mirror of
https://github.com/bevyengine/bevy
synced 2025-01-22 18:05:17 +00:00
21 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
IceSentry
|
f119d9df8e |
Add DrawFunctionsInternals::id() (#6745)
# Objective - Every usage of `DrawFunctionsInternals::get_id()` was followed by a `.unwrap()`. which just adds boilerplate. ## Solution - Introduce a fallible version of `DrawFunctionsInternals::get_id()` and use it where possible. - I also took the opportunity to improve the error message a little in the case where it fails. --- ## Changelog - Added `DrawFunctionsInternals::id()` |
||
Aevyrie
|
72fbcc7633 |
Fix color banding by dithering image before quantization (#5264)
# Objective - Closes #5262 - Fix color banding caused by quantization. ## Solution - Adds dithering to the tonemapping node from #3425. - This is inspired by Godot's default "debanding" shader: https://gist.github.com/belzecue/ - Unlike Godot: - debanding happens after tonemapping. My understanding is that this is preferred, because we are running the debanding at the last moment before quantization (`[f32, f32, f32, f32]` -> `f32`). This ensures we aren't biasing the dithering strength by applying it in a different (linear) color space. - This code instead uses and reference the origin source, Valve at GDC 2015 ![Screenshot from 2022-11-10 13-44-46](https://user-images.githubusercontent.com/2632925/201218880-70f4cdab-a1ed-44de-a88c-8759e77197f1.png) ![Screenshot from 2022-11-10 13-41-11](https://user-images.githubusercontent.com/2632925/201218883-72393352-b162-41da-88bb-6e54a1e26853.png) ## Additional Notes Real time rendering to standard dynamic range outputs is limited to 8 bits of depth per color channel. Internally we keep everything in full 32-bit precision (`vec4<f32>`) inside passes and 16-bit between passes until the image is ready to be displayed, at which point the GPU implicitly converts our `vec4<f32>` into a single 32bit value per pixel, with each channel (rgba) getting 8 of those 32 bits. ### The Problem 8 bits of color depth is simply not enough precision to make each step invisible - we only have 256 values per channel! Human vision can perceive steps in luma to about 14 bits of precision. When drawing a very slight gradient, the transition between steps become visible because with a gradient, neighboring pixels will all jump to the next "step" of precision at the same time. ### The Solution One solution is to simply output in HDR - more bits of color data means the transition between bands will become smaller. However, not everyone has hardware that supports 10+ bit color depth. Additionally, 10 bit color doesn't even fully solve the issue, banding will result in coherent bands on shallow gradients, but the steps will be harder to perceive. The solution in this PR adds noise to the signal before it is "quantized" or resampled from 32 to 8 bits. Done naively, it's easy to add unneeded noise to the image. To ensure dithering is correct and absolutely minimal, noise is adding *within* one step of the output color depth. When converting from the 32bit to 8bit signal, the value is rounded to the nearest 8 bit value (0 - 255). Banding occurs around the transition from one value to the next, let's say from 50-51. Dithering will never add more than +/-0.5 bits of noise, so the pixels near this transition might round to 50 instead of 51 but will never round more than one step. This means that the output image won't have excess variance: - in a gradient from 49 to 51, there will be a step between each band at 49, 50, and 51. - Done correctly, the modified image of this gradient will never have a adjacent pixels more than one step (0-255) from each other. - I.e. when scanning across the gradient you should expect to see: ``` |-band-| |-band-| |-band-| Baseline: 49 49 49 50 50 50 51 51 51 Dithered: 49 50 49 50 50 51 50 51 51 Dithered (wrong): 49 50 51 49 50 51 49 51 50 ``` ![Screenshot from 2022-11-10 14-12-36](https://user-images.githubusercontent.com/2632925/201219075-ab3f46be-d4e9-4869-b66b-a92e1706f49e.png) ![Screenshot from 2022-11-10 14-11-48](https://user-images.githubusercontent.com/2632925/201219079-ec5d2add-817d-487a-8fc1-84569c9cda73.png) You can see from above how correct dithering "fuzzes" the transition between bands to reduce distinct steps in color, without adding excess noise. ### HDR The previous section (and this PR) assumes the final output is to an 8-bit texture, however this is not always the case. When Bevy adds HDR support, the dithering code will need to take the per-channel depth into account instead of assuming it to be 0-255. Edit: I talked with Rob about this and it seems like the current solution is okay. We may need to revisit once we have actual HDR final image output. --- ## Changelog ### Added - All pipelines now support deband dithering. This is enabled by default in 3D, and can be toggled in the `Tonemapping` component in camera bundles. Banding is a graphical artifact created when the rendered image is crunched from high precision (f32 per color channel) down to the final output (u8 per channel in SDR). This results in subtle gradients becoming blocky due to the reduced color precision. Deband dithering applies a small amount of noise to the signal before it is "crunched", which breaks up the hard edges of blocks (bands) of color. Note that this does not add excess noise to the image, as the amount of noise is less than a single step of a color channel - just enough to break up the transition between color blocks in a gradient. Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
TimJentzsch
