Commit graph

325 commits

Author SHA1 Message Date
Tau Gärtli
aab1f8e435
Use #[doc(fake_variadic)] to improve docs readability (#14703)
# Objective

- Fixes #14697

## Solution

This PR modifies the existing `all_tuples!` macro to optionally accept a
`#[doc(fake_variadic)]` attribute in its input. If the attribute is
present, each invocation of the impl macro gets the correct attributes
(i.e. the first impl receives `#[doc(fake_variadic)]` while the other
impls are hidden using `#[doc(hidden)]`.
Impls for the empty tuple (unit type) are left untouched (that's what
the [standard
library](https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#impl-PartialEq-for-())
and
[serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-())
do).

To work around https://github.com/rust-lang/cargo/issues/8811 and to get
impls on re-exports to correctly show up as variadic, `--cfg docsrs_dep`
is passed when building the docs for the toplevel `bevy` crate.

`#[doc(fake_variadic)]` only works on tuples and fn pointers, so impls
for structs like `AnyOf<(T1, T2, ..., Tn)>` are unchanged.

## Testing

I built the docs locally using `RUSTDOCFLAGS='--cfg docsrs'
RUSTFLAGS='--cfg docsrs_dep' cargo +nightly doc --no-deps --workspace`
and checked the documentation page of a trait both in its original crate
and the re-exported version in `bevy`.
The description should correctly mention for how many tuple items the
trait is implemented.

I added `rustc-args` for docs.rs to the `bevy` crate, I hope there
aren't any other notable crates that re-export `#[doc(fake_variadic)]`
traits.

---

## Showcase

`bevy_ecs::query::QueryData`:
<img width="1015" alt="Screenshot 2024-08-12 at 16 41 28"
src="https://github.com/user-attachments/assets/d40136ed-6731-475f-91a0-9df255cd24e3">

`bevy::ecs::query::QueryData` (re-export):
<img width="1005" alt="Screenshot 2024-08-12 at 16 42 57"
src="https://github.com/user-attachments/assets/71d44cf0-0ab0-48b0-9a51-5ce332594e12">

## Original Description

<details>

Resolves #14697

Submitting as a draft for now, very WIP.

Unfortunately, the docs don't show the variadics nicely when looking at
reexported items.
For example:

`bevy_ecs::bundle::Bundle` correctly shows the variadic impl:

![image](https://github.com/user-attachments/assets/90bf8af1-1d1f-4714-9143-cdd3d0199998)

while `bevy::ecs::bundle::Bundle` (the reexport) shows all the impls
(not good):

![image](https://github.com/user-attachments/assets/439c428e-f712-465b-bec2-481f7bf5870b)

Built using `RUSTDOCFLAGS='--cfg docsrs' cargo +nightly doc --workspace
--no-deps` (`--no-deps` because of wgpu-core).

Maybe I missed something or this is a limitation in the *totally not
private* `#[doc(fake_variadic)]` thingy. In any case I desperately need
some sleep now :))

</details>
2024-08-12 18:54:33 +00:00
radiish
6ab8767d3b
reflect: implement the unique reflect rfc (#7207)
# Objective

- Implements the [Unique Reflect
RFC](https://github.com/nicopap/rfcs/blob/bevy-reflect-api/rfcs/56-better-reflect.md).

## Solution

- Implements the RFC.
- This implementation differs in some ways from the RFC:
- In the RFC, it was suggested `Reflect: Any` but `PartialReflect:
?Any`. During initial implementation I tried this, but we assume the
`PartialReflect: 'static` in a lot of places and the changes required
crept out of the scope of this PR.
- `PartialReflect::try_into_reflect` originally returned `Option<Box<dyn
Reflect>>` but i changed this to `Result<Box<dyn Reflect>, Box<dyn
PartialReflect>>` since the method takes by value and otherwise there
would be no way to recover the type. `as_full` and `as_full_mut` both
still return `Option<&(mut) dyn Reflect>`.

---

## Changelog

- Added `PartialReflect`.
- `Reflect` is now a subtrait of `PartialReflect`.
- Moved most methods on `Reflect` to the new `PartialReflect`.
- Added `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect}`.
- Added `PartialReflect::{try_as_reflect, try_as_reflect_mut,
try_into_reflect}`.
- Added `<dyn PartialReflect>::{try_downcast_ref, try_downcast_mut,
try_downcast, try_take}` supplementing the methods on `dyn Reflect`.

## Migration Guide

- Most instances of `dyn Reflect` should be changed to `dyn
PartialReflect` which is less restrictive, however trait bounds should
generally stay as `T: Reflect`.
- The new `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect, try_as_reflect, try_as_reflect_mut,
try_into_reflect}` methods as well as `Reflect::{as_reflect,
as_reflect_mut, into_reflect}` will need to be implemented for manual
implementors of `Reflect`.

## Future Work

- This PR is designed to be followed up by another "Unique Reflect Phase
2" that addresses the following points:
- Investigate making serialization revolve around `Reflect` instead of
`PartialReflect`.
- [Remove the `try_*` methods on `dyn PartialReflect` since they are
stop
gaps](https://github.com/bevyengine/bevy/pull/7207#discussion_r1083476050).
- Investigate usages like `ReflectComponent`. In the places they
currently use `PartialReflect`, should they be changed to use `Reflect`?
- Merging this opens the door to lots of reflection features we haven't
been able to implement.
- We could re-add [the `Reflectable`
trait](8e3488c880/crates/bevy_reflect/src/reflect.rs (L337-L342))
and make `FromReflect` a requirement to improve [`FromReflect`
ergonomics](https://github.com/bevyengine/rfcs/pull/59). This is
currently not possible because dynamic types cannot sensibly be
`FromReflect`.
  - Since this is an alternative to #5772, #5781 would be made cleaner.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-08-12 17:01:41 +00:00
Gino Valente
297c0a3954
bevy_reflect: Add DynamicSet to dynamic_types example (#14665)
# Objective

The `dynamic_types` example was missing a reference to the newly added
`DynamicSet` type.

## Solution

Add `DynamicSet` to the `dynamic_types` example.

For parity with the other dynamic types, I also implemented
`FromIterator<T: Reflect>`, `FromIterator<Box<dyn Reflect>>`, and
`IntoIterator for &DynamicSet`.

## Testing

You can run the example locally:

```
cargo run --example dynamic_types
```
2024-08-08 22:26:18 +00:00
Gino Valente
aeef1c0f20
bevy_reflect: Update internal docs regarding anonymous function type names (#14666)
# Objective

As pointed out by @SkiFire13 on
[Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1270624366119485441),
I was incorrect in #14641 regarding the type name of anonymous
functions. I had stated that they will return something like `fn(i32,
i32) -> i32`, but this is wrong. They actually behave like closures
(despite not technically being closures) and return something more like
`foo::bar::{{closure}}`.

This isn't a major issue because the reasoning behind #14641 still
stands. However, the internal documentation should probably be updated
so future contributors don't believe the lies I left behind.

## Solution

Updated the internal documentation for `create_info` to reflect the
actual type name of an anonymous function.

In that same module, I also added a test for function pointers and
updated all tests to include sanity checks for the `std::any::type_name`
of each category of callable.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```
2024-08-08 22:01:42 +00:00
Gino Valente
a0cc636ea3
bevy_reflect: Anonymous function parsing (#14641)
# Objective

### TL;DR

#14098 added the `FunctionRegistry` but had some last minute
complications due to anonymous functions. It ended up going with a
"required name" approach to ensure anonymous functions would always have
a name.

However, this approach isn't ideal for named functions since, by
definition, they will always have a name.

Therefore, this PR aims to modify function reflection such that we can
make function registration easier for named functions, while still
allowing anonymous functions to be registered as well.

### Context

Function registration (#14098) ran into a little problem: anonymous
functions.

Anonymous functions, including function pointers, have very non-unique
type names. For example, the anonymous function `|a: i32, b: i32| a + b`
has the type name of `fn(i32, i32) -> i32`. This obviously means we'd
conflict with another function like `|a: i32, b: i32| a - b`.

The solution that #14098 landed on was to always require a name during
function registration.

The downside with this is that named functions (e.g. `fn add(a: i32, b:
i32) -> i32 { a + b }`) had to redundantly provide a name. Additionally,
manually constructed `DynamicFunction`s also ran into this ergonomics
issue.

I don't entirely know how the function registry will be used, but I have
a strong suspicion that most of its registrations will either be named
functions or manually constructed `DynamicFunction`s, with anonymous
functions only being used here and there for quick prototyping or adding
small functionality.

Why then should the API prioritize the anonymous function use case by
always requiring a name during registration?

#### Telling Functions Apart

Rust doesn't provide a lot of out-of-the-box tools for reflecting
functions. One of the biggest hurdles in attempting to solve the problem
outlined above would be to somehow tell the different kinds of functions
apart.

Let's briefly recap on the categories of functions in Rust:

| Category           | Example                                   |
| ------------------ | ----------------------------------------- |
| Named function     | `fn add(a: i32, b: i32) -> i32 { a + b }` |
| Closure            | `\|a: i32\| a + captured_variable`          |
| Anonymous function | `\|a: i32, b: i32\| a + b`                  |
| Function pointer   | `fn(i32, i32) -> i32`                     |

My first thought was to try and differentiate these categories based on
their size. However, we can see that this doesn't quite work:

| Category           | `size_of` |
| ------------------ | --------- |
| Named function     | 0         |
| Closure            | 0+        |
| Anonymous function | 0         |
| Function pointer   | 8         |

Not only does this not tell anonymous functions from named ones, but it
struggles with pretty much all of them.

My second then was to differentiate based on type name:

| Category           | `type_name`             |
| ------------------ | ----------------------- |
| Named function     | `foo::bar::baz`         |
| Closure            | `foo::bar::{{closure}}` |
| Anonymous function | `fn() -> String`        |
| Function pointer   | `fn() -> String`        |

This is much better. While it can't distinguish between function
pointers and anonymous functions, this doesn't matter too much since we
only care about whether we can _name_ the function.

So why didn't we implement this in #14098?

#### Relying on `type_name`

While this solution was known about while working on #14098, it was left
out from that PR due to it being potentially controversial.

The [docs](https://doc.rust-lang.org/stable/std/any/fn.type_name.html)
for `std::any::type_name` state:

> The returned string must not be considered to be a unique identifier
of a type as multiple types may map to the same type name. Similarly,
there is no guarantee that all parts of a type will appear in the
returned string: for example, lifetime specifiers are currently not
included. In addition, the output may change between versions of the
compiler.

So that's it then? We can't use `type_name`?

Well, this statement isn't so much a rule as it is a guideline. And Bevy
is no stranger to bending the rules to make things work or to improve
ergonomics. Remember that before `TypePath`, Bevy's scene system was
entirely dependent on `type_name`. Not to mention that `type_name` is
being used as a key into both the `TypeRegistry` and the
`FunctionRegistry`.

Bevy's practices aside, can we reliably use `type_name` for this?

My answer would be "yes".

Anonymous functions are anonymous. They have no name. There's nothing
Rust could do to give them a name apart from generating a random string
of characters. But remember that this is a diagnostic tool, it doesn't
make sense to obfuscate the type by randomizing the output. So changing
it to be anything other than what it is now is very unlikely.

The only changes that I could potentially see happening are:

1. Closures replace `{{closure}}` with the name of their variable
2. Lifetimes are included in the output

I don't think the first is likely to happen, but if it does then it
actually works out in our favor: closures are now named!

The second point is probably the likeliest. However, adding lifetimes
doesn't mean we can't still rely on `type_name` to determine whether or
not a function is named. So we should be okay in this case as well.

## Solution

Parse the `type_name` of the function in the `TypedFunction` impl to
determine if the function is named or anonymous.

This once again makes `FunctionInfo::name` optional. For manual
constructions of `DynamicFunction`, `FunctionInfo::named` or
``FunctionInfo::anonymous` can be used.

The `FunctionRegistry` API has also been reworked to account for this
change.

`FunctionRegistry::register` no longer takes a name and instead takes it
from the supplied function, returning a
`FunctionRegistrationError::MissingName` error if the name is `None`.
This also doubles as a replacement for the old
`FunctionRegistry::register_dynamic` method, which has been removed.

To handle anonymous functions, a `FunctionRegistry::register_with_name`
method has been added. This works in the same way
`FunctionRegistry::register` used to work before this PR.

The overwriting methods have been updated in a similar manner, with
modifications to `FunctionRegistry::overwrite_registration`, the removal
of `FunctionRegistry::overwrite_registration_dynamic`, and the addition
of `FunctionRegistry::overwrite_registration_with_name`.

This PR also updates the methods on `App` in a similar way:
`App::register_function` no longer requires a name argument and
`App::register_function_with_name` has been added to handle anonymous
functions (and eventually closures).

## Testing

You can run the tests locally by running:

```
cargo test --package bevy_reflect --features functions
```

---

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

> [!note]
> This list is not exhaustive. It only contains some of the most
important changes.

`FunctionRegistry::register` no longer requires a name string for named
functions. Anonymous functions, however, need to be registered using
`FunctionRegistry::register_with_name`.

```rust
// BEFORE
registry
  .register(std::any::type_name_of_val(&foo), foo)?
  .register("bar", || println!("Hello world!"));

// AFTER
registry
  .register(foo)?
  .register_with_name("bar", || println!("Hello world!"));
```

`FunctionInfo::name` is now optional. Anonymous functions and closures
will now have their name set to `None` by default. Additionally,
`FunctionInfo::new` has been renamed to `FunctionInfo::named`.
2024-08-07 03:11:08 +00:00
Gino Valente
0caeaa2ca9
bevy_reflect: Update serde tests for Set (#14616)
# Objective

Support for reflecting set-like types (e.g. `HashSet`) was added in
#13014. However, we didn't add any serialization tests to verify that
serialization works as expected.

## Solution

Update the serde tests.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```
2024-08-06 01:29:15 +00:00
Gino Valente
df61117850
bevy_reflect: Function registry (#14098)
# Objective

#13152 added support for reflecting functions. Now, we need a way to
register those functions such that they may be accessed anywhere within
the ECS.

## Solution

Added a `FunctionRegistry` type similar to `TypeRegistry`.

This allows a function to be registered and retrieved by name.

```rust
fn foo() -> i32 {
    123
}

let mut registry = FunctionRegistry::default();
registry.register("my_function", foo);

let function = registry.get_mut("my_function").unwrap();
let value = function.call(ArgList::new()).unwrap().unwrap_owned();
assert_eq!(value.downcast_ref::<i32>(), Some(&123));
```

Additionally, I added an `AppFunctionRegistry` resource which wraps a
`FunctionRegistryArc`. Functions can be registered into this resource
using `App::register_function` or by getting a mutable reference to the
resource itself.

### Limitations

#### `Send + Sync`

In order to get this registry to work across threads, it needs to be
`Send + Sync`. This means that `DynamicFunction` needs to be `Send +
Sync`, which means that its internal function also needs to be `Send +
Sync`.

In most cases, this won't be an issue because standard Rust functions
(the type most likely to be registered) are always `Send + Sync`.
Additionally, closures tend to be `Send + Sync` as well, granted they
don't capture any `!Send` or `!Sync` variables.

This PR adds this `Send + Sync` requirement, but as mentioned above, it
hopefully shouldn't be too big of an issue.

#### Closures

Unfortunately, closures can't be registered yet. This will likely be
explored and added in a followup PR.

### Future Work

Besides addressing the limitations listed above, another thing we could
look into is improving the lookup of registered functions. One aspect is
in the performance of hashing strings. The other is in the developer
experience of having to call `std::any::type_name_of_val` to get the
name of their function (assuming they didn't give it a custom name).

## Testing

You can run the tests locally with:

```
cargo test --package bevy_reflect
```

---

## Changelog

- Added `FunctionRegistry`
- Added `AppFunctionRegistry` (a `Resource` available from `bevy_ecs`)
- Added `FunctionRegistryArc`
- Added `FunctionRegistrationError`
- Added `reflect_functions` feature to `bevy_ecs` and `bevy_app`
- `FunctionInfo` is no longer `Default`
- `DynamicFunction` now requires its wrapped function be `Send + Sync`

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

`DynamicFunction` (both those created manually and those created with
`IntoFunction`), now require `Send + Sync`. All standard Rust functions
should meet that requirement. Closures, on the other hand, may not if
they capture any `!Send` or `!Sync` variables from its environment.
2024-08-06 01:09:48 +00:00
recatek
87b63af864
bevy_reflect: Adding support for Atomic values (#14419)
Fixes #14418

Note that this does not add AtomicPtr, which would need its own special
casing support, just the regular value types.
Also, I was forced to be opinionated about which Ordering to use, so I
chose SeqCst as the strictest by default.
2024-07-29 23:33:18 +00:00
Robert Walter
52a2a3b146
Dedicated Reflect implementation for Set-like things (#13014)
# Objective

I just wanted to inspect `HashSet`s in `bevy-inspector-egui` but I
noticed that it didn't work for some reason. A few minutes later I found
myself looking into the bevy reflect impls noticing that `HashSet`s have
been covered only rudimentary up until now.

