)

// After:
my_system.map(bevy_utils::info)
my_system.map(bevy_utils::dbg)
my_system.map(bevy_utils::warn)
my_system.map(bevy_utils::error)
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-08-28 16:36:46 +00:00
James O'Brien
4f1d9a6315
Reorder render sets, refactor bevy_sprite to take advantage (#9236)
This is a continuation of this PR: #8062 

# Objective

- Reorder render schedule sets to allow data preparation when phase item
order is known to support improved batching
- Part of the batching/instancing etc plan from here:
https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074
- The original idea came from @inodentry and proved to be a good one.
Thanks!
- Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new
ordering

## Solution
- Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` 
- Add a `PrepareAssets` set that runs in parallel with other systems and
sets in the render schedule.
  - Put prepare_assets systems in the `PrepareAssets` set
- If explicit dependencies are needed on Mesh or Material RenderAssets
then depend on the appropriate system.
- Add `ManageViews` and `ManageViewsFlush` sets between
`ExtractCommands` and Queue
- Move `queue_mesh*_bind_group` to the Prepare stage
  - Rename them to `prepare_`
- Put systems that prepare resources (buffers, textures, etc.) into a
`PrepareResources` set inside `Prepare`
- Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set
after `PrepareResources`
- Move `prepare_lights` to the `ManageViews` set
  - `prepare_lights` creates views and this must happen before `Queue`
  - This system needs refactoring to stop handling all responsibilities
- Gather lights, sort, and create shadow map views. Store sorted light
entities in a resource

- Remove `BatchedPhaseItem`
- Replace `batch_range` with `batch_size` representing how many items to
skip after rendering the item or to skip the item entirely if
`batch_size` is 0.
- `queue_sprites` has been split into `queue_sprites` for queueing phase
items and `prepare_sprites` for batching after the `PhaseSort`
  - `PhaseItem`s are still inserted in `queue_sprites`
- After sorting adjacent compatible sprite phase items are accumulated
into `SpriteBatch` components on the first entity of each batch,
containing a range of vertex indices. The associated `PhaseItem`'s
`batch_size` is updated appropriately.
- `SpriteBatch` items are then drawn skipping over the other items in
the batch based on the value in `batch_size`
- A very similar refactor was performed on `bevy_ui`
---

## Changelog

Changed:
- Reordered and reworked render app schedule sets. The main change is
that data is extracted, queued, sorted, and then prepared when the order
of data is known.
- Refactor `bevy_sprite` and `bevy_ui` to take advantage of the
reordering.

## Migration Guide
- Assets such as materials and meshes should now be created in
`PrepareAssets` e.g. `prepare_assets<Mesh>`
- Queueing entities to `RenderPhase`s continues to be done in `Queue`
e.g. `queue_sprites`
- Preparing resources (textures, buffers, etc.) should now be done in
`PrepareResources`, e.g. `prepare_prepass_textures`,
`prepare_mesh_uniforms`
- Prepare bind groups should now be done in `PrepareBindGroups` e.g.
`prepare_mesh_bind_group`
- Any batching or instancing can now be done in `Prepare` where the
order of the phase items is known e.g. `prepare_sprites`

 
## Next Steps
- Introduce some generic mechanism to ensure items that can be batched
are grouped in the phase item order, currently you could easily have
`[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching.
 - Investigate improved orderings for building the MeshUniform buffer
 - Implementing batching across the rest of bevy

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
Zachary Harrold
90b3ac7f3a
Added Val::ZERO Constant (#9566)
# Objective

- Fixes #9533

## Solution

* Added `Val::ZERO` as a constant which is defined as `Val::Px(0.)`.
* Added manual `PartialEq` implementation for `Val` which allows any
zero value to equal any other zero value. E.g., `Val::Px(0.) ==
Val::Percent(0.)` etc. This is technically a breaking change, as
`Val::Px(0.) == Val::Percent(0.)` now equals `true` instead of `false`
(as an example)
* Replaced instances of `Val::Px(0.)`, `Val::Percent(0.)`, etc. with
`Val::ZERO`
* Fixed `bevy_ui::layout::convert::tests::test_convert_from` test to
account for Taffy not equating `Points(0.)` and `Percent(0.)`. These
tests now use `assert_eq!(...)` instead of `assert!(matches!(...))`
which gives easier to diagnose error messages.
2023-08-26 14:00:53 +00:00
Rob Parrett
a788e31ad5
Fix CI for Rust 1.72 (#9562)
# Objective

[Rust 1.72.0](https://blog.rust-lang.org/2023/08/24/Rust-1.72.0.html) is
now stable.

# Notes

- `let-else` formatting has arrived!
- I chose to allow `explicit_iter_loop` due to
https://github.com/rust-lang/rust-clippy/issues/11074.
  
We didn't hit any of the false positives that prevent compilation, but
fixing this did produce a lot of the "symbol soup" mentioned, e.g. `for
image in &mut *image_events {`.
  
  Happy to undo this if there's consensus the other way.

---------

Co-authored-by: François <mockersf@gmail.com>
2023-08-25 12:34:24 +00:00
ickshonpe
373f1eeb1e
UI examples clean up (#9479)
# Objective

Fix a few issues with some of the examples:

* Root UI nodes have an implicit parent with `FlexDirection::Row` and
`AlignItems::Stretch` set. Only a width constraint is needed to fill the
viewport. Specifying ```height: Val::Percent(100.)``` is unnecessary and
can cause confusing overflow behaviour.

* The default for position and size constraint properties is
`Val::Auto`. Setting `left: Val::Auto`, `max_height: Val::Auto`, etc
does nothing.


## Solution

Delete those lines. There should be no observable differences in the
behaviours of any of the examples.

Also changed a padding setting in the `flex_layout` example to use the
`axes` helper function.
2023-08-23 12:49:10 +00:00
Ame :]
427ba3074a
fix bevy imports. windows_settings.rs example (#9547)
# Objective

In #9355 was added an import using bevy_internal.
This change the import to use `bevy::window` instead of a
`bevy_internal` to run the example outside of the bevy repo.
2023-08-23 12:35:42 +00:00
IceSentry
49bbbe01d5
User controlled window visibility (#9355)
# Objective

- When spawning a window, it will be white until the GPU is ready to
draw the app. To avoid this, we can make the window invisible and then
make it visible once the gpu is ready. Unfortunately, the visible flag
is not available to users.

## Solution

- Let users change the visible flag

## Notes

This is only user controlled. It would be nice if it was done
automatically by bevy instead but I want to keep this PR simple.
2023-08-20 22:42:07 +00:00