|
694c980c82 |
Fix clippy::iter_with_drain (#6485)
# Objective Fixes #6483. - Fix the [`clippy::iter_with_drain`](https://rust-lang.github.io/rust-clippy/master/index.html#iter_with_drain) warnings - From the docs: "`.into_iter()` is simpler with better performance" ## Solution - Replace `.drain(..)` for `Vec` with `.into_iter()` |
||
Jakob Hellermann
|
838b318863 |
separate tonemapping and upscaling passes (#3425)
Attempt to make features like bloom https://github.com/bevyengine/bevy/pull/2876 easier to implement. **This PR:** - Moves the tonemapping from `pbr.wgsl` into a separate pass - also add a separate upscaling pass after the tonemapping which writes to the swap chain (enables resolution-independant rendering and post-processing after tonemapping) - adds a `hdr` bool to the camera which controls whether the pbr and sprite shaders render into a `Rgba16Float` texture **Open questions:** - ~should the 2d graph work the same as the 3d one?~ it is the same now - ~The current solution is a bit inflexible because while you can add a post processing pass that writes to e.g. the `hdr_texture`, you can't write to a separate `user_postprocess_texture` while reading the `hdr_texture` and tell the tone mapping pass to read from the `user_postprocess_texture` instead. If the tonemapping and upscaling render graph nodes were to take in a `TextureView` instead of the view entity this would almost work, but the bind groups for their respective input textures are already created in the `Queue` render stage in the hardcoded order.~ solved by creating bind groups in render node **New render graph:** ![render_graph](https://user-images.githubusercontent.com/22177966/147767249-57dd4229-cfab-4ec5-9bf3-dc76dccf8e8b.png) <details> <summary>Before</summary> ![render_graph_old](https://user-images.githubusercontent.com/22177966/147284579-c895fdbd-4028-41cf-914c-e1ffef60e44e.png) </details> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Carter Anderson
|
dc3f801239 |
Exclusive Systems Now Implement System . Flexible Exclusive System Params (#6083)
# Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ``` |
||
Carter Anderson
|
01aedc8431 |
Spawn now takes a Bundle (#6054)
# Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ``` |
||
ira
|
992681b59b |
Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Timo Kösters
|
2ac744331b | Fix shader syntax (#5613) | ||
adsick
|
99440c11b3 |
removed duplicated doc line in material.rs (#5405)
# Objective I've found there is a duplicated line, probably left after some copy paste. ## Solution - removed it --- Co-authored-by: adsick <vadimgangsta73@gmail.com> |
||
Johan Klokkhammer Helsing
|
8810a73e87 |
Support AsBindGroup for 2d materials as well (#5312)
Port changes made to Material in #5053 to Material2d as well. This is more or less an exact copy of the implementation in bevy_pbr; I simply pretended the API existed, then copied stuff over until it started building and the shapes example was working again. # Objective The changes in #5053 makes it possible to add custom materials with a lot less boiler plate. However, the implementation isn't shared with Material 2d as it's a kind of fork of the bevy_pbr version. It should be possible to use AsBindGroup on the 2d version as well. ## Solution This makes the same kind of changes in Material2d in bevy_sprite. This makes the following work: ```rust //! Draws a circular purple bevy in the middle of the screen using a custom shader use bevy::{ prelude::*, reflect::TypeUuid, render::render_resource::{AsBindGroup, ShaderRef}, sprite::{Material2d, Material2dPlugin, MaterialMesh2dBundle}, }; fn main() { App::new() .add_plugins(DefaultPlugins) .add_plugin(Material2dPlugin::<CustomMaterial>::default()) .add_startup_system(setup) .run(); } /// set up a simple 2D scene fn setup( mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>, mut materials: ResMut<Assets<CustomMaterial>>, asset_server: Res<AssetServer>, ) { commands.spawn_bundle(MaterialMesh2dBundle { mesh: meshes.add(shape::Circle::new(50.).into()).into(), material: materials.add(CustomMaterial { color: Color::PURPLE, color_texture: Some(asset_server.load("branding/icon.png")), }), transform: Transform::from_translation(Vec3::new(-100., 0., 0.)), ..default() }); commands.spawn_bundle(Camera2dBundle::default()); } /// The Material2d trait is very configurable, but comes with sensible defaults for all methods. /// You only need to implement functions for features that need non-default behavior. See the Material api docs for details! impl Material2d for CustomMaterial { fn fragment_shader() -> ShaderRef { "shaders/custom_material.wgsl".into() } } // This is the struct that will be passed to your shader #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` |
