# Objective
- Improve reproducibility of examples
## Solution
- Use seeded rng when needed
- Use fixed z-ordering when needed
## Testing
```sh
steps=5;
echo "cpu_draw\nparallel_query\nanimated_fox\ntransparency_2d" > test
cargo run -p example-showcase -- run --stop-frame 250 --screenshot-frame 100 --fixed-frame-time 0.05 --example-list test --in-ci;
mv screenshots base;
for prefix in `seq 0 $steps`;
do
echo step $prefix;
cargo run -p example-showcase -- run --stop-frame 250 --screenshot-frame 100 --fixed-frame-time 0.05 --example-list test;
mv screenshots $prefix-screenshots;
done;
mv base screenshots
for prefix in `seq 0 $steps`;
do
echo check $prefix
for file in screenshots/*/*;
do
echo $file;
diff $file $prefix-$file;
done;
done;
```
# Objective
Fixes#15940
## Solution
Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.
## Testing
Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.
## Migration Guide
Use `bevy_image` instead of `bevy_render::texture` items.
---------
Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.
## Solution
- expose the compilation option wgpu gives us
## Testing
- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems
---
</details>
## Migration Guide
- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
# Objective
1. UI texture slicing chops and scales an image to fit the size of a
node and isn't meant to place any constraints on the size of the node
itself, but because the required components changes required `ImageSize`
and `ContentSize` for nodes with `UiImage`, texture sliced nodes are
laid out using an `ImageMeasure`.
2. In 0.14 users could spawn a `(UiImage, NodeBundle)` which would
display an image stretched to fill the UI node's bounds ignoring the
image's instrinsic size. Now that `UiImage` requires `ContentSize`,
there's no option to display an image without its size placing
constrains on the UI layout (unless you force the `Node` to a fixed
size, but that's not a solution).
3. It's desirable that the `Sprite` and `UiImage` share similar APIs.
Fixes#16109
## Solution
* Remove the `Component` impl from `ImageScaleMode`.
* Add a `Stretch` variant to `ImageScaleMode`.
* Add a field `scale_mode: ImageScaleMode` to `Sprite`.
* Add a field `mode: UiImageMode` to `UiImage`.
* Add an enum `UiImageMode` similar to `ImageScaleMode` but with
additional UI specific variants.
* Remove the queries for `ImageScaleMode` from Sprite and UI extraction,
and refer to the new fields instead.
* Change `ui_layout_system` to update measure funcs on any change to
`ContentSize`s to enable manual clearing without removing the component.
* Don't add a measure unless `UiImageMode::Auto` is set in
`update_image_content_size_system`. Mutably deref the `Mut<ContentSize>`
if the `UiImage` is changed to force removal of any existing measure
func.
## Testing
Remove all the constraints from the ui_texture_slice example:
```rust
//! This example illustrates how to create buttons with their textures sliced
//! and kept in proportion instead of being stretched by the button dimensions
use bevy::{
color::palettes::css::{GOLD, ORANGE},
prelude::*,
winit::WinitSettings,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
// Only run the app when there is user input. This will significantly reduce CPU/GPU use.