## Solution

I'm not sure if this is overkill (especially the first bullet), but
here's a list of the changes:

- created a whole new trait and enum variants for `ReflectRef` and the
like called `Set`
- mostly oriented myself at the `Map` trait and made the necessary
changes until RA was happy
- create macro `impl_reflect_for_hashset!` and call it on `std::HashSet`
and `hashbrown::HashSet`

Extra notes:

- no `get_mut` or `get_mut_at` mirroring the `std::HashSet`
- `insert[_boxed]` and `remove` return `bool` mirroring `std::HashSet`,
additionally that bool is reflect as I thought that would be how we
handle things in bevy reflect, but I'm not sure on this
- ser/de are handled via `SeqAccess`
- I'm not sure about the general deduplication property of this impl of
`Set` that is generally expected? I'm also not sure yet if `Map` does
provide this. This mainly refers to the `Dynamic[...]` structs
- I'm not sure if there are other methods missing from the `trait`, I
felt like `contains` or the set-operations (union/diff/...) could've
been helpful, but I wanted to get out the bare minimum for feedback
first

---

## Changelog

### Added
- `Set` trait for `bevy_reflect`

### Changed
- `std::collections::HashSet` and `bevy_utils::hashbrown::HashSet` now
implement a more complete set of reflect functionalities instead of
"just" `reflect_value`
- `TypeInfo` contains a new variant `Set` that contains `SetInfo`
- `ReflectKind` contains a new variant `Set`
- `ReflectRef` contains a new variant `Set`
- `ReflectMut` contains a new variant `Set`
- `ReflectOwned` contains a new variant `Set`

## Migration Guide

- The new `Set` variants on the enums listed in the change section
should probably be considered by people working with this level of the
lib
### Help wanted! 

I'm not sure if this change is able to break code. From my understanding
it shouldn't since we just add functionality but I'm not sure yet if
theres anything missing from my impl that would be normally provided by
`impl_reflect_value!`
2024-07-24 19:43:26 +00:00
Gino Valente
af865e76a3
bevy_reflect: Improve DynamicFunction ergonomics (#14201)
# Objective

Many functions can be converted to `DynamicFunction` using
`IntoFunction`. Unfortunately, we are limited by Rust itself and the
implementations are far from exhaustive. For example, we can't convert
functions with more than 16 arguments. Additionally, we can't handle
returns with lifetimes not tied to the lifetime of the first argument.

In such cases, users will have to create their `DynamicFunction`
manually.

Let's take the following function:

```rust
fn get(index: usize, list: &Vec<String>) -> &String {
    &list[index]
}
```

This function cannot be converted to a `DynamicFunction` via
`IntoFunction` due to the lifetime of the return value being tied to the
second argument. Therefore, we need to construct the `DynamicFunction`
manually:

```rust
DynamicFunction::new(
    |mut args, info| {
        let list = args
            .pop()
            .unwrap()
            .take_ref::<Vec<String>>(&info.args()[1])?;
        let index = args.pop().unwrap().take_owned::<usize>(&info.args()[0])?;
        Ok(Return::Ref(get(index, list)))
    },
    FunctionInfo::new()
        .with_name("get")
        .with_args(vec![
            ArgInfo:🆕:<usize>(0).with_name("index"),
            ArgInfo:🆕:<&Vec<String>>(1).with_name("list"),
        ])
        .with_return_info(ReturnInfo:🆕:<&String>()),
);
```

While still a small and straightforward snippet, there's a decent amount
going on here. There's a lot of room for improvements when it comes to
ergonomics and readability.

The goal of this PR is to address those issues.

## Solution

Improve the ergonomics and readability of manually created
`DynamicFunction`s.

Some of the major changes:
1. Removed the need for `&ArgInfo` when reifying arguments (i.e. the
`&info.args()[1]` calls)
2. Added additional `pop` methods on `ArgList` to handle both popping
and casting
3. Added `take` methods on `ArgList` for taking the arguments out in
order
4. Removed the need for `&FunctionInfo` in the internal closure (Change
1 made it no longer necessary)
5. Added methods to automatically handle generating `ArgInfo` and
`ReturnInfo`

With all these changes in place, we get something a lot nicer to both
write and look at:

```rust
DynamicFunction::new(
    |mut args| {
        let index = args.take::<usize>()?;
        let list = args.take::<&Vec<String>>()?;
        Ok(Return::Ref(get(index, list)))
    },
    FunctionInfo::new()
        .with_name("get")
        .with_arg::<usize>("index")
        .with_arg::<&Vec<String>>("list")
        .with_return::<&String>(),
);
```

Alternatively, to rely on type inference for taking arguments, you could
do:

```rust
DynamicFunction::new(
    |mut args| {
        let index = args.take_owned()?;
        let list = args.take_ref()?;
        Ok(Return::Ref(get(index, list)))
    },
    FunctionInfo::new()
        .with_name("get")
        .with_arg::<usize>("index")
        .with_arg::<&Vec<String>>("list")
        .with_return::<&String>(),
);
```

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

- Removed `&ArgInfo` argument from `FromArg::from_arg` trait method
- Removed `&ArgInfo` argument from `Arg::take_***` methods
- Added `ArgValue`
- `Arg` is now a struct containing an `ArgValue` and an argument `index`
- `Arg::take_***` methods now require `T` is also `TypePath`
- Added `Arg::new`, `Arg::index`, `Arg::value`, `Arg::take_value`, and
`Arg::take` methods
- Replaced `ArgId` in `ArgError` with just the argument `index`
- Added `ArgError::EmptyArgList`
- Renamed `ArgList::push` to `ArgList::push_arg`
- Added `ArgList::pop_arg`, `ArgList::pop_owned`, `ArgList::pop_ref`,
and `ArgList::pop_mut`
- Added `ArgList::take_arg`, `ArgList::take_owned`, `ArgList::take_ref`,
`ArgList::take_mut`, and `ArgList::take`
- `ArgList::pop` is now generic
- Renamed `FunctionError::InvalidArgCount` to
`FunctionError::ArgCountMismatch`
- The closure given to `DynamicFunction::new` no longer has a
`&FunctionInfo` argument
- Added `FunctionInfo::with_arg`
- Added `FunctionInfo::with_return`

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

* The `FromArg::from_arg` trait method and the `Arg::take_***` methods
no longer take a `&ArgInfo` argument.
* What used to be `Arg` is now `ArgValue`. `Arg` is now a struct which
contains an `ArgValue`.
* `Arg::take_***` methods now require `T` is also `TypePath`
* Instances of `id: ArgId` in `ArgError` have been replaced with `index:
usize`
* `ArgList::push` is now `ArgList::push_arg`. It also takes the new
`ArgValue` type.
* `ArgList::pop` has become `ArgList::pop_arg` and now returns
`ArgValue`. `Arg::pop` now takes a generic type and downcasts to that
type. It's recommended to use `ArgList::take` and friends instead since
they allow removing the arguments from the list in the order they were
pushed (rather than reverse order).
* `FunctionError::InvalidArgCount` is now
`FunctionError::ArgCountMismatch`
* The closure given to `DynamicFunction::new` no longer has a
`&FunctionInfo` argument. This argument can be removed.
2024-07-16 13:01:52 +00:00
Gino Valente
1042f09c2e
bevy_reflect: Add DynamicClosure and DynamicClosureMut (#14141)
# Objective

As mentioned in
[this](https://github.com/bevyengine/bevy/pull/13152#issuecomment-2198387297)
comment, creating a function registry (see #14098) is a bit difficult
due to the requirements of `DynamicFunction`. Internally, a
`DynamicFunction` contains a `Box<dyn FnMut>` (the function that reifies
reflected arguments and calls the actual function), which requires `&mut
self` in order to be called.

This means that users would require a mutable reference to the function
registry for it to be useful— which isn't great. And they can't clone
the `DynamicFunction` either because cloning an `FnMut` isn't really
feasible (wrapping it in an `Arc` would allow it to be cloned but we
wouldn't be able to call the clone since we need a mutable reference to
the `FnMut`, which we can't get with multiple `Arc`s still alive,
requiring us to also slap in a `Mutex`, which adds additional overhead).

And we don't want to just replace the `dyn FnMut` with `dyn Fn` as that
would prevent reflecting closures that mutate their environment.

Instead, we need to introduce a new type to split the requirements of
`DynamicFunction`.

## Solution

Introduce new types for representing closures.

Specifically, this PR introduces `DynamicClosure` and
`DynamicClosureMut`. Similar to how `IntoFunction` exists for
`DynamicFunction`, two new traits were introduced: `IntoClosure` and
`IntoClosureMut`.

Now `DynamicFunction` stores a `dyn Fn` with a `'static` lifetime.
`DynamicClosure` also uses a `dyn Fn` but has a lifetime, `'env`, tied
to its environment. `DynamicClosureMut` is most like the old
`DynamicFunction`, keeping the `dyn FnMut` and also typing its lifetime,
`'env`, to the environment

Here are some comparison tables:

|   | `DynamicFunction` | `DynamicClosure` | `DynamicClosureMut` |
| - | ----------------- | ---------------- | ------------------- |
| Callable with `&self` |  |  |  |
| Callable with `&mut self` |  |  |  |
| Allows for non-`'static` lifetimes |  |  |  |

|   | `IntoFunction` | `IntoClosure` | `IntoClosureMut` |
| - | -------------- | ------------- | ---------------- |
| Convert `fn` functions |  |  |  |
| Convert `fn` methods |  |  |  |
| Convert anonymous functions |  |  |  |
| Convert closures that capture immutable references |  |  |  |
| Convert closures that capture mutable references |  |  |  |
| Convert closures that capture owned values | [^1] |  |  |

[^1]: Due to limitations in Rust, `IntoFunction` can't be implemented
for just functions (unless we forced users to manually coerce them to
function pointers first). So closures that meet the trait requirements
_can technically_ be converted into a `DynamicFunction` as well. To both
future-proof and reduce confusion, though, we'll just pretend like this
isn't a thing.

```rust
let mut list: Vec<i32> = vec![1, 2, 3];

// `replace` is a closure that captures a mutable reference to `list`
let mut replace = |index: usize, value: i32| -> i32 {
  let old_value = list[index];
  list[index] = value;
  old_value
};

// Convert the closure into a dynamic closure using `IntoClosureMut::into_closure_mut`
let mut func: DynamicClosureMut = replace.into_closure_mut();

// Dynamically call the closure:
let args = ArgList::default().push_owned(1_usize).push_owned(-2_i32);
let value = func.call_once(args).unwrap().unwrap_owned();

// Check the result:
assert_eq!(value.take::<i32>().unwrap(), 2);
assert_eq!(list, vec![1, -2, 3]);
```

### `ReflectFn`/`ReflectFnMut`

To make extending the function reflection system easier (the blanket
impls for `IntoFunction`, `IntoClosure`, and `IntoClosureMut` are all
incredibly short), this PR generalizes callables with two new traits:
`ReflectFn` and `ReflectFnMut`.

These traits mimic `Fn` and `FnMut` but allow for being called via
reflection. In fact, their blanket implementations are identical save
for `ReflectFn` being implemented over `Fn` types and `ReflectFnMut`
being implemented over `FnMut` types.

And just as `Fn` is a subtrait of `FnMut`, `ReflectFn` is a subtrait of
`ReflectFnMut`. So anywhere that expects a `ReflectFnMut` can also be
given a `ReflectFn`.

To reiterate, these traits aren't 100% necessary. They were added in
purely for extensibility. If we decide to split things up differently or
add new traits/types in the future, then those changes should be much
simpler to implement.

### `TypedFunction`

Because of the split into `ReflectFn` and `ReflectFnMut`, we needed a
new way to access the function type information. This PR moves that
concept over into `TypedFunction`.

Much like `Typed`, this provides a way to access a function's
`FunctionInfo`.

By splitting this trait out, it helps to ensure the other traits are
focused on a single responsibility.

### Internal Macros

The original function PR (#13152) implemented `IntoFunction` using a
macro which was passed into an `all_tuples!` macro invocation. Because
we needed the same functionality for these new traits, this PR has
copy+pasted that code for `ReflectFn`, `ReflectFnMut`, and
`TypedFunction`— albeit with some differences between them.

Originally, I was going to try and macro-ify the impls and where clauses
such that we wouldn't have to straight up duplicate a lot of this logic.
However, aside from being more complex in general, autocomplete just
does not play nice with such heavily nested macros (tried in both
RustRover and VSCode). And both of those problems told me that it just
wasn't worth it: we need to ensure the crate is easily maintainable,
even at the cost of duplicating code.

So instead, I made sure to simplify the macro code by removing all
fully-qualified syntax and cutting the where clauses down to the bare
essentials, which helps to clean up a lot of the visual noise. I also
tried my best to document the macro logic in certain areas (I may even
add a bit more) to help with maintainability for future devs.

### Documentation

Documentation for this module was a bit difficult for me. So many of
these traits and types are very interconnected. And each trait/type has
subtle differences that make documenting it in a single place, like at
the module level, difficult to do cleanly. Describing the valid
signatures is also challenging to do well.

Hopefully what I have here is okay. I think I did an okay job, but let
me know if there any thoughts on ways to improve it. We can also move
such a task to a followup PR for more focused discussion.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

- Added `DynamicClosure` struct
- Added `DynamicClosureMut` struct
- Added `IntoClosure` trait
- Added `IntoClosureMut` trait
- Added `ReflectFn` trait
- Added `ReflectFnMut` trait
- Added `TypedFunction` trait
- `IntoFunction` now only works for standard Rust functions
- `IntoFunction` no longer takes a lifetime parameter
- `DynamicFunction::call` now only requires `&self`
- Removed `DynamicFunction::call_once`
- Changed the `IntoReturn::into_return` signature to include a where
clause

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

### `IntoClosure`

`IntoFunction` now only works for standard Rust functions. Calling
`IntoFunction::into_function` on a closure that captures references to
its environment (either mutable or immutable), will no longer compile.

Instead, you will need to use either `IntoClosure::into_closure` to
create a `DynamicClosure` or `IntoClosureMut::into_closure_mut` to
create a `DynamicClosureMut`, depending on your needs:

```rust
let punct = String::from("!");
let print = |value: String| {
    println!("{value}{punct}");
};

// BEFORE
let func: DynamicFunction = print.into_function();

// AFTER
let func: DynamicClosure = print.into_closure();
```

### `IntoFunction` lifetime

Additionally, `IntoFunction` no longer takes a lifetime parameter as it
always expects a `'static` lifetime. Usages will need to remove any
lifetime parameters:

```rust
// BEFORE
fn execute<'env, F: IntoFunction<'env, Marker>, Marker>(f: F) {/* ... */}

// AFTER
fn execute<F: IntoFunction<Marker>, Marker>(f: F) {/* ... */}
```

### `IntoReturn`

`IntoReturn::into_return` now has a where clause. Any manual
implementors will need to add this where clause to their implementation.
2024-07-16 03:22:43 +00:00
SpecificProtagonist
ab255aefc6
Implement FromIterator/IntoIterator for dynamic types (#14250)
# Objective

Implement FromIterator/IntoIterator for dynamic types where missing

Note:
- can't impl `IntoIterator` for `&Array` & co because of orphan rules
- `into_iter().collect()` is a no-op for `Vec`s because of
specialization

---

## Migration Guide

- Change `DynamicArray::from_vec` to `DynamicArray::from_iter`
2024-07-15 15:38:11 +00:00
Gino Valente
aa241672e1
bevy_reflect: Nested TypeInfo getters (#13321)
# Objective

Right now, `TypeInfo` can be accessed directly from a type using either
`Typed::type_info` or `Reflect::get_represented_type_info`.

However, once that `TypeInfo` is accessed, any nested types must be
accessed via the `TypeRegistry`.

```rust
#[derive(Reflect)]
struct Foo {
  bar: usize
}

let registry = TypeRegistry::default();

let TypeInfo::Struct(type_info) = Foo::type_info() else {
  panic!("expected struct info");
};

let field = type_info.field("bar").unwrap();

let field_info = registry.get_type_info(field.type_id()).unwrap();
assert!(field_info.is::<usize>());;
```

## Solution

Enable nested types within a `TypeInfo` to be retrieved directly.

```rust
#[derive(Reflect)]
struct Foo {
  bar: usize
}

let TypeInfo::Struct(type_info) = Foo::type_info() else {
  panic!("expected struct info");
};

let field = type_info.field("bar").unwrap();

let field_info = field.type_info().unwrap();
assert!(field_info.is::<usize>());;
```

The particular implementation was chosen for two reasons.

Firstly, we can't just store `TypeInfo` inside another `TypeInfo`
directly. This is because some types are recursive and would result in a
deadlock when trying to create the `TypeInfo` (i.e. it has to create the
`TypeInfo` before it can use it, but it also needs the `TypeInfo` before
it can create it). Therefore, we must instead store the function so it
can be retrieved lazily.