||
ira
|
4847f7e3ad |
Update codebase to use IntoIterator where possible. (#5269)
Remove unnecessary calls to `iter()`/`iter_mut()`. Mainly updates the use of queries in our code, docs, and examples. ```rust // From for _ in list.iter() { for _ in list.iter_mut() { // To for _ in &list { for _ in &mut list { ``` We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library. ## Note for reviewers As you can see the additions and deletions are exactly equal. Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line. I already experienced enough pain making this PR :) Co-authored-by: devil-ira <justthecooldude@gmail.com> |
||
Tethys Svensson
|
aa0cd7c7dc |
Make the fields of the Material2dKey public (#5212)
# Objective Make it easier to create pipelines derived from the `Material2dPipeline`. Currently this is made difficult because the fields of `Material2dKey` are private. ## Solution Make the fields public. |
||
Carter Anderson
|
f487407e07 |
Camera Driven Rendering (#4745)
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home. |
||
Robert Swain
|
a0a3d8798b |
ExtractResourcePlugin (#3745)
# Objective - Add an `ExtractResourcePlugin` for convenience and consistency ## Solution - Add an `ExtractResourcePlugin` similar to `ExtractComponentPlugin` but for ECS `Resource`s. The system that is executed simply clones the main world resource into a render world resource, if and only if the main world resource was either added or changed since the last execution of the system. - Add an `ExtractResource` trait with a `fn extract_resource(res: &Self) -> Self` function. This is used by the `ExtractResourcePlugin` to extract the resource - Add a derive macro for `ExtractResource` on a `Resource` with the `Clone` trait, that simply returns `res.clone()` - Use `ExtractResourcePlugin` wherever both possible and appropriate |
||
Robert Swain
|
479f43bbf3 |
Filter material handles on extraction (#4178)
# Objective - While optimising many_cubes, I noticed that all material handles are extracted regardless of whether the entity to which the handle belongs is visible or not. As such >100k handles are extracted when only <20k are visible. ## Solution - Only extract material handles of visible entities. - This improves `many_cubes -- sphere` from ~42fps to ~48fps. It reduces not only the extraction time but also system commands time. `Handle<StandardMaterial>` extraction and its system commands went from 0.522ms + 3.710ms respectively, to 0.267ms + 0.227ms an 88% reduction for this system for this case. It's very view dependent but... |
||
Christopher Durham
|
3d4e0066f4 |
Move float_ord from bevy_core to bevy_utils (#4189)
# Objective Reduce the catch-all grab-bag of functionality in bevy_core by moving FloatOrd to bevy_utils. A step in addressing #2931 and splitting bevy_core into more specific locations. ## Solution Move FloatOrd into bevy_utils. Fix the compile errors. As a result, bevy_core_pipeline, bevy_pbr, bevy_sprite, bevy_text, and bevy_ui no longer depend on bevy_core (they were only using it for `FloatOrd` previously). |
||
Robert Swain
|
c5963b4fd5 |
Use storage buffers for clustered forward point lights (#3989)
# Objective - Make use of storage buffers, where they are available, for clustered forward bindings to support far more point lights in a scene - Fixes #3605 - Based on top of #4079 This branch on an M1 Max can keep 60fps with about 2150 point lights of radius 1m in the Sponza scene where I've been testing. The bottleneck is mostly assigning lights to clusters which grows faster than linearly (I think 1000 lights was about 1.5ms and 5000 was 7.5ms). I have seen papers and presentations leveraging compute shaders that can get this up to over 1 million. That said, I think any further optimisations should probably be done in a separate PR. ## Solution - Add `RenderDevice` to the `Material` and `SpecializedMaterial` trait `::key()` functions to allow setting flags on the keys depending on feature/limit availability - Make `GpuPointLights` and `ViewClusterBuffers` into enums containing `UniformVec` and `StorageBuffer` variants. Implement the necessary API on them to make usage the same for both cases, and the only difference is at initialisation time. - Appropriate shader defs in the shader code to handle the two cases ## Context on some decisions / open questions - I'm using `max_storage_buffers_per_shader_stage >= 3` as a check to see if storage buffers are supported. I was thinking about diving into 'binding resource management' but it feels like we don't have enough use cases to understand the problem yet, and it is mostly a separate concern to this PR, so I think it should be handled separately. - Should `ViewClusterBuffers` and `ViewClusterBindings` be merged, duplicating the count variables into the enum variants? Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Kurt Kühnert
|