.insert_resource(WinitSettings::desktop_app())
.add_systems(Startup, setup)
.add_systems(Update, button_system)
.run();
}
fn button_system(
mut interaction_query: Query<
(&Interaction, &Children, &mut UiImage),
(Changed<Interaction>, With<Button>),
>,
mut text_query: Query<&mut Text>,
) {
for (interaction, children, mut image) in &mut interaction_query {
let mut text = text_query.get_mut(children[0]).unwrap();
match *interaction {
Interaction::Pressed => {
**text = "Press".to_string();
image.color = GOLD.into();
}
Interaction::Hovered => {
**text = "Hover".to_string();
image.color = ORANGE.into();
}
Interaction::None => {
**text = "Button".to_string();
image.color = Color::WHITE;
}
}
}
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
let image = asset_server.load("textures/fantasy_ui_borders/panel-border-010.png");
let slicer = TextureSlicer {
border: BorderRect::square(22.0),
center_scale_mode: SliceScaleMode::Stretch,
sides_scale_mode: SliceScaleMode::Stretch,
max_corner_scale: 1.0,
};
// ui camera
commands.spawn(Camera2d);
commands
.spawn(Node {
width: Val::Percent(100.0),
height: Val::Percent(100.0),
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
..default()
})
.with_children(|parent| {
for [w, h] in [[150.0, 150.0], [300.0, 150.0], [150.0, 300.0]] {
parent
.spawn((
Button,
Node {
// width: Val::Px(w),
// height: Val::Px(h),
// horizontally center child text
justify_content: JustifyContent::Center,
// vertically center child text
align_items: AlignItems::Center,
margin: UiRect::all(Val::Px(20.0)),
..default()
},
UiImage::new(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
))
.with_children(|parent| {
// parent.spawn((
// Text::new("Button"),
// TextFont {
// font: asset_server.load("fonts/FiraSans-Bold.ttf"),
// font_size: 33.0,
// ..default()
// },
// TextColor(Color::srgb(0.9, 0.9, 0.9)),
// ));
});
}
});
}
```
This should result in a blank window, since without any constraints the
texture slice image nodes should be zero-sized. But in main the image
nodes are given the size of the underlying unsliced source image
`textures/fantasy_ui_borders/panel-border-010.png`:
<img width="321" alt="slicing"
src="https://github.com/user-attachments/assets/cbd74c9c-14cd-4b4d-93c6-7c0152bb05ee">
For this PR need to change the lines:
```
UiImage::new(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
```
to
```
UiImage::new(image.clone()).with_mode(UiImageMode::Sliced(slicer.clone()),
```
and then nothing should be rendered, as desired.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
clean up example get_single method, make code clean;
## Solution
- replace `Query` with `Single` Query
- remove `get_single` or `get_single_mut` condition block
# Objective
Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)
## Solution
As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.
This accomplishes a number of goals:
## Ergonomics wins
Specifying both `Node` and `Style` is now no longer required for
non-default styles
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
## Conceptual clarity
`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).
By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.
## Next Steps
* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.
---
## Migration Guide
Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:
Before:
```rust
fn system(nodes: Query<&Node>) {
for node in &nodes {
let computed_size = node.size();
}
}
```
After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
for computed_node in &computed_nodes {
let computed_size = computed_node.size();
}
}
```
# Objective
Fixes#15791.
As raised in #11022, scaling orthographic cameras is confusing! In Bevy
0.14, there were multiple completely redundant ways to do this, and no
clear guidance on which to use.
As a result, #15075 removed the `scale` field from
`OrthographicProjection` completely, solving the redundancy issue.
However, this resulted in an unintuitive API and a painful migration, as
discussed in #15791. Users simply want to change a single parameter to
zoom, rather than deal with the irrelevant details of how the camera is
being scaled.
## Solution
This PR reverts #15075, and takes an alternate, more nuanced approach to
the redundancy problem. `ScalingMode::WindowSize` was by far the biggest
offender. This was the default variant, and stored a float that was
*fully* redundant to setting `scale`.
All of the other variants contained meaningful semantic information and
had an intuitive scale. I could have made these unitless, storing an
aspect ratio, but this would have been a worse API and resulted in a
pointlessly painful migration.
In the course of this work I've also:
- improved the documentation to explain that you should just set `scale`
to zoom cameras
- swapped to named fields for all of the variants in `ScalingMode` for
more clarity about the parameter meanings
- substantially improved the `projection_zoom` example
- removed the footgunny `Mul` and `Div` impls for `ScalingMode`,
especially since these no longer have the intended effect on
`ScalingMode::WindowSize`.
- removed a rounding step because this is now redundant 🎉
## Testing
I've tested these changes as part of my work in the `projection_zoom`
example, and things seem to work fine.
## Migration Guide
`ScalingMode` has been refactored for clarity, especially on how to zoom
orthographic cameras and their projections:
- `ScalingMode::WindowSize` no longer stores a float, and acts as if its
value was 1. Divide your camera's scale by any previous value to achieve
identical results.
- `ScalingMode::FixedVertical` and `FixedHorizontal` now use named
fields.
---------
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
Fixes#15834
## Migration Guide
The APIs of `Time`, `Timer` and `Stopwatch` have been cleaned up for
consistency with each other and the standard library's `Duration` type.
The following methods have been renamed:
- `Stowatch::paused` -> `Stopwatch::is_paused`
- `Time::elapsed_seconds` -> `Time::elasped_secs` (including `_f64` and
`_wrapped` variants)
# Objective
Closes#15799.
Many rendering people and maintainers are in favor of reverting default
mesh materials added in #15524, especially as the migration to required
component is already large and heavily breaking.