I had considered also using a `OnceLock` or something to lazily cache
the info, but I figured we can look into optimizations later. The API
should remain the same with or without the `OnceLock`.

Secondly, a new wrapper trait had to be introduced: `MaybeTyped`. Like
`RegisterForReflection`, this trait is `#[doc(hidden)]` and only exists
so that we can properly handle dynamic type fields without requiring
them to implement `Typed`. We don't want dynamic types to implement
`Typed` due to the fact that it would make the return type
`Option<&'static TypeInfo>` for all types even though only the dynamic
types ever need to return `None` (see #6971 for details).

Users should never have to interact with this trait as it has a blanket
impl for all `Typed` types. And `Typed` is automatically implemented
when deriving `Reflect` (as it is required).

The one downside is we do need to return `Option<&'static TypeInfo>`
from all these new methods so that we can handle the dynamic cases. If
we didn't have to, we'd be able to get rid of the `Option` entirely. But
I think that's an okay tradeoff for this one part of the API, and keeps
the other APIs intact.

## Testing

This PR contains tests to verify everything works as expected. You can
test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

### Public Changes

- Added `ArrayInfo::item_info` method
- Added `NamedField::type_info` method
- Added `UnnamedField::type_info` method
- Added `ListInfo::item_info` method
- Added `MapInfo::key_info` method
- Added `MapInfo::value_info` method
- All active fields now have a `Typed` bound (remember that this is
automatically satisfied for all types that derive `Reflect`)

### Internal Changes

- Added `MaybeTyped` trait

## Migration Guide

All active fields for reflected types (including lists, maps, tuples,
etc.), must implement `Typed`. For the majority of users this won't have
any visible impact.

However, users implementing `Reflect` manually may need to update their
types to implement `Typed` if they weren't already.

Additionally, custom dynamic types will need to implement the new hidden
`MaybeTyped` trait.
2024-07-15 00:40:07 +00:00
Gino Valente
e512cb602c
bevy_reflect: TypeInfo casting methods (#13320)
# Objective

There are times when we might know the type of a `TypeInfo` ahead of
time. Or we may have already checked it one way or another.

In such cases, it's a bit cumbersome to have to pattern match every time
we want to access the nested info:

```rust
if let TypeInfo::List(info) = <Vec<i32>>::type_info() {
  // ...
} else {
  panic!("expected list info");
}
```

Ideally, there would be a way to simply perform the cast down to
`ListInfo` since we already know it will succeed.

Or even if we don't, perhaps we just want a cleaner way of exiting a
function early (i.e. with the `?` operator).

## Solution

Taking a bit from
[`mirror-mirror`](https://docs.rs/mirror-mirror/latest/mirror_mirror/struct.TypeDescriptor.html#implementations),
`TypeInfo` now has methods for attempting a cast into the variant's info
type.

```rust
let info = <Vec<i32>>::type_info().as_list().unwrap();
// ...
```

These new conversion methods return a `Result` where the error type is a
new `TypeInfoError` enum.

A `Result` was chosen as the return type over `Option` because if we do
choose to `unwrap` it, the error message will give us some indication of
what went wrong. In other words, it can truly replace those instances
where we were panicking in the `else` case.

### Open Questions

1. Should the error types instead be a struct? I chose an enum for
future-proofing, but right now it only has one error state.
Alternatively, we could make it a reflect-wide casting error so it could
be used for similar methods on `ReflectRef` and friends.
2. I was going to do it in a separate PR but should I just go ahead and
add similar methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`? 🤔
3. Should we name these `try_as_***` instead of `as_***` since they
return a `Result`?

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

### Added

- `TypeInfoError` enum
- `TypeInfo::kind` method
- `TypeInfo::as_struct` method
- `TypeInfo::as_tuple_struct` method
- `TypeInfo::as_tuple` method
- `TypeInfo::as_list` method
- `TypeInfo::as_array` method
- `TypeInfo::as_map` method
- `TypeInfo::as_enum` method
- `TypeInfo::as_value` method
- `VariantInfoError` enum
- `VariantInfo::variant_type` method
- `VariantInfo::as_unit_variant` method
- `VariantInfo::as_tuple_variant` method
- `VariantInfo::as_struct_variant` method
2024-07-14 20:10:31 +00:00
Gino Valente
99c9218b56
bevy_reflect: Feature-gate function reflection (#14174)
# Objective

Function reflection requires a lot of macro code generation in the form
of several `all_tuples!` invocations, as well as impls generated in the
`Reflect` derive macro.

Seeing as function reflection is currently a bit more niche, it makes
sense to gate it all behind a feature.

## Solution

Add a `functions` feature to `bevy_reflect`, which can be enabled in
Bevy using the `reflect_functions` feature.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

That should ensure that everything still works with the feature
disabled.

To test with the feature on, you can run:

```
cargo test --package bevy_reflect --features functions
```

---

## Changelog

- Moved function reflection behind a Cargo feature
(`bevy/reflect_functions` and `bevy_reflect/functions`)
- Add `IntoFunction` export in `bevy_reflect::prelude`

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

Function reflection is now gated behind a feature. To use function
reflection, enable the feature:
- If using `bevy_reflect` directly, enable the `functions` feature
- If using `bevy`, enable the `reflect_functions` feature
2024-07-14 15:55:31 +00:00
Giacomo Stevanato
d7080369a7
Fix intra-doc links and make CI test them (#14076)
# Objective

- Bevy currently has lot of invalid intra-doc links, let's fix them!
- Also make CI test them, to avoid future regressions.
- Helps with #1983 (but doesn't fix it, as there could still be explicit
links to docs.rs that are broken)

## Solution

- Make `cargo r -p ci -- doc-check` check fail on warnings (could also
be changed to just some specific lints)
- Manually fix all the warnings (note that in some cases it was unclear
to me what the fix should have been, I'll try to highlight them in a
self-review)
2024-07-11 13:08:31 +00:00
Rob Parrett
3594c4f2f5
Fix doc list indentation (#14225)
# Objective

Fixes #14221

## Solution

Add indentation as suggested.

## Testing

Confirmed that
- This makes Clippy happy with rust beta
- Built docs visually look the same before/after
2024-07-09 01:21:54 +00:00
Lura
856b39d821
Apply Clippy lints regarding lazy evaluation and closures (#14015)
# Objective

- Lazily evaluate
[default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)~~/[or](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~
values where it makes sense
  - ~~`unwrap_or(foo())` -> `unwrap_or_else(|| foo())`~~
  - `unwrap_or(Default::default())` -> `unwrap_or_default()`
  - etc.
- Avoid creating [redundant
closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure),
even for [method
calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls)
  - `map(|something| something.into())` -> `map(Into:into)`

## Solution

- Apply Clippy lints:
-
~~[or_fun_call](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~
-
[unwrap_or_default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)
-
[redundant_closure_for_method_calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls)
([redundant
closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure)
is already enabled)

## Testing

- Tested on Windows 11 (`stable-x86_64-pc-windows-gnu`, 1.79.0)
- Bevy compiles without errors or warnings and examples seem to work as
intended
  - `cargo clippy` 
  - `cargo run -p ci -- compile` 

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-07-01 15:54:40 +00:00
Gino Valente
276dd04001
bevy_reflect: Function reflection (#13152)
# Objective

We're able to reflect types sooooooo... why not functions?

The goal of this PR is to make functions callable within a dynamic
context, where type information is not readily available at compile
time.

For example, if we have a function:

```rust
fn add(left: i32, right: i32) -> i32 {
  left + right
}
```

And two `Reflect` values we've already validated are `i32` types:

```rust
let left: Box<dyn Reflect> = Box::new(2_i32);
let right: Box<dyn Reflect> = Box::new(2_i32);
```

We should be able to call `add` with these values:

```rust
// ?????
let result: Box<dyn Reflect> = add.call_dynamic(left, right);
```

And ideally this wouldn't just work for functions, but methods and
closures too!

Right now, users have two options:

1. Manually parse the reflected data and call the function themselves
2. Rely on registered type data to handle the conversions for them

For a small function like `add`, this isn't too bad. But what about for
more complex functions? What about for many functions?

At worst, this process is error-prone. At best, it's simply tedious.

And this is assuming we know the function at compile time. What if we
want to accept a function dynamically and call it with our own
arguments?

It would be much nicer if `bevy_reflect` could alleviate some of the
problems here.

## Solution

Added function reflection!

This adds a `DynamicFunction` type to wrap a function dynamically. This
can be called with an `ArgList`, which is a dynamic list of
`Reflect`-containing `Arg` arguments. It returns a `FunctionResult`
which indicates whether or not the function call succeeded, returning a
`Reflect`-containing `Return` type if it did succeed.

Many functions can be converted into this `DynamicFunction` type thanks
to the `IntoFunction` trait.

Taking our previous `add` example, this might look something like
(explicit types added for readability):

```rust
fn add(left: i32, right: i32) -> i32 {
  left + right
}

let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

And it also works on closures:

```rust
let add = |left: i32, right: i32| left + right;

let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

As well as methods:

```rust
#[derive(Reflect)]
struct Foo(i32);

impl Foo {
  fn add(&mut self, value: i32) {
    self.0 += value;
  }
}

let mut foo = Foo(2);

let mut function: DynamicFunction = Foo::add.into_function();
let args: ArgList = ArgList::new().push_mut(&mut foo).push_owned(2_i32);
function.call(args).unwrap();
assert_eq!(foo.0, 4);
```

### Limitations

While this does cover many functions, it is far from a perfect system
and has quite a few limitations. Here are a few of the limitations when
using `IntoFunction`:

1. The lifetime of the return value is only tied to the lifetime of the
first argument (useful for methods). This means you can't have a
function like `(a: i32, b: &i32) -> &i32` without creating the
`DynamicFunction` manually.
2. Only 15 arguments are currently supported. If the first argument is a
(mutable) reference, this number increases to 16.
3. Manual implementations of `Reflect` will need to implement the new
`FromArg`, `GetOwnership`, and `IntoReturn` traits in order to be used
as arguments/return types.

And some limitations of `DynamicFunction` itself:

1. All arguments share the same lifetime, or rather, they will shrink to
the shortest lifetime.
2. Closures that capture their environment may need to have their
`DynamicFunction` dropped before accessing those variables again (there
is a `DynamicFunction::call_once` to make this a bit easier)
3. All arguments and return types must implement `Reflect`. While not a
big surprise coming from `bevy_reflect`, this implementation could
actually still work by swapping `Reflect` out with `Any`. Of course,
that makes working with the arguments and return values a bit harder.
4. Generic functions are not supported (unless they have been manually
monomorphized)

And general, reflection gotchas:

1. `&str` does not implement `Reflect`. Rather, `&'static str`
implements `Reflect` (the same is true for `&Path` and similar types).
This means that `&'static str` is considered an "owned" value for the
sake of generating arguments. Additionally, arguments and return types
containing `&str` will assume it's `&'static str`, which is almost never
the desired behavior. In these cases, the only solution (I believe) is
to use `&String` instead.

### Followup Work

This PR is the first of two PRs I intend to work on. The second PR will
aim to integrate this new function reflection system into the existing
reflection traits and `TypeInfo`. The goal would be to register and call
a reflected type's methods dynamically.

I chose not to do that in this PR since the diff is already quite large.
I also want the discussion for both PRs to be focused on their own
implementation.

Another followup I'd like to do is investigate allowing common container
types as a return type, such as `Option<&[mut] T>` and `Result<&[mut] T,
E>`. This would allow even more functions to opt into this system. I
chose to not include it in this one, though, for the same reasoning as
previously mentioned.

### Alternatives

One alternative I had considered was adding a macro to convert any
function into a reflection-based counterpart. The idea would be that a
struct that wraps the function would be created and users could specify
which arguments and return values should be `Reflect`. It could then be
called via a new `Function` trait.

I think that could still work, but it will be a fair bit more involved,
requiring some slightly more complex parsing. And it of course is a bit
more work for the user, since they need to create the type via macro
invocation.

It also makes registering these functions onto a type a bit more
complicated (depending on how it's implemented).

For now, I think this is a fairly simple, yet powerful solution that
provides the least amount of friction for users.

---

## Showcase

Bevy now adds support for storing and calling functions dynamically
using reflection!

```rust
// 1. Take a standard Rust function
fn add(left: i32, right: i32) -> i32 {
  left + right
}

// 2. Convert it into a type-erased `DynamicFunction` using the `IntoFunction` trait
let mut function: DynamicFunction = add.into_function();
// 3. Define your arguments from reflected values
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
// 4. Call the function with your arguments
let result: Return = function.call(args).unwrap();
// 5. Extract the return value
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

## Changelog

#### TL;DR

- Added support for function reflection
- Added a new `Function Reflection` example:
ba727898f2/examples/reflection/function_reflection.rs (L1-L157)

#### Details

Added the following items:

- `ArgError` enum
- `ArgId` enum
- `ArgInfo` struct
- `ArgList` struct
- `Arg` enum
- `DynamicFunction` struct
- `FromArg` trait (derived with `derive(Reflect)`)
- `FunctionError` enum
- `FunctionInfo` struct
- `FunctionResult` alias
- `GetOwnership` trait (derived with `derive(Reflect)`)
- `IntoFunction` trait (with blanket implementation)
- `IntoReturn` trait (derived with `derive(Reflect)`)
- `Ownership` enum
- `ReturnInfo` struct
- `Return` enum

---------

Co-authored-by: Periwink <charlesbour@gmail.com>
2024-07-01 13:49:08 +00:00
Gino Valente
53910e07ae
bevy_reflect: Improve reflection serialization error messages (#13867)
# Objective

The error messages that appear when a value cannot be serialized or
deserialized via reflection could be slightly improved.

When one of these operations fails, some users are confused about how to
resolve the issue. I've spoken with a few who didn't know they could
register `ReflectSerialize` themselves. We should try to clarify this to
some degree in the error messages.

## Solution

Add some more detail to the error messages.

For example, replacing this:

```
Type 'core::ops::RangeInclusive<f32>' did not register ReflectSerialize
```

with this:

```
Type `core::ops::RangeInclusive<f32>` did not register the `ReflectSerialize` type data. For certain types, this may need to be registered manually using `register_type_data`
```

I also added a separate error message if the type was not registered in
the type registry at all:

```
Type `core::ops::RangeInclusive<f32>` is not registered in the type registry
```

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

- Added error message for missing type registration when serializing
reflect data
- Changed error message for missing `ReflectSerialize` registration when
serializing reflect data
- Changed error message for missing `ReflectDeserialize` registration
when deserializing reflect data
2024-06-17 18:13:46 +00:00
Jan Hohenheim
6273227e09
Fix lints introduced in Rust beta 1.80 (#13899)
Resolves #13895

Mostly just involves being more explicit about which parts of the docs
belong to a list and which begin a new paragraph.
- found a few docs that were malformed because of exactly this, so I
fixed that by introducing a paragraph
- added indentation to nearly all multiline lists
- fixed a few minor typos
- added `#[allow(dead_code)]` to types that are needed to test
annotations but are never constructed
([here](https://github.com/bevyengine/bevy/pull/13899/files#diff-b02b63604e569c8577c491e7a2030d456886d8f6716eeccd46b11df8aac75dafR1514)
and
[here](https://github.com/bevyengine/bevy/pull/13899/files#diff-b02b63604e569c8577c491e7a2030d456886d8f6716eeccd46b11df8aac75dafR1523))
- verified that  `cargo +beta run -p ci -- lints` passes
- verified that `cargo +beta run -p ci -- test` passes
2024-06-17 17:22:01 +00:00
Wuketuke
d45bcfd043
improved the error message by insert_boxed (issue #13646) (again) (#13706)
previously I worked on fixing issue #13646, back when the error message
did not include the type at all.
But that error message had room for improvement, so I included the
feedback of @alice-i-cecile and @MrGVSV.
The error message will now read `the given key (of type
bevy_reflect::tests::Foo) does not support hashing` or 'the given key
(of type bevy_reflect::DynamicStruct) does not support hashing' in case
of a dynamic struct that represents a hashable struct

i also added a new unit test for this new behaviour
(`reflect_map_no_hash_dynamic`).
Fixes #13646 (again)

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-06-07 20:56:16 +00:00
Wuketuke
2eb9d5cc38
hashing error in bevy_reflect now includes the type (bevyengine#13646) (#13691)
# Objective
If you try to add an object to the hashmap that is not capable of
hashing, the program panics. For easier debugging, the type for that
object should be included in the error message.

Fixes #13646.

## Solution
initially i tried calling std::any::type_name_of_val. this had the
problem that it would print something like dyn Box<dyn Reflect>, not
helpful. But since these objects all implement Reflect, i used
Reflect::type_path() instead. Previously, the error message was part of
a constant called HASH_ERROR. i changed that to a macro called
hash_error to print the type of that object more easily

## Testing
i adapted the unit test reflect_map_no_hash to expect the type in that
panic aswell

since this is my first contribution, please let me know if i have done
everything properly
2024-06-05 19:41:23 +00:00
Alice Cecile
ec7b3490f6
Add on_unimplemented Diagnostics to Most Public Traits (#13347) (#13662)
# Objective

- #13414 did not have the intended effect.
- #13404 is still blocked

## Solution

- Re-adds #13347.

Co-authored-by: Zachary Harrold <zac@harrold.com.au>
Co-authored-by: Jamie Ridding <Themayu@users.noreply.github.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
2024-06-04 00:31:34 +00:00
Olle Lukowski
8c7f73ab81
Move bevy_math Reflect impls (#13520)
# Objective

Fixes #13456 

## Solution

Moved `bevy_math`'s `Reflect` impls from `bevy_reflect` to `bevy_math`.


### Quick note
I accidentally used the same commit message while resolving a merge
conflict (first time I had to resolve a conflict). Sorry about that.
2024-05-27 14:15:22 +00:00
Salvador Carvalhinho
7d843e0c08
Implement Rhombus 2D primitive. (#13501)
# Objective

- Create a new 2D primitive, Rhombus, also knows as "Diamond Shape"
- Simplify the creation and handling of isometric projections
- Extend Bevy's arsenal of 2D primitives

## Testing

- New unit tests created in bevy_math/ primitives and bev_math/ bounding
- Tested translations, rotations, wireframe, bounding sphere, aabb and
creation parameters

---------

Co-authored-by: Luís Figueiredo <luispcfigueiredo@tecnico.ulisboa.pt>
2024-05-26 15:27:57 +00:00
Gino Valente
5db52663b3
bevy_reflect: Custom attributes (#11659)
# Objective

As work on the editor starts to ramp up, it might be nice to start
allowing types to specify custom attributes. These can be used to
provide certain functionality to fields, such as ranges or controlling
how data is displayed.

A good example of this can be seen in
[`bevy-inspector-egui`](https://github.com/jakobhellermann/bevy-inspector-egui)
with its
[`InspectorOptions`](https://docs.rs/bevy-inspector-egui/0.22.1/bevy_inspector_egui/struct.InspectorOptions.html):