9e450f2827 |
Compute Pipeline Specialization (#3979)
# Objective - Fixes #3970 - To support Bevy's shader abstraction(shader defs, shader imports and hot shader reloading) for compute shaders, I have followed carts advice and change the `PipelinenCache` to accommodate both compute and render pipelines. ## Solution - renamed `RenderPipelineCache` to `PipelineCache` - Cached Pipelines are now represented by an enum (render, compute) - split the `SpecializedPipelines` into `SpecializedRenderPipelines` and `SpecializedComputePipelines` - updated the game of life example ## Open Questions - should `SpecializedRenderPipelines` and `SpecializedComputePipelines` be merged and how would we do that? - should the `get_render_pipeline` and `get_compute_pipeline` methods be merged? - is pipeline specialization for different entry points a good pattern Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Alice Cecile
|
557ab9897a |
Make get_resource (and friends) infallible (#4047)
# Objective - In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`. - Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs). ## Solution - Add an infallible variant named `.resource` and so on. - Use these infallible variants over `.get_resource().unwrap()` across the code base. ## Notes I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939. ## Migration Guide Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped. Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`. ## Impact - `.unwrap` search results before: 1084 - `.unwrap` search results after: 942 - internal `unwrap_or_else` calls added: 4 - trivial unwrap calls removed from tests and code: 146 - uses of the new `try_get_resource` API: 11 - percentage of the time the unwrapping API was used internally: 93% |
||
Carter Anderson
|
e369a8ad51 |
Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes: * Reworks the `Mesh` type to use the newly added `VertexAttribute` internally * `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat` * `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting" * Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently. * Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key). * Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR. * Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key. For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool! To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now: ```rust impl SpecializedMeshPipeline for MeshPipeline { type Key = MeshPipelineKey; fn specialize( &self, key: Self::Key, layout: &MeshVertexBufferLayout, ) -> RenderPipelineDescriptor { let mut vertex_attributes = vec![ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), Mesh::ATTRIBUTE_NORMAL.at_shader_location(1), Mesh::ATTRIBUTE_UV_0.at_shader_location(2), ]; let mut shader_defs = Vec::new(); if layout.contains(Mesh::ATTRIBUTE_TANGENT) { shader_defs.push(String::from("VERTEX_TANGENTS")); vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3)); } let vertex_buffer_layout = layout .get_layout(&vertex_attributes) .expect("Mesh is missing a vertex attribute"); ``` Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`. This is still a draft because I still need to: * Add more docs * Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it. * Consider breaking out the PreHash / hashbrown changes into a separate PR. * Add an example illustrating this change * Verify that the "mesh-specialized pipeline de-duplication code" works properly Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap. Alternative to #3120 Fixes #3030 Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
davier
|
c2da7800e3 |
Add 2d meshes and materials (#3460)
# Objective The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d. ## Solution I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes. ~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_ ## Remaining work - ~~don't require mesh normals~~ _out of scope_ - ~~add an example~~ _done_ - support 2d meshes & materials in the UI? - bikeshed names (I didn't think hard about naming, please check if it's fine) ## Remaining questions - ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_ - ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_ - ~~how to customize vertex attributes?~~ _#3120_ Co-authored-by: Carter Anderson <mcanders1@gmail.com> |