## Solution
Revert default mesh materials, and adjust docs accordingly.
- Remove `extract_default_materials`
- Remove `clear_material_instances`, and move the logic back into
`extract_mesh_materials`
- Remove `HasMaterial2d` and `HasMaterial3d`
- Change default material handles back to pink instead of white
- 2D uses `Color::srgb(1.0, 0.0, 1.0)`, while 3D uses `Color::srgb(1.0,
0.0, 0.5)`. Not sure if this is intended.
There is now no indication at all about missing materials for `Mesh2d`
and `Mesh3d`. Having a mesh without a material renders nothing.
## Testing
I ran `2d_shapes`, `mesh2d_manual`, and `3d_shapes`, with and without
mesh material components.
# Objective
Fixes#15847
Alternative to #15862. Would appreciate a rendering person signaling
preference for one or the other.
## Solution
Partially revert the changes made to this example in #15524.
Add comment explaining that the non-usage of the built-in color vertex
attribute is intentional.
## Testing
`cargo run --example mesh2d_manual`
# Objective
- closes#15866
## Solution
- Simply migrate where possible.
## Testing
- Expect that CI will do most of the work. Examples is another way of
testing this, as most of the work is in that area.
---
## Notes
For now, this PR doesn't migrate `QueryState::single` and friends as for
now, this look like another issue. So for example, QueryBuilders that
used single or `World::query` that used single wasn't migrated. If there
is a easy way to migrate those, please let me know.
Most of the uses of `Query::single` were removed, the only other uses
that I found was related to tests of said methods, so will probably be
removed when we remove `Query::single`.
# Objective
- Required components replace bundles, but `SpatialBundle` is yet to be
deprecated
## Solution
- Deprecate `SpatialBundle`
- Insert `Transform` and `Visibility` instead in examples using it
- In `spawn` or `insert` inserting a default `Transform` or `Visibility`
with component already requiring either, remove those components from
the tuple
## Testing
- Did you test these changes? If so, how?
Yes, I ran the examples I changed and tests
- Are there any parts that need more testing?
The `gamepad_viewer` and and `custom_shader_instancing` examples don't
work as intended due to entirely unrelated code, didn't check main.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Run examples, or just check that all spawned values are identical
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Linux, wayland trough x11 (cause that's the default feature)
---
## Migration Guide
`SpatialBundle` is now deprecated, insert `Transform` and `Visibility`
instead which will automatically insert all other components that were
in the bundle. If you do not specify these values and any other
components in your `spawn`/`insert` call already requires either of
these components you can leave that one out.
before:
```rust
commands.spawn(SpatialBundle::default());
```
after:
```rust
commands.spawn((Transform::default(), Visibility::default());
```
# Objective
Currently text is recomputed unnecessarily on any changes to its color,
which is extremely expensive.
## Solution
Split up `TextStyle` into two separate components `TextFont` and
`TextColor`.
## Testing
I added this system to `many_buttons`:
```rust
fn set_text_colors_changed(mut colors: Query<&mut TextColor>) {
for mut text_color in colors.iter_mut() {
text_color.set_changed();
}
}
```
reports ~4fps on main, ~50fps with this PR.
## Migration Guide
`TextStyle` has been renamed to `TextFont` and its `color` field has
been moved to a separate component named `TextColor` which newtypes
`Color`.
# Objective
In the Render World, there are a number of collections that are derived
from Main World entities and are used to drive rendering. The most
notable are:
- `VisibleEntities`, which is generated in the `check_visibility` system
and contains visible entities for a view.
- `ExtractedInstances`, which maps entity ids to asset ids.
In the old model, these collections were trivially kept in sync -- any
extracted phase item could look itself up because the render entity id
was guaranteed to always match the corresponding main world id.
After #15320, this became much more complicated, and was leading to a
number of subtle bugs in the Render World. The main rendering systems,
i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a
similar pattern:
```rust
for visible_entity in visible_entities.iter::<With<Mesh2d>>() {
let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
continue;
};
// Look some more stuff up and specialize the pipeline...
let bin_key = Opaque2dBinKey {
pipeline: pipeline_id,
draw_function: draw_opaque_2d,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material_2d.get_bind_group_id().0,
};
opaque_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching),
);
}
```
In this case, `visible_entities` and `render_mesh_instances` are both
collections that are created and keyed by Main World entity ids, and so
this lookup happens to work by coincidence. However, there is a major
unintentional bug here: namely, because `visible_entities` is a
collection of Main World ids, the phase item being queued is created
with a Main World id rather than its correct Render World id.