```rust
#[derive(Reflect, Default, InspectorOptions)]
#[reflect(InspectorOptions)]
struct Slider {
    #[inspector(min = 0.0, max = 1.0)]
    value: f32,
}
```

Normally, as demonstrated in the example above, these attributes are
handled by a derive macro and stored in a corresponding `TypeData`
struct (i.e. `ReflectInspectorOptions`).

Ideally, we would have a good way of defining this directly via
reflection so that users don't need to create and manage a whole proc
macro just to allow these sorts of attributes.

And note that this doesn't have to just be for inspectors and editors.
It can be used for things done purely on the code side of things.

## Solution

Create a new method for storing attributes on fields via the `Reflect`
derive.

These custom attributes are stored in type info (e.g. `NamedField`,
`StructInfo`, etc.).

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(@0.0..=1.0)]
    value: f64,
}

let TypeInfo::Struct(info) = Slider::type_info() else {
    panic!("expected struct info");
};

let field = info.field("value").unwrap();

let range = field.get_attribute::<RangeInclusive<f64>>().unwrap();
assert_eq!(*range, 0.0..=1.0);
```

## TODO

- [x] ~~Bikeshed syntax~~ Went with a type-based approach, prefixed by
`@` for ease of parsing and flexibility
- [x] Add support for custom struct/tuple struct field attributes
- [x] Add support for custom enum variant field attributes
- [x] ~~Add support for custom enum variant attributes (maybe?)~~ ~~Will
require a larger refactor. Can be saved for a future PR if we really
want it.~~ Actually, we apparently still have support for variant
attributes despite not using them, so it was pretty easy to add lol.
- [x] Add support for custom container attributes
- [x] Allow custom attributes to store any reflectable value (not just
`Lit`)
- [x] ~~Store attributes in registry~~ This PR used to store these in
attributes in the registry, however, it has since switched over to
storing them in type info
- [x] Add example

## Bikeshedding

> [!note]
> This section was made for the old method of handling custom
attributes, which stored them by name (i.e. `some_attribute = 123`). The
PR has shifted away from that, to a more type-safe approach.
>
> This section has been left for reference.

There are a number of ways we can syntactically handle custom
attributes. Feel free to leave a comment on your preferred one! Ideally
we want one that is clear, readable, and concise since these will
potentially see _a lot_ of use.

Below is a small, non-exhaustive list of them. Note that the
`skip_serializing` reflection attribute is added to demonstrate how each
case plays with existing reflection attributes.

<details>
<summary>List</summary>

##### 1. `@(name = value)`

> The `@` was chosen to make them stand out from other attributes and
because the "at" symbol is a subtle pneumonic for "attribute". Of
course, other symbols could be used (e.g. `$`, `#`, etc.).

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(@(min = 0.0, max = 1.0), skip_serializing)]
    #[[reflect(@(bevy_editor::hint = "Range: 0.0 to 1.0"))]
    value: f32,
}
```

##### 2. `@name = value`

> This is my personal favorite.

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(@min = 0.0, @max = 1.0, skip_serializing)]
    #[[reflect(@bevy_editor::hint = "Range: 0.0 to 1.0")]
    value: f32,
}
```

##### 3. `custom_attr(name = value)`

> `custom_attr` can be anything. Other possibilities include `with` or
`tag`.

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(custom_attr(min = 0.0, max = 1.0), skip_serializing)]
    #[[reflect(custom_attr(bevy_editor::hint = "Range: 0.0 to 1.0"))]
    value: f32,
}
```

##### 4. `reflect_attr(name = value)`

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(skip_serializing)]
    #[reflect_attr(min = 0.0, max = 1.0)]
    #[[reflect_attr(bevy_editor::hint = "Range: 0.0 to 1.0")]
    value: f32,
}
```

</details>

---

## Changelog

- Added support for custom attributes on reflected types (i.e.
`#[reflect(@Foo::new("bar")]`)
2024-05-20 19:30:21 +00:00
Alice Cecile
ee6dfd35c9
Revert "Add on_unimplemented Diagnostics to Most Public Traits" (#13413)
# Objective

- Rust 1.78 breaks all Android support, see
https://github.com/bevyengine/bevy/issues/13331
- We should not bump the MSRV to 1.78 until that's resolved in #13366.

## Solution

- Temporarily revert https://github.com/bevyengine/bevy/pull/13347

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-05-17 17:00:43 +00:00
Zachary Harrold
11f0a2dcde
Add on_unimplemented Diagnostics to Most Public Traits (#13347)
# Objective

- Fixes #12377

## Solution

Added simple `#[diagnostic::on_unimplemented(...)]` attributes to some
critical public traits providing a more approachable initial error
message. Where appropriate, a `note` is added indicating that a `derive`
macro is available.

## Examples

<details>
<summary>Examples hidden for brevity</summary>

Below is a collection of examples showing the new error messages
produced by this change. In general, messages will start with a more
Bevy-centric error message (e.g., _`MyComponent` is not a `Component`_),
and a note directing the user to an available derive macro where
appropriate.

### Missing `#[derive(Resource)]`

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

struct MyResource;

fn main() {
    App::new()
        .insert_resource(MyResource)
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `MyResource` is not a `Resource`
   --> examples/app/empty.rs:7:26
    |
7   |         .insert_resource(MyResource)
    |          --------------- ^^^^^^^^^^ invalid `Resource`
    |          |
    |          required by a bound introduced by this call
    |
    = help: the trait `Resource` is not implemented for `MyResource`       
    = note: consider annotating `MyResource` with `#[derive(Resource)]`    
    = help: the following other types implement trait `Resource`:
              AccessibilityRequested
              ManageAccessibilityUpdates
              bevy::bevy_a11y::Focus
              DiagnosticsStore
              FrameCount
              bevy::prelude::State<S>
              SystemInfo
              bevy::prelude::Axis<T>
            and 141 others
note: required by a bound in `bevy::prelude::App::insert_resource`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:419:31
    |
419 |     pub fn insert_resource<R: Resource>(&mut self, resource: R) -> &mut Self {
    |                               ^^^^^^^^ required by this bound in `App::insert_resource`
```

</details>

### Putting A `QueryData` in a `QueryFilter` Slot

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

#[derive(Component)]
struct A;

#[derive(Component)]
struct B;

fn my_system(_query: Query<&A, &B>) {}

fn main() {
    App::new()
        .add_systems(Update, my_system)
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `&B` is not a valid `Query` filter
   --> examples/app/empty.rs:9:22
    |
9   | fn my_system(_query: Query<&A, &B>) {}
    |                      ^^^^^^^^^^^^^ invalid `Query` filter
    |
    = help: the trait `QueryFilter` is not implemented for `&B`
    = help: the following other types implement trait `QueryFilter`:
              With<T>
              Without<T>
              bevy::prelude::Or<()>
              bevy::prelude::Or<(F0,)>
              bevy::prelude::Or<(F0, F1)>
              bevy::prelude::Or<(F0, F1, F2)>
              bevy::prelude::Or<(F0, F1, F2, F3)>
              bevy::prelude::Or<(F0, F1, F2, F3, F4)>
            and 28 others
note: required by a bound in `bevy::prelude::Query`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\query.rs:349:51
    |
349 | pub struct Query<'world, 'state, D: QueryData, F: QueryFilter = ()> {
    |                                                   ^^^^^^^^^^^ required by this bound in `Query`
```

</details>

### Missing `#[derive(Component)]`

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

struct A;

fn my_system(mut commands: Commands) {
    commands.spawn(A);
}

fn main() {
    App::new()
        .add_systems(Startup, my_system)
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `A` is not a `Bundle`
   --> examples/app/empty.rs:6:20
    |
6   |     commands.spawn(A);
    |              ----- ^ invalid `Bundle`
    |              |
    |              required by a bound introduced by this call
    |
    = help: the trait `bevy::prelude::Component` is not implemented for `A`, which is required by `A: Bundle`
    = note: consider annotating `A` with `#[derive(Component)]` or `#[derive(Bundle)]`
    = help: the following other types implement trait `Bundle`:
              TransformBundle
              SceneBundle
              DynamicSceneBundle
              AudioSourceBundle<Source>
              SpriteBundle
              SpriteSheetBundle
              Text2dBundle
              MaterialMesh2dBundle<M>
            and 34 others
    = note: required for `A` to implement `Bundle`
note: required by a bound in `bevy::prelude::Commands::<'w, 's>::spawn`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\commands\mod.rs:243:21
    |
243 |     pub fn spawn<T: Bundle>(&mut self, bundle: T) -> EntityCommands {
    |                     ^^^^^^ required by this bound in `Commands::<'w, 's>::spawn`
```

</details>

### Missing `#[derive(Asset)]`

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

struct A;

fn main() {
    App::new()
        .init_asset::<A>()
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `A` is not an `Asset`
   --> examples/app/empty.rs:7:23
    |
7   |         .init_asset::<A>()
    |          ----------   ^ invalid `Asset`
    |          |
    |          required by a bound introduced by this call
    |
    = help: the trait `Asset` is not implemented for `A`
    = note: consider annotating `A` with `#[derive(Asset)]`
    = help: the following other types implement trait `Asset`:
              Font
              AnimationGraph
              DynamicScene
              Scene
              AudioSource
              Pitch
              bevy::bevy_gltf::Gltf
              GltfNode
            and 17 others
note: required by a bound in `init_asset`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_asset\src\lib.rs:307:22
    |
307 |     fn init_asset<A: Asset>(&mut self) -> &mut Self;
    |                      ^^^^^ required by this bound in `AssetApp::init_asset`
```

</details>

### Mismatched Input and Output on System Piping

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

fn producer() -> u32 {
    123
}

fn consumer(_: In<u16>) {}

fn main() {
    App::new()
        .add_systems(Update, producer.pipe(consumer))
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `fn(bevy::prelude::In<u16>) {consumer}` is not a valid system with input `u32` and output `_`
   --> examples/app/empty.rs:11:44
    |
11  |         .add_systems(Update, producer.pipe(consumer))
    |                                       ---- ^^^^^^^^ invalid system
    |                                       |
    |                                       required by a bound introduced by this call
    |
    = help: the trait `bevy::prelude::IntoSystem<u32, _, _>` is not implemented for fn item `fn(bevy::prelude::In<u16>) {consumer}`
    = note: expecting a system which consumes `u32` and produces `_`
note: required by a bound in `pipe`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\mod.rs:168:12
    |
166 |     fn pipe<B, Final, MarkerB>(self, system: B) -> PipeSystem<Self::System, B::System>
    |        ---- required by a bound in this associated function
167 |     where
168 |         B: IntoSystem<Out, Final, MarkerB>,
    |            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `IntoSystem::pipe`
```

</details>

### Missing Reflection

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

#[derive(Component)]
struct MyComponent;

fn main() {
    App::new()
        .register_type::<MyComponent>()
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `MyComponent` does not provide type registration information
   --> examples/app/empty.rs:8:26
    |
8   |         .register_type::<MyComponent>()
    |          -------------   ^^^^^^^^^^^ the trait `GetTypeRegistration` is not implemented for `MyComponent`
    |          |
    |          required by a bound introduced by this call
    |
    = note: consider annotating `MyComponent` with `#[derive(Reflect)]`
    = help: the following other types implement trait `GetTypeRegistration`:
              bool
              char
              isize
              i8
              i16
              i32
              i64
              i128
            and 443 others
note: required by a bound in `bevy::prelude::App::register_type`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:619:29
    |
619 |     pub fn register_type<T: bevy_reflect::GetTypeRegistration>(&mut self) -> &mut Self {
    |                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::register_type`
```

</details>

### Missing `#[derive(States)]` Implementation

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

#[derive(Debug, Clone, Copy, Default, Eq, PartialEq, Hash)]
enum AppState {
    #[default]
    Menu,
    InGame {
        paused: bool,
        turbo: bool,
    },
}

fn main() {
    App::new()
        .init_state::<AppState>()
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: the trait bound `AppState: FreelyMutableState` is not satisfied
   --> examples/app/empty.rs:15:23
    |
15  |         .init_state::<AppState>()
    |          ----------   ^^^^^^^^ the trait `FreelyMutableState` is not implemented for `AppState`
    |          |
    |          required by a bound introduced by this call
    |
    = note: consider annotating `AppState` with `#[derive(States)]`
note: required by a bound in `bevy::prelude::App::init_state`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:282:26
    |
282 |     pub fn init_state<S: FreelyMutableState + FromWorld>(&mut self) -> &mut Self {
    |                          ^^^^^^^^^^^^^^^^^^ required by this bound in `App::init_state`
```

</details>

### Adding a `System` with Unhandled Output

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

fn producer() -> u32 {
    123
}

fn main() {
    App::new()
        .add_systems(Update, consumer)
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `fn() -> u32 {producer}` does not describe a valid system configuration
   --> examples/app/empty.rs:9:30
    |
9   |         .add_systems(Update, producer)
    |          -----------         ^^^^^^^^ invalid system configuration
    |          |
    |          required by a bound introduced by this call
    |
    = help: the trait `IntoSystem<(), (), _>` is not implemented for fn item `fn() -> u32 {producer}`, which is required by `fn() -> u32 {producer}: IntoSystemConfigs<_>`
    = help: the following other types implement trait `IntoSystemConfigs<Marker>`:
              <Box<(dyn bevy::prelude::System<In = (), Out = ()> + 'static)> as IntoSystemConfigs<()>>
              <NodeConfigs<Box<(dyn bevy::prelude::System<In = (), Out = ()> + 'static)>> as IntoSystemConfigs<()>>
              <(S0,) as IntoSystemConfigs<(SystemConfigTupleMarker, P0)>>
              <(S0, S1) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1)>>
              <(S0, S1, S2) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2)>>
              <(S0, S1, S2, S3) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3)>>
              <(S0, S1, S2, S3, S4) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3, P4)>>
              <(S0, S1, S2, S3, S4, S5) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3, P4, P5)>>
            and 14 others
    = note: required for `fn() -> u32 {producer}` to implement `IntoSystemConfigs<_>`
note: required by a bound in `bevy::prelude::App::add_systems`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:342:23
    |
339 |     pub fn add_systems<M>(
    |            ----------- required by a bound in this associated function
...
342 |         systems: impl IntoSystemConfigs<M>,
    |                       ^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::add_systems`
```

</details>
</details>

## Testing

CI passed locally.

## Migration Guide

Upgrade to version 1.78 (or higher) of Rust.

## Future Work

- Currently, hints are not supported in this diagnostic. Ideally,
suggestions like _"consider using ..."_ would be in a hint rather than a
note, but that is the best option for now.
- System chaining and other `all_tuples!(...)`-based traits have bad
error messages due to the slightly different error message format.

---------

Co-authored-by: Jamie Ridding <Themayu@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
2024-05-17 00:49:05 +00:00
Ben Harper
be03ba1b68
Add reflect impls for bevy_math curve structs (#13348)
# Objective

Fixes #13189

## Solution

To add the reflect impls I needed to make all the struct fields pub. I
don't think there's any harm for these types, but just a note for
review.

---------

Co-authored-by: Ben Harper <ben@tukom.org>
2024-05-16 17:59:56 +00:00
rmsthebest
278380394f
Avoid bevy_reflect::List::iter wrapping in release mode (#13271)
# Objective
Fixes  #13230

## Solution
Uses solution described in  #13230
They mention a worry about adding a branch, but I'm not sure there is
one.

This code
```Rust
#[no_mangle]
pub fn next_if_some(num: i32, b: Option<bool>) -> i32 {
    num + b.is_some() as i32
}
```
produces this assembly with opt-level 3
```asm
next_if_some:
        xor     eax, eax
        cmp     sil, 2
        setne   al
        add     eax, edi
        ret
```

## Testing
Added test from #13230, tagged it as ignore as it is only useful in
release mode and very slow if you accidentally invoke it in debug mode.

---

## Changelog
Iterationg of ListIter will no longer overflow and wrap around

## Migration Guide
2024-05-12 15:01:05 +00:00
Brezak
9c4ac7c297
Finish the work on try_apply (#12646)
# Objective

Finish the `try_apply` implementation started in #6770 by @feyokorenhof.
Supersedes and closes #6770. Closes #6182

## Solution

Add `try_apply` to `Reflect` and implement it in all the places that
implement `Reflect`.

---

## Changelog

Added `try_apply` to `Reflect`.

---------

Co-authored-by: Feyo Korenhof <feyokorenhof@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-05-08 14:26:01 +00:00
Marcel Müller
6d25545c51
Implement Reflect for Result<T, E> as enum (#13182)
# Objective

- Make `Result<T, E>` implement Reflect such that it is an Enum rather
than a Value
- Fixes #13178

## Solution

- Use the correct macro

## Testing

- Did you test these changes? 

I tried it out locally, and it does what it says on the tin. Not sure
how to test it in context of the crate?


---

## Changelog

### Changed

- Result now uses `ReflectKind::Enum` rather than `ReflectKind::Value`,
allowing for inspection of its constituents

## Migration Guide

`Result<T, E>` has had its `Reflect` implementation changed to align it
with `Option<T>` and its intended semantics: A carrier of either an `Ok`
or `Err` value, and the ability to access it. To achieve this it is no
longer a `ReflectKind::Value` but rather a `ReflectKind::Enum` and as
such carries these changes with it:

For `Result<T, E>`
- Both `T` and `E` no longer require to be `Clone` and now require to be
`FromReflect`
- `<Result<T, E> as Reflect>::reflect_*` now returns a
`ReflectKind::Enum`, so any code that previously relied on it being a
`Value` kind will have to be adapted.
- `Result<T, E>` now implements `Enum`

Since the migration is highly dependent on the previous usage, no
automatic upgrade path can be given.

Signed-off-by: Marcel Müller <neikos@neikos.email>
2024-05-02 18:28:24 +00:00
Mateusz Wachowiak
64b987921c
iter_with_data (#13102)
# Objective

- Provide a way to iterate over the registered TypeData.

## Solution

- a new method on the `TypeRegistry` that iterates over
`TypeRegistrations` with theirs `TypeData`

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-04-26 02:09:34 +00:00
targrub
8316166622
Fix uses of "it's" vs "its". (#13033)
Grammar changes only.
2024-04-19 18:17:31 +00:00
andristarr
2b3e3341d6
separating finite and infinite 3d planes (#12426)
# Objective

Fixes #12388

## Solution

- Removing the plane3d and adding rect3d primitive mesh
2024-04-18 14:13:22 +00:00
Robert Walter
2532447dcb
impl Reflect for EntityHashSet (#12971)
`EntityHashSet` doesn't seem to implement `Reflect` which seems weird!
Especially since `EntityHashMap` implements `Reflect`.

This PR just added an extra `impl_reflect_value!` for `EntityHashSet`
and this seems to do the trick.

I left out doing the same for `StableHashSet` since it's marked as
deprecated.

---

I'm really wondering what was the issue here. If anyone can explain why
`EntityHashSet` can't use the `Reflect` impl of `bevy_utils::HashSet`
similar to how it's the case with the `...HashMap`s I'd be interested!
2024-04-16 02:48:03 +00:00
BD103
7b8d502083
Fix beta lints (#12980)
# Objective

- Fixes #12976

## Solution

This one is a doozy.

- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
  - Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
  - Use `Clone::clone_from` when possible
  - Remove redundant `ron` import
  - Add backticks to **so many** identifiers and items
    - I'm sorry whoever has to review this

---

## Changelog

- Added links to more identifiers in documentation.
2024-04-16 02:46:46 +00:00
BD103
aa2ebbb43f
Fix some nightly Clippy lints (#12927)
# Objective

- I daily drive nightly Rust when developing Bevy, so I notice when new
warnings are raised by `cargo check` and Clippy.
- `cargo +nightly clippy` raises a few of these new warnings.

## Solution

- Fix most warnings from `cargo +nightly clippy`
- I skipped the docs-related warnings because some were covered by
#12692.
- Use `Clone::clone_from` in applicable scenarios, which can sometimes
avoid an extra allocation.
- Implement `Default` for structs that have a `pub const fn new() ->
Self` method.
- Fix an occurrence where generic constraints were defined in both `<C:
Trait>` and `where C: Trait`.
  - Removed generic constraints that were implied by the `Bundle` trait.

---

## Changelog

- `BatchingStrategy`, `NonGenericTypeCell`, and `GenericTypeCell` now
implement `Default`.
2024-04-13 02:05:38 +00:00
Matty
c8aa3ac7d1
Meshing for Annulus primitive (#12734)
# Objective

Related to #10572 
Allow the `Annulus` primitive to be meshed.

## Solution

We introduce a `Meshable` structure, `AnnulusMeshBuilder`, which allows
the `Annulus` primitive to be meshed, leaving optional configuration of
the number of angular sudivisions to the user. Here is a picture of the
annulus's UV-mapping:
<img width="1440" alt="Screenshot 2024-03-26 at 10 39 48 AM"
src="https://github.com/bevyengine/bevy/assets/2975848/b170291d-cba7-441b-90ee-2ad6841eaedb">

Other features are essentially identical to the implementations for
`Circle`/`Ellipse`.

---

## Changelog

- Introduced `AnnulusMeshBuilder`
- Implemented `Meshable` for `Annulus` with `Output =
AnnulusMeshBuilder`
- Implemented `From<Annulus>` and `From<AnnulusMeshBuilder>` for `Mesh`
- Added `impl_reflect!` declaration for `Annulus` and `Triangle3d` in
`bevy_reflect`

---

## Discussion

### Design considerations

The only interesting wrinkle here is that the existing UV-mapping of
`Ellipse` (and hence of `Circle` and `RegularPolygon`) is non-radial
(it's skew-free, created by situating the mesh in a bounding rectangle),
so the UV-mapping of `Annulus` doesn't limit to that of `Circle` as its
inner radius tends to zero, for instance. I don't see this as a real
issue for `Annulus`, which should almost certainly have this kind of
UV-mapping, but I think we ought to at least consider allowing mesh
configuration for `Circle`/`Ellipse` that performs radial UV-mapping
instead. (In these cases in particular, it would be especially easy,
since we wouldn't need a different parameter set in the builder.)

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-04-01 21:55:49 +00:00
Jakub Marcowski
20ee56e719
Add Tetrahedron primitive to bevy_math::primitives (#12688)
# Objective

- #10572

There is no 3D primitive available for the common shape of a tetrahedron
(3-simplex).

## Solution

This PR introduces a new type to the existing math primitives:

- `Tetrahedron`: a polyhedron composed of four triangular faces, six
straight edges, and four vertices

---

## Changelog

### Added

- `Tetrahedron` primitive to the `bevy_math` crate
- `Tetrahedron` tests (`area`, `volume` methods)
- `impl_reflect!` declaration for `Tetrahedron` in the `bevy_reflect`
crate
2024-04-01 21:53:12 +00:00
BD103
84363f2fab
Remove redundant imports (#12817)
# Objective

- There are several redundant imports in the tests and examples that are
not caught by CI because additional flags need to be passed.

## Solution

- Run `cargo check --workspace --tests` and `cargo check --workspace
--examples`, then fix all warnings.
- Add `test-check` to CI, which will be run in the check-compiles job.
This should catch future warnings for tests. Examples are already
checked, but I'm not yet sure why they weren't caught.

## Discussion

- Should the `--tests` and `--examples` flags be added to CI, so this is
caught in the future?
- If so, #12818 will need to be merged first. It was also a warning
raised by checking the examples, but I chose to split off into a
separate PR.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-01 19:59:08 +00:00
James Liu
56bcbb0975
Forbid unsafe in most crates in the engine (#12684)
# Objective
Resolves #3824. `unsafe` code should be the exception, not the norm in
Rust. It's obviously needed for various use cases as it's interfacing
with platforms and essentially running the borrow checker at runtime in
the ECS, but the touted benefits of Bevy is that we are able to heavily
leverage Rust's safety, and we should be holding ourselves accountable
to that by minimizing our unsafe footprint.

## Solution
Deny `unsafe_code` workspace wide. Add explicit exceptions for the
following crates, and forbid it in almost all of the others.

* bevy_ecs - Obvious given how much unsafe is needed to achieve
performant results
* bevy_ptr - Works with raw pointers, even more low level than bevy_ecs.
 * bevy_render - due to needing to integrate with wgpu
 * bevy_window - due to needing to integrate with raw_window_handle
* bevy_utils - Several unsafe utilities used by bevy_ecs. Ideally moved
into bevy_ecs instead of made publicly usable.
 * bevy_reflect - Required for the unsafe type casting it's doing.
 * bevy_transform - for the parallel transform propagation
 * bevy_gizmos  - For the SystemParam impls it has.
* bevy_assets - To support reflection. Might not be required, not 100%
sure yet.
* bevy_mikktspace - due to being a conversion from a C library. Pending
safe rewrite.
* bevy_dynamic_plugin - Inherently unsafe due to the dynamic loading
nature.

Several uses of unsafe were rewritten, as they did not need to be using
them:

* bevy_text - a case of `Option::unchecked` could be rewritten as a
normal for loop and match instead of an iterator.
* bevy_color - the Pod/Zeroable implementations were replaceable with
bytemuck's derive macros.
2024-03-27 03:30:08 +00:00
Gino Valente
0265436fff
bevy_reflect: Rename UntypedReflectDeserializer to ReflectDeserializer (#12721)
# Objective

We have `ReflectSerializer` and `TypedReflectSerializer`. The former is
the one users will most often use since the latter takes a bit more
effort to deserialize.

However, our deserializers are named `UntypedReflectDeserializer` and
`TypedReflectDeserializer`. There is no obvious indication that
`UntypedReflectDeserializer` must be used with `ReflectSerializer` since
the names don't quite match up.

## Solution

Rename `UntypedReflectDeserializer` back to `ReflectDeserializer`
(initially changed as part of #5723).

Also update the docs for both deserializers (as they were pretty out of
date) and include doc examples.

I also updated the docs for the serializers, too, just so that
everything is consistent.

---

## Changelog

- Renamed `UntypedReflectDeserializer` to `ReflectDeserializer`
- Updated docs for `ReflectDeserializer`, `TypedReflectDeserializer`,
`ReflectSerializer`, and `TypedReflectSerializer`

## Migration Guide

`UntypedReflectDeserializer` has been renamed to `ReflectDeserializer`.
Usages will need to be updated accordingly.

```diff
- let reflect_deserializer = UntypedReflectDeserializer::new(&registry);
+ let reflect_deserializer = ReflectDeserializer::new(&registry);
```
2024-03-26 19:58:29 +00:00
James Liu
f096ad4155
Set the logo and favicon for all of Bevy's published crates (#12696)
# Objective
Currently the built docs only shows the logo and favicon for the top
level `bevy` crate. This makes views like
https://docs.rs/bevy_ecs/latest/bevy_ecs/ look potentially unrelated to
the project at first glance.

## Solution
Reproduce the docs attributes for every crate that Bevy publishes.

Ideally this would be done with some workspace level Cargo.toml control,
but AFAICT, such support does not exist.
2024-03-25 18:52:50 +00:00
Ame
72c51cdab9
Make feature(doc_auto_cfg) work (#12642)
# Objective

- In #12366 `![cfg_attr(docsrs, feature(doc_auto_cfg))] `was added. But
to apply it it needs `--cfg=docsrs` in rustdoc-args.


## Solution

- Apply `--cfg=docsrs` to all crates and CI.

I also added `[package.metadata.docs.rs]` to all crates to avoid adding
code behind a feature and forget adding the metadata.

Before:

![Screenshot 2024-03-22 at 00 51
57](https://github.com/bevyengine/bevy/assets/104745335/6a9dfdaa-8710-4784-852b-5f9b74e3522c)

After:
![Screenshot 2024-03-22 at 00 51
32](https://github.com/bevyengine/bevy/assets/104745335/c5bd6d8e-8ddb-45b3-b844-5ecf9f88961c)
2024-03-23 02:22:52 +00:00
Jacques Schutte
fdf2ea7cc5
reflect: remove manual Reflect impls which could be handled by macros (#12596)
# Objective

* Adopted #12025 to fix merge conflicts
* In some cases we used manual impls for certain types, though they are
(at least, now) unnecessary.

## Solution

* Use macros and reflecting-by-value to avoid this clutter.
* Though there were linker issues with Reflect and the CowArc in
AssetPath (see https://github.com/bevyengine/bevy/issues/9747), I
checked these are resolved by using #[reflect_value].

---------

Co-authored-by: soqb <cb.setho@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-23 01:45:00 +00:00
Charles Bournhonesque
ea6540dc41
add reflect for BinaryHeap (#12503)
# Objective
I wanted to have reflection for BinaryHeap for a personal project.

I'm running into some issues:
- I wanted to represent BinaryHeap as a reflect::List type since it's
essentially a wrapper around a Vec, however there's no public way to
access the underlying Vec, which makes it hard to implement the
reflect::List methods. I have omitted the reflect::List methods for
now.. I'm not sure if that's a blocker?
- what would be the alternatives? Simply not implement `reflect::List`?
It is possible to implement `FromReflect` without it. Would the type be
`Struct` then?

---------

Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
2024-03-17 22:24:04 +00:00
Charles Bournhonesque
24b319f6ec
Add reflect for type id (#12495)
# Objective

Add reflect for `std::any::TypeId`.

I couldn't add ReflectSerialize/ReflectDeserialize for it, it was giving
me an error. I don't really understand why, since it works for
`std::path::PathBuf`.

Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
2024-03-15 17:43:26 +00:00
Peter Hayman
d3e44325b4
Fix: deserialize DynamicEnum using index (#12464)
# Objective

- Addresses #12462
- When we serialize an enum, deserialize it, then reserialize it, the
correct variant should be selected.

## Solution

- Change `dynamic_enum.set_variant` to
`dynamic_enum.set_variant_with_index` in `EnumVisitor`
2024-03-14 05:15:20 +00:00
Gino Valente
4c47e31be6
bevy_reflect: Remove U32Visitor (#12433)
# Objective

The `U32Visitor` struct has been unused since its introduction in #6140.
It's made itself known now by causing a recent [CI
failure](https://github.com/bevyengine/bevy/actions/runs/8243333274/job/22543736624).

## Solution

Remove the unused `U32Visitor` struct.

Also removed `PrepassLightsViewFlush` as it was causing a [similar CI
failure](https://github.com/bevyengine/bevy/actions/runs/8243838066/job/22545103746?pr=12433#step:6:269)
on this PR.
2024-03-12 06:19:29 +00:00
Joona Aalto
f89af0567b
Add Rotation2d (#11658)
# Objective

Rotating vectors is a very common task. It is required for a variety of
things both within Bevy itself and in many third party plugins, for
example all over physics and collision detection, and for things like
Bevy's bounding volumes and several gizmo implementations.

For 3D, we can do this using a `Quat`, but for 2D, we do not have a
clear and efficient option. `Mat2` can be used for rotating vectors if
created using `Mat2::from_angle`, but this is not obvious to many users,
it doesn't have many rotation helpers, and the type does not give any
guarantees that it represents a valid rotation.

We should have a proper type for 2D rotations. In addition to allowing
for potential optimization, it would allow us to have a consistent and
explicitly documented representation used throughout the engine, i.e.
counterclockwise and in radians.

## Representation

The mathematical formula for rotating a 2D vector is the following:

```
new_x = x * cos - y * sin
new_y = x * sin + y * cos
```

Here, `sin` and `cos` are the sine and cosine of the rotation angle.
Computing these every time when a vector needs to be rotated can be
expensive, so the rotation shouldn't be just an `f32` angle. Instead, it
is often more efficient to represent the rotation using the sine and
cosine of the angle instead of storing the angle itself. This can be
freely passed around and reused without unnecessary computations.

The two options are either a 2x2 rotation matrix or a unit complex
number where the cosine is the real part and the sine is the imaginary
part. These are equivalent for the most part, but the unit complex
representation is a bit more memory efficient (two `f32`s instead of
four), so I chose that. This is like Nalgebra's
[`UnitComplex`](https://docs.rs/nalgebra/latest/nalgebra/geometry/type.UnitComplex.html)
type, which can be used for the
[`Rotation2`](https://docs.rs/nalgebra/latest/nalgebra/geometry/type.Rotation2.html)
type.

## Implementation

Add a `Rotation2d` type represented as a unit complex number:

```rust
/// A counterclockwise 2D rotation in radians.
///
/// The rotation angle is wrapped to be within the `]-pi, pi]` range.
pub struct Rotation2d {
    /// The cosine of the rotation angle in radians.
    ///
    /// This is the real part of the unit complex number representing the rotation.
    pub cos: f32,
    /// The sine of the rotation angle in radians.
    ///
    /// This is the imaginary part of the unit complex number representing the rotation.
    pub sin: f32,
}
```

Using it is similar to using `Quat`, but in 2D:

```rust
let rotation = Rotation2d::radians(PI / 2.0);

// Rotate vector (also works on Direction2d!)
assert_eq!(rotation * Vec2::X, Vec2::Y);

// Get angle as degrees
assert_eq!(rotation.as_degrees(), 90.0);

// Getting sin and cos is free
let (sin, cos) = rotation.sin_cos();

// "Subtract" rotations
let rotation2 = Rotation2d::FRAC_PI_4; // there are constants!
let diff = rotation * rotation2.inverse();
assert_eq!(diff.as_radians(), PI / 4.0);

// This is equivalent to the above
assert_eq!(rotation2.angle_between(rotation), PI / 4.0);

// Lerp
let rotation1 = Rotation2d::IDENTITY;
let rotation2 = Rotation2d::FRAC_PI_2;
let result = rotation1.lerp(rotation2, 0.5);
assert_eq!(result.as_radians(), std::f32::consts::FRAC_PI_4);

// Slerp
let rotation1 = Rotation2d::FRAC_PI_4);
let rotation2 = Rotation2d::degrees(-180.0); // we can use degrees too!
let result = rotation1.slerp(rotation2, 1.0 / 3.0);
assert_eq!(result.as_radians(), std::f32::consts::FRAC_PI_2);
```

There's also a `From<f32>` implementation for `Rotation2d`, which means
that methods can still accept radians as floats if the argument uses
`impl Into<Rotation2d>`. This means that adding `Rotation2d` shouldn't
even be a breaking change.

---

## Changelog

- Added `Rotation2d`
- Bounding volume methods now take an `impl Into<Rotation2d>`
- Gizmo methods with rotation now take an `impl Into<Rotation2d>`

## Future use cases

- Collision detection (a type like this is quite essential considering
how common vector rotations are)
- `Transform` helpers (e.g. return a 2D rotation about the Z axis from a
`Transform`)
- The rotation used for `Transform2d` (#8268)
- More gizmos, maybe meshes... everything in 2D that uses rotation

---------

Co-authored-by: Tristan Guichaoua <33934311+tguichaoua@users.noreply.github.com>
Co-authored-by: Robert Walter <robwalter96@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
2024-03-11 19:11:57 +00:00
Al M
52e3f2007b
Add "all-features = true" to docs.rs metadata for most crates (#12366)
# Objective

Fix missing `TextBundle` (and many others) which are present in the main
crate as default features but optional in the sub-crate. See:

- https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html
- https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html

~~There are probably other instances in other crates that I could track
down, but maybe "all-features = true" should be used by default in all
sub-crates? Not sure.~~ (There were many.) I only noticed this because
rust-analyzer's "open docs" features takes me to the sub-crate, not the
main one.

## Solution

Add "all-features = true" to docs.rs metadata for crates that use
features.

## Changelog

### Changed

- Unified features documented on docs.rs between main crate and
sub-crates
2024-03-08 20:03:09 +00:00
Patrick Walton
dfdf2b9ea4
Implement the AnimationGraph, allowing for multiple animations to be blended together. (#11989)
This is an implementation of RFC #51:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md

Note that the implementation strategy is different from the one outlined
in that RFC, because two-phase animation has now landed.

# Objective

Bevy needs animation blending. The RFC for this is [RFC 51].

## Solution

This is an implementation of the RFC. Note that the implementation
strategy is different from the one outlined there, because two-phase
animation has now landed.

This is just a draft to get the conversation started. Currently we're
missing a few things:

- [x] A fully-fleshed-out mechanism for transitions
- [x] A serialization format for `AnimationGraph`s
- [x] Examples are broken, other than `animated_fox`
- [x] Documentation

---

## Changelog

### Added

* The `AnimationPlayer` has been reworked to support blending multiple
animations together through an `AnimationGraph`, and as such will no
longer function unless a `Handle<AnimationGraph>` has been added to the
entity containing the player. See [RFC 51] for more details.

* Transition functionality has moved from the `AnimationPlayer` to a new
component, `AnimationTransitions`, which works in tandem with the
`AnimationGraph`.

## Migration Guide

* `AnimationPlayer`s can no longer play animations by themselves and
need to be paired with a `Handle<AnimationGraph>`. Code that was using
`AnimationPlayer` to play animations will need to create an
`AnimationGraph` asset first, add a node for the clip (or clips) you
want to play, and then supply the index of that node to the
`AnimationPlayer`'s `play` method.

* The `AnimationPlayer::play_with_transition()` method has been removed
and replaced with the `AnimationTransitions` component. If you were
previously using `AnimationPlayer::play_with_transition()`, add all
animations that you were playing to the `AnimationGraph`, and create an
`AnimationTransitions` component to manage the blending between them.

[RFC 51]:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md

---------

Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
James Liu
512b7463a3
Disentangle bevy_utils/bevy_core's reexported dependencies (#12313)
# Objective
Make bevy_utils less of a compilation bottleneck. Tackle #11478.

## Solution
* Move all of the directly reexported dependencies and move them to
where they're actually used.
* Remove the UUID utilities that have gone unused since `TypePath` took
over for `TypeUuid`.
* There was also a extraneous bytemuck dependency on `bevy_core` that
has not been used for a long time (since `encase` became the primary way
to prepare GPU buffers).
* Remove the `all_tuples` macro reexport from bevy_ecs since it's
accessible from `bevy_utils`.

---

## Changelog
Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax,
smallvec, and thiserror).
Removed: bevy_core's reexports of bytemuck.

## Migration Guide
bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror
have been removed.

bevy_core' reexports of bytemuck's types has been removed. 

Add them as dependencies in your own crate instead.
2024-03-07 02:30:15 +00:00
Gino Valente
5b69613e42
bevy_utils: Add BuildHasher parameter to bevy_utils::Entry type alias (#12308)
# Objective

`bevy_utils::Entry` is only useful when using
`BuildHasherDefault<AHasher>`. It would be great if we didn't have to
write out `bevy_utils::hashbrown::hash_map::Entry` whenever we want to
use a different `BuildHasher`, such as when working with
`bevy_utils::TypeIdMap`.

## Solution

Give `bevy_utils::Entry` a new optional type parameter for defining a
custom `BuildHasher`, such as `NoOpHash`. This parameter defaults to
`BuildHasherDefault<AHasher>`— the `BuildHasher` used by
`bevy_utils::HashMap`.

---

## Changelog

- Added an optional third type parameter to `bevy_utils::Entry` to
specify a custom `BuildHasher`
2024-03-05 02:45:05 +00:00
Gino Valente
ccb9d0500f
bevy_reflect: Recursive registration (#5781)
# Objective

Resolves #4154

Currently, registration must all be done manually:

```rust
#[derive(Reflect)]
struct Foo(Bar);

#[derive(Reflect)]
struct Bar(Baz);

#[derive(Reflect)]
struct Baz(usize);

fn main() {
  // ...
  app
    .register_type::<Foo>()
    .register_type::<Bar>()
    .register_type::<Baz>()
    // .register_type::<usize>() <- This one is handled by Bevy, thankfully
  // ...
}
```

This can grow really quickly and become very annoying to add, remove,
and update as types change. It would be great if we could help reduce
the number of types that a user must manually implement themselves.

## Solution

As suggested in #4154, this PR adds automatic recursive registration.
Essentially, when a type is registered, it may now also choose to
register additional types along with it using the new
`GetTypeRegistration::register_type_dependencies` trait method.

The `Reflect` derive macro now automatically does this for all fields in
structs, tuple structs, struct variants, and tuple variants. This is
also done for tuples, arrays, `Vec<T>`, `HashMap<K, V>`, and
`Option<T>`.

This allows us to simplify the code above like:

```rust
#[derive(Reflect)]
struct Foo(Bar);

#[derive(Reflect)]
struct Bar(Baz);

#[derive(Reflect)]
struct Baz(usize);

fn main() {
  // ...
  app.register_type::<Foo>()
  // ...
}
```

This automatic registration only occurs if the type has not yet been
registered. If it has been registered, we simply skip it and move to the
next one. This reduces the cost of registration and prevents overwriting
customized registrations.

## Considerations

While this does improve ergonomics on one front, it's important to look
at some of the arguments against adopting a PR like this.

#### Generic Bounds

~~Since we need to be able to register the fields individually, we need
those fields to implement `GetTypeRegistration`. This forces users to
then add this trait as a bound on their generic arguments. This
annoyance could be relieved with something like #5772.~~

This is no longer a major issue as the `Reflect` derive now adds the
`GetTypeRegistration` bound by default. This should technically be okay,
since we already add the `Reflect` bound.

However, this can also be considered a breaking change for manual
implementations that left out a `GetTypeRegistration` impl ~~or for
items that contain dynamic types (e.g. `DynamicStruct`) since those also
do not implement `GetTypeRegistration`~~.

#### Registration Assumptions

By automatically registering fields, users might inadvertently be
relying on certain types to be automatically registered. If `Foo`
auto-registers `Bar`, but `Foo` is later removed from the code, then
anywhere that previously used or relied on `Bar`'s registration would
now fail.

---

## Changelog

- Added recursive type registration to structs, tuple structs, struct
variants, tuple variants, tuples, arrays, `Vec<T>`, `HashMap<K, V>`, and
`Option<T>`
- Added a new trait in the hidden `bevy_reflect::__macro_exports` module
called `RegisterForReflection`
- Added `GetTypeRegistration` impl for
`bevy_render::render_asset::RenderAssetUsages`

## Migration Guide

All types that derive `Reflect` will now automatically add
`GetTypeRegistration` as a bound on all (unignored) fields. This means
that all reflected fields will need to also implement
`GetTypeRegistration`.

If all fields **derive** `Reflect` or are implemented in `bevy_reflect`,
this should not cause any issues. However, manual implementations of
`Reflect` that excluded a `GetTypeRegistration` impl for their type will
need to add one.

```rust
#[derive(Reflect)]
struct Foo<T: FromReflect> {
  data: MyCustomType<T>
}

// OLD
impl<T: FromReflect> Reflect for MyCustomType<T> {/* ... */}

// NEW
impl<T: FromReflect + GetTypeRegistration> Reflect for MyCustomType<T> {/* ... */}
impl<T: FromReflect + GetTypeRegistration> GetTypeRegistration for MyCustomType<T> {/* ... */}
```

---------

Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: radiish <cb.setho@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-03-04 19:04:10 +00:00
Joona Aalto
f418de8eb6
Rename Direction2d/3d to Dir2/3 (#12189)
# Objective

Split up from #12017, rename Bevy's direction types.

Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA`
types, which provide a type-level guarantee that their contained vectors
remain normalized. They can be very useful for a lot of APIs for safety,
explicitness, and in some cases performance, as they can sometimes avoid
unnecessary normalizations.

However, many consider them to be inconvenient to use, and opt for
standard vector types like `Vec3` because of this. One reason is that
the direction type names are a bit long and can be annoying to write (of
course you can use autocomplete, but just typing `Vec3` is still nicer),
and in some intances, the extra characters can make formatting worse.
The naming is also inconsistent with Glam's shorter type names, and
results in names like `Direction3dA`, which (in my opinion) are
difficult to read and even a bit ugly.

This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`.
These names are nice and easy to write, consistent with Glam, and work
well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also
result in nicer formatting in a lot of cases, which can be seen from the
diff of this PR.

Some examples of what it looks like: (copied from #12017)

```rust
// Before
let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0);

// After
let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0);
```

```rust
// Before (an example using Bevy XPBD)
let hit = spatial_query.cast_ray(
    Vec3::ZERO,
    Direction3d::X,
    f32::MAX,
    true,
    SpatialQueryFilter::default(),
);

// After
let hit = spatial_query.cast_ray(
    Vec3::ZERO,
    Dir3::X,
    f32::MAX,
    true,
    SpatialQueryFilter::default(),
);
```

```rust
// Before
self.circle(
    Vec3::new(0.0, -2.0, 0.0),
    Direction3d::Y,
    5.0,
    Color::TURQUOISE,
);

// After (formatting is collapsed in this case)
self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE);
```

## Solution

Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`,
`Dir3`, and `Dir3A`.

---

## Migration Guide

The `Direction2d` and `Direction3d` types have been renamed to `Dir2`
and `Dir3`.

## Additional Context

This has been brought up on the Discord a few times, and we had a small
[poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158)
on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best
option, but of course it was a very small poll and inconclusive, so
other opinions are certainly welcome too.

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
2024-02-28 22:48:43 +00:00
Antony
fd0f1a37ad
Remove unnecessary impl_reflect_for_btree_map macro (#12146)
# Objective

To remove the `impl_reflect_for_btree_map` macro as per #12140.

## Solution

Replaced the `impl_reflect_for_btree_map` macro.
2024-02-27 01:04:11 +00:00
Mincong Lu
f45450e26b
Added reflect support for std::HashSet, BTreeSet and BTreeMap. (#12124)
# Objective

Added reflect support for `std::HashSet`, `BTreeSet` and `BTreeMap`.

The set support is limited to `reflect_value` since that's the level of
support prior art `bevy_util::HashSet` got.

## Changelog

Dropped `Hash` Requirement on `MapInfo` since it's not needed on
`BTreeMap`s.
2024-02-26 16:36:04 +00:00
radiish
2b7a3b2a55
reflect: treat proxy types correctly when serializing (#12024)
# Objective

- Fixes #12001.
- Note this PR doesn't change any feature flags, however flaky the issue
revealed they are.

## Solution

- Use `FromReflect` to convert proxy types to concrete ones in
`ReflectSerialize::get_serializable`.
- Use `get_represented_type_info() -> type_id()` to get the correct type
id to interact with the registry in
`bevy_reflect::serde::ser::get_serializable`.

---

## Changelog

- Registering `ReflectSerialize` now imposes additional `FromReflect`
and `TypePath` bounds.

## Migration Guide

- If `ReflectSerialize` is registered on a type, but `TypePath` or
`FromReflect` implementations are omitted (perhaps by
`#[reflect(type_path = false)` or `#[reflect(from_reflect = false)]`),
the traits must now be implemented.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-02-26 16:13:04 +00:00
Joona Aalto
9bd6cc0a5e
Add Direction3dA and move direction types out of primitives (#12018)
# Objective

Split up from #12017, add an aligned version of `Direction3d` for SIMD,
and move direction types out of `primitives`.

## Solution

Add `Direction3dA` and move direction types into a new `direction`
module.

---

## Migration Guide

The `Direction2d`, `Direction3d`, and `InvalidDirectionError` types have
been moved out of `bevy::math::primitives`.

Before:

```rust
use bevy::math::primitives::Direction3d;
```

After:

```rust
use bevy::math::Direction3d;
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-02-26 13:57:49 +00:00
eri
5f8f3b532c
Check cfg during CI and fix feature typos (#12103)
# Objective

- Add the new `-Zcheck-cfg` checks to catch more warnings
- Fixes #12091

## Solution

- Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg
--workspace` using cargo nightly (and fails if there are warnings)
- Fix all warnings generated by the new check

---

## Changelog

- Remove all redundant imports
- Fix cfg wasm32 targets
- Add 3 dead code exceptions (should StandardColor be unused?)
- Convert ios_simulator to a feature (I'm not sure if this is the right
way to do it, but the check complained before)

## Migration Guide

No breaking changes

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-02-25 15:19:27 +00:00
Ame
9d67edc3a6
fix some typos (#12038)
# Objective

Split - containing only the fixed typos

-
https://github.com/bevyengine/bevy/pull/12036#pullrequestreview-1894738751


# Migration Guide
In `crates/bevy_mikktspace/src/generated.rs` 

```rs
// before
pub struct SGroup {
    pub iVertexRepresentitive: i32,
    ..
}

// after
pub struct SGroup {
    pub iVertexRepresentative: i32,
    ..
}
```

In `crates/bevy_core_pipeline/src/core_2d/mod.rs`

```rs
// before
Node2D::ConstrastAdaptiveSharpening

// after
Node2D::ContrastAdaptiveSharpening
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: François <mockersf@gmail.com>
2024-02-22 18:55:22 +00:00
Marco Buono
a475511f43
Add method for querying whether a given short type path is ambiguous (#11840)
# Objective

Currently, the `ambiguous_names` hash set in `TypeRegistry` is used to
keep track of short type names that are ambiguous, and to require the
use of long type names for these types.

However, there's no way for the consumer of `TypeRegistry` to known
whether a given call to `get_with_short_type_path()` or
`get_with_short_type_path_mut()` failed because a type was not
registered at all, or because the short name is ambiguous.

This can be used, for example, for better error reporting to the user by
an editor tool. Here's some code that uses this, from my remote protocol
exploration branch:

```rust
let type_registration = type_registry
  .get_with_type_path(component_name)
  .or_else(|| registry.get_with_short_type_path(component_name))
  .ok_or_else(|| {
      if type_registry.is_ambiguous(component_name) {
          BrpError::ComponentAmbiguous(component_name.clone())
      } else {
          BrpError::MissingTypeRegistration(component_name.clone())
      }
  })?
```

## Solution

- Introduces a `is_ambiguous()` method.
- Also drive-by fixes two documentation comments that had broken links.

---

## Changelog

- Added a `TypeRegistry::is_ambiguous()` method, for checking whether a
given short type path is ambiguous (e.g. `MyType` potentially matching
either `some_crate::MyType` or `another_crate::MyType`)

---------

Co-authored-by: François <mockersf@gmail.com>
2024-02-19 16:47:11 +00:00
Patrick Walton
5f1dd3918b
Rework animation to be done in two phases. (#11707)
# Objective

Bevy's animation system currently does tree traversals based on `Name`
that aren't necessary. Not only do they require in unsafe code because
tree traversals are awkward with parallelism, but they are also somewhat
slow, brittle, and complex, which manifested itself as way too many
queries in #11670.

# Solution

Divide animation into two phases: animation *advancement* and animation
*evaluation*, which run after one another. *Advancement* operates on the
`AnimationPlayer` and sets the current animation time to match the game
time. *Evaluation* operates on all animation bones in the scene in
parallel and sets the transforms and/or morph weights based on the time
and the clip.

To do this, we introduce a new component, `AnimationTarget`, which the
asset loader places on every bone. It contains the ID of the entity
containing the `AnimationPlayer`, as well as a UUID that identifies
which bone in the animation the target corresponds to. In the case of
glTF, the UUID is derived from the full path name to the bone. The rule
that `AnimationTarget`s are descendants of the entity containing
`AnimationPlayer` is now just a convention, not a requirement; this
allows us to eliminate the unsafe code.

# Migration guide

* `AnimationClip` now uses UUIDs instead of hierarchical paths based on
the `Name` component to refer to bones. This has several consequences:
- A new component, `AnimationTarget`, should be placed on each bone that
you wish to animate, in order to specify its UUID and the associated
`AnimationPlayer`. The glTF loader automatically creates these
components as necessary, so most uses of glTF rigs shouldn't need to
change.
- Moving a bone around the tree, or renaming it, no longer prevents an
`AnimationPlayer` from affecting it.
- Dynamically changing the `AnimationPlayer` component will likely
require manual updating of the `AnimationTarget` components.
* Entities with `AnimationPlayer` components may now possess descendants
that also have `AnimationPlayer` components. They may not, however,
animate the same bones.
* As they aren't specific to `TypeId`s,
`bevy_reflect::utility::NoOpTypeIdHash` and
`bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to
`bevy_reflect::utility::NoOpHash` and
`bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
Doonv
1c67e020f7
Move EntityHash related types into bevy_ecs (#11498)
# Objective

Reduce the size of `bevy_utils`
(https://github.com/bevyengine/bevy/issues/11478)

## Solution

Move `EntityHash` related types into `bevy_ecs`. This also allows us
access to `Entity`, which means we no longer need `EntityHashMap`'s
first generic argument.

---

## Changelog

- Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` into `bevy::ecs::entity::hash` .
- Removed `EntityHashMap`'s first generic argument. It is now hardcoded
to always be `Entity`.

## Migration Guide

- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`.
- Uses of `EntityHashMap` no longer have to specify the first generic
parameter. It is now hardcoded to always be `Entity`.
2024-02-12 15:02:24 +00:00
Doonv
054134fba2
Add ReflectKind (#11664)
# Objective

Fix https://github.com/bevyengine/bevy/issues/11657

## Solution

Add a `ReflectKind` enum, add `Reflect::reflect_kind` which returns a
`ReflectKind`, and add `kind` method implementions to `ReflectRef`,
`ReflectMut`, and `ReflectOwned`, which returns a `ReflectKind`.

I also changed `AccessError` to use this new struct instead of it's own
`TypeKind` struct.

---

## Changelog

- Added `ReflectKind`, an enumeration over the kinds of a reflected type
without its data.
- Added `Reflect::reflect_kind` (with default implementation)
- Added implementation for the `kind` method on `ReflectRef`,
`ReflectMut`, and `ReflectOwned` which gives their kind without any
information, as a `ReflectKind`
2024-02-07 00:36:23 +00:00
SpecificProtagonist
8faaef17e5
Hash stability guarantees (#11690)
# Objective

We currently over/underpromise hash stability:
- `HashMap`/`HashSet` use `BuildHasherDefault<AHasher>` instead of
`RandomState`. As a result, the hash is stable within the same run.
- [aHash isn't stable between devices (and
versions)](https://github.com/tkaitchuck/ahash?tab=readme-ov-file#goals-and-non-goals),
yet it's used for `StableHashMap`/`StableHashSet`
- the specialized hashmaps are stable

Interestingly, `StableHashMap`/`StableHashSet` aren't used by Bevy
itself (anymore).

## Solution
Add/fix documentation

## Alternatives
For `StableHashMap`/`StableHashSet`:
- remove them
- revive #7107

---

## Changelog
- added iteration stability guarantees for different hashmaps
2024-02-05 17:05:15 +00:00
Doonv
56076b7b0c
Improve DynamicStruct::insert (#11068)
# Objective

I wanted to pass in a `String` to `DynamicStruct::insert_boxed` but it
took in a &str. That's fine but I also saw that it immediately converted
the `&str` to a `String`. Which is wasteful.

## Solution

I made `DynamicStruct::insert_boxed` take in a `impl Into<Cow<str>>`.
Same for `DynamicStruct::insert`.

---

## Changelog

- `DynamicStruct::insert_boxed` and `DynamicStruct::insert` now support
taking in anything that implements `impl Into<Cow<str>>`.
2024-02-05 13:57:25 +00:00
Gino Valente
71be08af68
bevy_reflect: Reflect &'static str (#11686)
# Objective

`&'static str` doesn't implement `Reflect`. I don't think this was
intentionally excluded.

## Solution

Make `&'static str` implement `Reflect`.

---

## Changelog

- Implement `Reflect` and friends for `&'static str`
- Add missing `Reflect::debug` implementation for `Cow<'static, str>`
2024-02-04 01:32:48 +00:00
SpecificProtagonist
21aa5fe2b6
Use TypeIdMap whenever possible (#11684)
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>`

- ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of
#11478~~
- ~~I haven't swapped `bevy_reflect` over because it doesn't depend on
`bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to
`bevy_utils` and then adding a dependency to that~~
- ~~this is a slight change in the public API of
`DrawFunctionsInternal`, does this need to go in the changelog?~~

## Changelog
- moved `TypeIdMap` to `bevy_utils`
- changed `DrawFunctionsInternal::indices` to `TypeIdMap`

## Migration Guide

- `TypeIdMap` now lives in `bevy_utils`
- `DrawFunctionsInternal::indices` now uses a `TypeIdMap`.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-02-03 23:47:04 +00:00
Tristan Guichaoua
694c06f3d0
Inverse missing_docs logic (#11676)
# Objective

Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.

## Solution

Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
2024-02-03 21:40:55 +00:00
Doonv
b1a2d342af
Add the ability to manually create ParsedPaths (+ cleanup) (#11029)
# Objective

I'm working on a developer console plugin, and I wanted to get a
field/index of a struct/list/tuple. My command parser already parses
member expressions and all that, so I wanted to construct a `ParsedPath`
manually, but it's all private.

## Solution

Make the internals of `ParsedPath` public and add documentation for
everything, and I changed the boxed slice inside `ParsedPath` to a
vector for more flexibility.

I also did a bunch of code cleanup. Improving documentation, error
messages, code, type names, etc.

---

## Changelog

- Added the ability to manually create `ParsedPath`s from their
elements, without the need of string parsing.
- Improved `ReflectPath` error handling.

## Migration Guide

-  `bevy::reflect::AccessError` has been refactored.

That should be it I think, everything else that was changed was private
before this PR.

---------

Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2024-02-01 19:22:40 +00:00
radiish
df761af49b
reflection: replace impl_reflect_struct with impl_reflect (#11437)
# Objective

- `impl_reflect_struct` doesn't cover tuple structs or enums.
- Problem brought up [on
Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1190623345817960463).

## Solution

- Replaces `impl_reflect_struct` with the new `impl_reflect` which works
for tuple structs and enums too.

---

## Changelog

- Internally in `bevy_reflect_derive`, we have a new `ReflectProvenance`
type which is composed of `ReflectTraitToImpl` and `ReflectSource`.
- `impl_reflect_struct` is gone and totally superseded by
`impl_reflect`.

---------

Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-01-30 14:39:01 +00:00
Gino Valente
379b9e5cb6
bevy_reflect: Split #[reflect(where)] (#11597)
# Objective

Revert the changes to type parameter bounds introduced in #9046,
improves the `#[reflect(where)]` attribute (also from #9046), and adds
the ability to opt out of field bounds.

This is based on suggestions by @soqb and discussion on
[Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1201227833826103427).

## Solution

Reverts the changes to type parameter bounds when deriving `Reflect`,
introduced in #9046. This was originally done as a means of fixing a
recursion issue (#8965). However, as @soqb pointed out, we could achieve
the same result by simply making an opt-out attribute instead of messing
with the type parameter bounds.

This PR has four main changes:
1. Reverts the type parameter bounds from #9046
2. Includes `TypePath` as a default bound for active fields
3. Changes `#reflect(where)]` to be strictly additive
4. Adds `#reflect(no_field_bounds)]` to opt out of field bounds

Change 1 means that, like before, type parameters only receive at most
the `TypePath` bound (if `#[reflect(type_path = false)]` is not present)
and active fields receive the `Reflect` or `FromReflect` bound. And with
Change 2, they will also receive `TypePath` (since it's indirectly
required by `Typed` to construct `NamedField` and `UnnamedField`
instances).

Change 3 was made to make room for Change 4. By splitting out the
responsibility of `#reflect(where)]`, we can use it with or without
`#reflect(no_field_bounds)]` for various use cases.

For example, if we hadn't done this, the following would have failed:

```rust
// Since we're not using `#reflect(no_field_bounds)]`, 
// `T::Assoc` is automatically given the required bounds
// of `FromReflect + TypePath`
#[derive(Reflect)]
#[reflect(where T::Assoc: OtherTrait)]
struct Foo<T: MyTrait> {
  value: T::Assoc,
}
```

This provides more flexibility to the user while still letting them add
or remove most trait bounds.

And to solve the original recursion issue, we can do:

```rust
#[derive(Reflect)]
#[reflect(no_field_bounds)] // <-- Added
struct Foo {
  foo: Vec<Foo>
}
```

#### Bounds

All in all, we now have four sets of trait bounds:
- `Self` gets the bounds `Any + Send + Sync`
- Type parameters get the bound `TypePath`. This can be opted out of
with `#[reflect(type_path = false)]`
- Active fields get the bounds `TypePath` and `FromReflect`/`Reflect`
bounds. This can be opted out of with `#reflect(no_field_bounds)]`
- Custom bounds can be added with `#[reflect(where)]`

---

## Changelog

- Revert some changes #9046
- `#reflect(where)]` is now strictly additive
- Added `#reflect(no_field_bounds)]` attribute to opt out of automatic
field trait bounds when deriving `Reflect`
- Made the `TypePath` requirement on fields when deriving `Reflect` more
explicit

## Migration Guide

> [!important]
> This PR shouldn't be a breaking change relative to the current version
of Bevy (v0.12). And since it removes the breaking parts of #9046, that
PR also won't need a migration guide.
2024-01-29 17:54:17 +00:00
Joona Aalto
a9f061e909
Add Capsule2d primitive (#11585)
# Objective

Currently, the `Capsule` primitive is technically dimension-agnostic in
that it implements both `Primitive2d` and `Primitive3d`. This seems good
on paper, but it can often be useful to have separate 2D and 3D versions
of primitives.

For example, one might want a two-dimensional capsule mesh. We can't
really implement both 2D and 3D meshing for the same type using the
upcoming `Meshable` trait (see #11431). We also currently don't
implement `Bounded2d` for `Capsule`, see
https://github.com/bevyengine/bevy/pull/11336#issuecomment-1890797788.

Having 2D and 3D separate at a type level is more explicit, and also
more consistent with the existing primitives, as there are no other
types that implement both `Primitive2d` and `Primitive3d` at the same
time.

## Solution

Rename `Capsule` to `Capsule3d` and add `Capsule2d`. `Capsule2d`
implements `Bounded2d`.

For now, I went for `Capsule2d` for the sake of consistency and clarity.
Mathematically the more accurate term would be `Stadium` or `Pill` (see
[Wikipedia](https://en.wikipedia.org/wiki/Stadium_(geometry))), but
those might be less obvious to game devs. For reference, Godot has
[`CapsuleShape2D`](https://docs.godotengine.org/en/stable/classes/class_capsuleshape2d.html).
I can rename it if others think the geometrically correct name is better
though.

---

## Changelog

- Renamed `Capsule` to `Capsule3d`
- Added `Capsule2d` with `Bounded2d` implemented

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-01-29 17:52:04 +00:00
Tristan Guichaoua
b0f5d4df58
Enable the unsafe_op_in_unsafe_fn lint (#11591)
# Objective

- Partial fix of #11590

## Solution

- Enable `unsafe_op_in_unsafe_fn` at workspace level
- Fix the lint for most of the crates
2024-01-28 23:18:11 +00:00
Gino Valente
6e959db134
bevy_reflect: Type parameter bounds (#9046)
# Objective

Fixes #8965.

#### Background

For convenience and to ensure everything is setup properly, we
automatically add certain bounds to the derived types. The current
implementation does this by taking the types from all active fields and
adding them to the where-clause of the generated impls. I believe this
method was chosen because it won't add bounds to types that are
otherwise ignored.

```rust
#[derive(Reflect)]
struct Foo<T, U: SomeTrait, V> {
  t: T,
  u: U::Assoc,
  #[reflect(ignore)]
  v: [V; 2]
}

// Generates something like:
impl<T, U: SomeTrait, V> for Foo<T, U, V>
where
  // Active:
  T: Reflect,
  U::Assoc: Reflect,

  // Ignored:
  [V; 2]: Send + Sync + Any
{
  // ...
}
```

The self-referential type fails because it ends up using _itself_ as a
type bound due to being one of its own active fields.

```rust
#[derive(Reflect)]
struct Foo {
  foo: Vec<Foo>
}

// Foo where Vec<Foo>: Reflect -> Vec<T> where T: Reflect -> Foo where Vec<Foo>: Reflect -> ...
```

## Solution

We can't simply parse all field types for the name of our type. That
would be both complex and prone to errors and false-positives. And even
if it wasn't, what would we replace the bound with?

Instead, I opted to go for a solution that only adds the bounds to what
really needs it: the type parameters. While the bounds on concrete types
make errors a bit cleaner, they aren't strictly necessary. This means we
can change our generated where-clause to only add bounds to generic type
parameters.

Doing this, though, returns us back to the problem of over-bounding
parameters that don't need to be bounded. To solve this, I added a new
container attribute (based on
[this](https://github.com/dtolnay/syn/issues/422#issuecomment-406882925)
comment and @nicopap's
[comment](https://github.com/bevyengine/bevy/pull/9046#issuecomment-1623593780))
that allows us to pass in a custom where clause to modify what bounds
are added to these type parameters.

This allows us to do stuff like:

```rust
trait Trait {
  type Assoc;
}

// We don't need `T` to be reflectable since we only care about `T::Assoc`.
#[derive(Reflect)]
#[reflect(where T::Assoc: FromReflect)]
struct Foo<T: Trait>(T::Assoc);

#[derive(TypePath)]
struct Bar;

impl Trait for Bar {
  type Assoc = usize;
}

#[derive(Reflect)]
struct Baz {
  a: Foo<Bar>,
}
```

> **Note**
> I also
[tried](dc139ea34c)
allowing `#[reflect(ignore)]` to be used on the type parameters
themselves, but that proved problematic since the derive macro does not
consume the attribute. This is why I went with the container attribute
approach.

### Alternatives

One alternative could possibly be to just not add reflection bounds
automatically (i.e. only add required bounds like `Send`, `Sync`, `Any`,
and `TypePath`).

The downside here is we add more friction to using reflection, which
already comes with its own set of considerations. This is a potentially
viable option, but we really need to consider whether or not the
ergonomics hit is worth it.

If we did decide to go the more manual route, we should at least
consider something like #5772 to make it easier for users to add the
right bounds (although, this could still become tricky with
`FromReflect` also being automatically derived).

### Open Questions

1. Should we go with this approach or the manual alternative?
2. ~~Should we add a `skip_params` attribute to avoid the `T: 'static`
trick?~~ ~~Decided to go with `custom_where()` as it's the simplest~~
Scratch that, went with a normal where clause
3. ~~`custom_where` bikeshedding?~~ No longer needed since we are using
a normal where clause

### TODO

- [x] Add compile-fail tests

---

## Changelog

- Fixed issue preventing recursive types from deriving `Reflect`
- Changed how where-clause bounds are generated by the `Reflect` derive
macro
- They are now only applied to the type parameters, not to all active
fields
- Added `#[reflect(where T: Trait, U::Assoc: Trait, ...)]` container
attribute

## Migration Guide

When deriving `Reflect`, generic type params that do not need the
automatic reflection bounds (such as `Reflect`) applied to them will
need to opt-out using a custom where clause like: `#[reflect(where T:
Trait, U::Assoc: Trait, ...)]`.

The attribute can define custom bounds only used by the reflection
impls. To simply opt-out all the type params, we can pass in an empty
where clause: `#[reflect(where)]`.

```rust
// BEFORE:
#[derive(Reflect)]
struct Foo<T>(#[reflect(ignore)] T);

// AFTER:
#[derive(Reflect)]
#[reflect(where)]
struct Foo<T>(#[reflect(ignore)] T);
```

---------

Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2024-01-28 16:24:03 +00:00
NiseVoid
755917fe4b
Derive PartialEq, Serialize, Deserialize and Reflect on primitives (#11514)
# Objective

- Implement common traits on primitives

## Solution

- Derive PartialEq on types that were missing it.
- Derive Copy on small types that were missing it.
- Derive Serialize/Deserialize if the feature on bevy_math is enabled.
- Add a lot of cursed stuff to the bevy_reflect `impls` module.
2024-01-28 14:55:30 +00:00
vero
886a2560d2
Fix warnings in bevy_reflect (#11556)
# Objective

- Address junk leftover by TypeUuid removal

## Solution

- Get rid of unused deps and imports

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-01-27 17:34:35 +00:00
AxiomaticSemantics
2ebf5a303e
Remove TypeUuid (#11497)
# Objective
TypeUuid is deprecated, remove it.

## Migration Guide
Convert any uses of `#[derive(TypeUuid)]` with `#[derive(TypePath]` for
more complex uses see the relevant
[documentation](https://docs.rs/bevy/latest/bevy/prelude/trait.TypePath.html)
for more information.

---------

Co-authored-by: ebola <dev@axiomatic>
2024-01-25 16:16:58 +00:00
John Lewis
cfe4034d25
Add Reflection for Wrapping/Saturating types (#11397)
# Objective

- Extend reflection to the standard library's `Wrapping` and
`Saturating` generic types.

This wasn't my use-case but someone in the discord was surprised that
this wasn't already done. I decided to make a PR because the other
`std::num` items were reflected and if there's a reason to exclude
`Wrapping` and `Saturating`, I am unaware of it.

## Solution

Trivial fix

---

## Changelog

Implemented `Reflect` for `Wrapping<T>` and `Saturating<T>` from
`std::num`.
2024-01-22 15:21:20 +00:00
BD103
056b006d4e
Use static_assertions to check for trait impls (#11407)
# Objective

- Tests are manually checking whether derived types implement certain
traits. (Specifically in `bevy_reflect.)
- #11182 introduces
[`static_assertions`](https://docs.rs/static_assertions/) to
automatically check this.
- Simplifies `Reflect` test in #11195.
- Closes #11196.

## Solution

- Add `static_assertions` and replace current tests.

---

I wasn't sure whether to remove the existing test or not. What do you
think?
2024-01-18 17:21:18 +00:00
Adam
fe68005f71
Implement TypePath for EntityHash (#11195)
# Objective

- Fix #11117 by implementing `Reflect` for `EntityHashMap`

## Solution

- By implementing `TypePath` for `EntityHash`, Bevy will automatically
implement `Reflect` for `EntityHashMap`

---

## Changelog

- `TypePath` is implemented for `EntityHash`
- A test called `entity_hashmap_should_impl_reflect` was created to
verify that #11117 was solved.
2024-01-04 18:28:31 +00:00
Doonv
189ceaf0d3
Replace or document ignored doctests (#11040)
# Objective

There are a lot of doctests that are `ignore`d for no documented reason.
And that should be fixed.

## Solution

I searched the bevy repo with the regex ` ```[a-z,]*ignore ` in order to
find all `ignore`d doctests. For each one of the `ignore`d doctests, I
did the following steps:
1. Attempt to remove the `ignored` attribute while still passing the
test. I did this by adding hidden dummy structs and imports.
2. If step 1 doesn't work, attempt to replace the `ignored` attribute
with the `no_run` attribute while still passing the test.
3. If step 2 doesn't work, keep the `ignored` attribute but add
documentation for why the `ignored` attribute was added.

---------

Co-authored-by: François <mockersf@gmail.com>
2024-01-01 16:50:56 +00:00
Mike
786abbf3f5
Fix ci xvfb (#11143)
# Objective

Fix ci hang, so we can merge pr's again.

## Solution

- switch ppa action to use mesa stable versions
https://launchpad.net/~kisak/+archive/ubuntu/turtle
- use commit from #11123

---------

Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
2023-12-30 09:07:31 +00:00
Tygyh
1568d4a415
Reorder impl to be the same as the trait (#11076)
# Objective

- Make the implementation order consistent between all sources to fit
the order in the trait.

## Solution

- Change the implementation order.
2023-12-24 17:43:55 +00:00
David Cosby
42b737878f
Re-export smallvec crate from bevy_utils (#11006)
Matches versioning & features from other Cargo.toml files in the
project.

# Objective
Resolves #10932 

## Solution
Added smallvec to the bevy_utils cargo.toml and added a line to
re-export the crate. Target version and features set to match what's
used in the other bevy crates.
2023-12-24 15:35:09 +00:00
davier
55402bdf2e
Fix debug printing for dynamic types (#10740)
# Objective

Printing `DynamicStruct` with a debug format does not show the contained
type anymore. For instance, in `examples/reflection/reflection.rs`,
adding `dbg!(&reflect_value);` to line 96 will print:
```rust
[examples/reflection/reflection.rs:96] &reflect_value = DynamicStruct(bevy_reflect::DynamicStruct {
    a: 4,
    nested: DynamicStruct(bevy_reflect::DynamicStruct {
        b: 8,
    }),
})
```

## Solution

Show the represented type instead (`reflection::Foo` and
`reflection::Bar` in this case):
```rust
[examples/reflection/reflection.rs:96] &reflect_value = DynamicStruct(reflection::Foo {
    a: 4,
    nested: DynamicStruct(reflection::Bar {
        b: 8,
    }),
})
```

---------

Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2023-12-12 19:44:43 +00:00
Stepan Koltsov
506bdc5e68
Remove pointless trait implementation exports in bevy_reflect (#10771)
Trait implementations do not need to be reexported to be used.

```
warning: unused import: `self::std::*`
   --> crates/bevy_reflect/src/lib.rs:502:13
    |
502 |     pub use self::std::*;
    |             ^^^^^^^^^^^^
    |
    = note: `#[warn(unused_imports)]` on by default

warning: unused import: `self::uuid::*`
   --> crates/bevy_reflect/src/lib.rs:503:13
    |
503 |     pub use self::uuid::*;
    |             ^^^^^^^^^^^^^

warning: unused import: `impls::*`
   --> crates/bevy_reflect/src/lib.rs:525:9
    |
525 | pub use impls::*;
    |         ^^^^^^^^
```
2023-11-29 00:11:06 +00:00
tygyh
fd308571c4
Remove unnecessary path prefixes (#10749)
# Objective

- Shorten paths by removing unnecessary prefixes

## Solution

- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
2023-11-28 23:43:40 +00:00
Gino Valente
13f2749021
bevy_utils: Export generate_composite_uuid utility function (#10496)
# Objective

The `generate_composite_uuid` utility function hidden in
`bevy_reflect::__macro_exports` could be generally useful to users.

For example, I previously relied on `Hash` to generate a `u64` to create
a deterministic `HandleId`. In v0.12, `HandleId` has been replaced by
`AssetId` which now requires a `Uuid`, which I could generate with this
function.

## Solution

Relocate `generate_composite_uuid` from `bevy_reflect::__macro_exports`
to `bevy_utils::uuid`.

It is still re-exported under `bevy_reflect::__macro_exports` so there
should not be any breaking changes (although, users should generally not
rely on pseudo-private/hidden modules like `__macro_exports`).

I chose to keep it in `bevy_reflect::__macro_exports` so as to not
clutter up our public API and to reduce the number of changes in this
PR. We could have also marked the export as `#[doc(hidden)]`, but
personally I like that we have a dedicated module for this (makes it
clear what is public and what isn't when just looking at the macro
code).

---

## Changelog

- Moved `generate_composite_uuid` to `bevy_utils::uuid` and made it
public
  - Note: it was technically already public, just hidden
2023-11-25 23:21:35 +00:00
Mike
11b1b3a24f
delete methods deprecated in 0.12 (#10693)
## Changelog

- delete methods deprecated in 0.12
2023-11-24 16:15:47 +00:00
Hank Jordan
e85af0e366
Fix issue with Option serialization (#10705)
# Objective

- Fix #10499 

## Solution

- Use `.get_represented_type_info()` module path and type ident instead
of `.reflect_*` module path and type ident when serializing the `Option`
enum

---

## Changelog

- Fix serialization bug
- Add simple test
  - Add `serde_json` dev dependency
- Add `serde` with `derive` feature dev dependency (wouldn't compile for
me without it)

---------

Co-authored-by: hank <hank@hank.co.in>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2023-11-23 14:04:51 +00:00
Ame
951c9bb1a2
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective

- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796

## Solution

- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```

## Changelog

- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```

---------

Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2023-11-18 20:58:48 +00:00
Gino Valente
60773e6787
bevy_reflect: Fix ignored/skipped field order (#7575)
# Objective

Fixes #5101
Alternative to #6511

## Solution

Corrected the behavior for ignored fields in `FromReflect`, which was
previously using the incorrect field indexes.

Similarly, fields marked with `#[reflect(skip_serializing)]` no longer
break when using `FromReflect` after deserialization. This was done by
modifying `SerializationData` to store a function pointer that can later
be used to generate a default instance of the skipped field during
deserialization.

The function pointer points to a function generated by the derive macro
using the behavior designated by `#[reflect(default)]` (or just
`Default` if none provided). The entire output of the macro is now
wrapped in an [unnamed
constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant)
which keeps this behavior hygienic.

#### Rationale

The biggest downside to this approach is that it requires fields marked
`#[reflect(skip_serializing)]` to provide the ability to create a
default instance— either via a `Default` impl or by specifying a custom
one. While this isn't great, I think it might be justified by the fact
that we really need to create this value when using `FromReflect` on a
deserialized object. And we need to do this _during_ deserialization
because after that (at least for tuples and tuple structs) we lose
information about which field is which: _"is the value at index 1 in
this `DynamicTupleStruct` the actual value for index 1 or is it really
the value for index 2 since index 1 is skippable...?"_

#### Alternatives

An alternative would be to store `Option<Box<dyn Reflect>>` within
`DynamicTuple` and `DynamicTupleStruct` instead of just `Box<dyn
Reflect>`. This would allow us to insert "empty"/"missing" fields during
deserialization, thus saving the positional information of the skipped
fields. However, this may require changing the API of `Tuple` and
`TupleStruct` such that they can account for their dynamic counterparts
returning `None` for a skipped field. In practice this would probably
mean exposing the `Option`-ness of the dynamics onto implementors via
methods like `Tuple::drain` or `TupleStruct::field`.

Personally, I think requiring `Default` would be better than muddying up
the API to account for these special cases. But I'm open to trying out
this other approach if the community feels that it's better.

---

## Changelog

### Public Changes

#### Fixed

- The behaviors of `#[reflect(ignore)]` and
`#[reflect(skip_serializing)]` are no longer dependent on field order

#### Changed

- Fields marked with `#[reflect(skip_serializing)]` now need to either
implement `Default` or specify a custom default function using
`#[reflect(default = "path::to::some_func")]`
- Deserializing a type with fields marked `#[reflect(skip_serializing)]`
will now include that field initialized to its specified default value
- `SerializationData::new` now takes the new `SkippedField` struct along
with the skipped field index
- Renamed `SerializationData::is_ignored_field` to
`SerializationData::is_field_skipped`

#### Added

- Added `SkippedField` struct
- Added methods `SerializationData::generate_default` and
`SerializationData::iter_skipped`

### Internal Changes

#### Changed

- Replaced `members_to_serialization_denylist` and `BitSet<u32>` with
`SerializationDataDef`
- The `Reflect` derive is more hygienic as it now outputs within an
[unnamed
constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant)
- `StructField::index` has been split up into
`StructField::declaration_index` and `StructField::reflection_index`

#### Removed

- Removed `bitset` dependency

## Migration Guide

* Fields marked `#[reflect(skip_serializing)]` now must implement
`Default` or specify a custom default function with `#[reflect(default =
"path::to::some_func")]`
    ```rust
    #[derive(Reflect)]
    struct MyStruct {
      #[reflect(skip_serializing)]
      #[reflect(default = "get_foo_default")]
foo: Foo, // <- `Foo` does not impl `Default` so requires a custom
function
      #[reflect(skip_serializing)]
      bar: Bar, // <- `Bar` impls `Default`
    }
    
    #[derive(Reflect)]
    struct Foo(i32);
    
    #[derive(Reflect, Default)]
    struct Bar(i32);
    
    fn get_foo_default() -> Foo {
      Foo(123)
    }
    ```
* `SerializationData::new` has been changed to expect an iterator of
`(usize, SkippedField)` rather than one of just `usize`
    ```rust
    // BEFORE
    SerializationData::new([0, 3].into_iter());
    
    // AFTER
    SerializationData::new([
      (0, SkippedField::new(field_0_default_fn)),
      (3, SkippedField::new(field_3_default_fn)),
    ].into_iter());
    ```
* `Serialization::is_ignored_field` has been renamed to
`Serialization::is_field_skipped`
* Fields marked `#[reflect(skip_serializing)]` are now included in
deserialization output. This may affect logic that expected those fields
to be absent.
2023-10-22 12:43:31 +00:00
Gino Valente
01b910a148
bevy_reflect: Fix dynamic type serialization (#10103)
# Objective

Fixes #10086

## Solution

Instead of serializing via `DynamicTypePath::reflect_type_path`, now
uses the `TypePath` found on the `TypeInfo` returned by
`Reflect::get_represented_type_info`.

This issue was happening because the dynamic types implement `TypePath`
themselves and do not (and cannot) forward their proxy's `TypePath`
data. The solution was to access the proxy's type information in order
to get the correct `TypePath` data.

## Changed

- The `Debug` impl for `TypePathTable` now includes output for all
fields.
2023-10-16 23:31:16 +00:00
Zachary Harrold
bb13d065d3
Removed once_cell (#10079)
# Objective

- Fixes #8303

## Solution

- Replaced 1 instance of `OnceBox<T>` with `OnceLock<T>` in
`NonGenericTypeCell`

## Notes

All changes are in the private side of Bevy, and appear to have no
observable change in performance or compilation time. This is purely to
reduce the quantity of direct dependencies in Bevy.
2023-10-12 10:20:07 +00:00
Trashtalk217
e5f5ce5e97
Migrate Quat reflection strategy from "value" to "struct" (#10068)
Adopted from #8954, co-authored by @pyrotechnick 

# Objective

The Bevy ecosystem currently reflects `Quat` via "value" rather than the
more appropriate "struct" strategy. This behaviour is inconsistent to
that of similar types, i.e. `Vec3`. Additionally, employing the "value"
strategy causes instances of `Quat` to be serialised as a sequence `[x,
y, z, w]` rather than structures of shape `{ x, y, z, w }`.

The [comments surrounding the applicable
code](bec299fa6e/crates/bevy_reflect/src/impls/glam.rs (L254))
give context and historical reasons for this discrepancy:

```
// Quat fields are read-only (as of now), and reflection is currently missing
// mechanisms for read-only fields. I doubt those mechanisms would be added,
// so for now quaternions will remain as values. They are represented identically
// to Vec4 and DVec4, so you may use those instead and convert between.
```

This limitation has [since been lifted by the upstream
crate](374625163e),
glam.

## Solution

Migrating the reflect strategy of Quat from "value" to "struct" via
replacing `impl_reflect_value` with `impl_reflect_struct` resolves the
issue.

## Changelog

Migrated `Quat` reflection strategy to "struct" from "value"
Migration Guide

Changed Quat serialization/deserialization from sequences `[x, y, z, w]`
to structures `{ x, y, z, w }`.

---------

Co-authored-by: pyrotechnick <13998+pyrotechnick@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-10-09 22:01:42 +00:00