This happens to not break mesh rendering because the render commands
used for drawing meshes do not access the `ItemQuery` parameter, but
demonstrates the confusion that is now possible: our UI phase items are
correctly being queued with Render World ids while our meshes aren't.
Additionally, this makes it very easy and error prone to use the wrong
entity id to look up things like assets. For example, if instead we
ignored visibility checks and queued our meshes via a query, we'd have
to be extra careful to use `&MainEntity` instead of the natural
`Entity`.
## Solution
Make all collections that are derived from Main World data use
`MainEntity` as their key, to ensure type safety and avoid accidentally
looking up data with the wrong entity id:
```rust
pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>;
```
Additionally, we make all `PhaseItem` be able to provide both their Main
and Render World ids, to allow render phase implementors maximum
flexibility as to what id should be used to look up data.
You can think of this like tracking at the type level whether something
in the Render World should use it's "primary key", i.e. entity id, or
needs to use a foreign key, i.e. `MainEntity`.
## Testing
##### TODO:
This will require extensive testing to make sure things didn't break!
Additionally, some extraction logic has become more complicated and
needs to be checked for regressions.
## Migration Guide
With the advent of the retained render world, collections that contain
references to `Entity` that are extracted into the render world have
been changed to contain `MainEntity` in order to prevent errors where a
render world entity id is used to look up an item by accident. Custom
rendering code may need to be changed to query for `&MainEntity` in
order to look up the correct item from such a collection. Additionally,
users who implement their own extraction logic for collections of main
world entity should strongly consider extracting into a different
collection that uses `MainEntity` as a key.
Additionally, render phases now require specifying both the `Entity` and
`MainEntity` for a given `PhaseItem`. Custom render phases should ensure
`MainEntity` is available when queuing a phase item.
**Ready for review. Examples migration progress: 100%.**
# Objective
- Implement https://github.com/bevyengine/bevy/discussions/15014
## Solution
This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.
Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.
## Testing
- [x] Text examples all work.
---
## Showcase
TODO: showcase-worthy
## Migration Guide
TODO: very breaking
### Accessing text spans by index
Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.
Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
let text = query.single_mut();
text.sections[1].value = format_time(time.elapsed());
}
```
After:
```rust
fn refresh_text(
query: Query<Entity, With<TimeText>>,
mut writer: UiTextWriter,
time: Res<Time>
) {
let entity = query.single();
*writer.text(entity, 1) = format_time(time.elapsed());
}
```
### Iterating text spans
Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Continue migration of bevy APIs to required components, following
guidance of https://hackmd.io/@bevy/required_components/
## Solution
- Make `Sprite` require `Transform` and `Visibility` and
`SyncToRenderWorld`
- move image and texture atlas handles into `Sprite`
- deprecate `SpriteBundle`
- remove engine uses of `SpriteBundle`
## Testing
ran cargo tests on bevy_sprite and tested several sprite examples.
---
## Migration Guide
Replace all uses of `SpriteBundle` with `Sprite`. There are several new
convenience constructors: `Sprite::from_image`,
`Sprite::from_atlas_image`, `Sprite::from_color`.
WARNING: use of `Handle<Image>` and `TextureAtlas` as components on
sprite entities will NO LONGER WORK. Use the fields on `Sprite` instead.
I would have removed the `Component` impls from `TextureAtlas` and
`Handle<Image>` except it is still used within ui. We should fix this
moving forward with the migration.
# Objective
Several of our APIs (namely gizmos and bounding) use isometries on
current Bevy main. This is nicer than separate properties in a lot of
cases, but users have still expressed usability concerns.
One problem is that in a lot of cases, you only care about e.g.
translation, so you end up with this:
```rust
gizmos.cross_2d(
Isometry2d::from_translation(Vec2::new(-160.0, 120.0)),
12.0,
FUCHSIA,
);
```
The isometry adds quite a lot of length and verbosity, and isn't really
that relevant since only the translation is important here.
It would be nice if you could use the translation directly, and only
supply an isometry if both translation and rotation are needed. This
would make the following possible:
```rust
gizmos.cross_2d(Vec2::new(-160.0, 120.0), 12.0, FUCHSIA);
```
removing a lot of verbosity.
## Solution
Implement `From<Vec2>` and `From<Rot2>` for `Isometry2d`, and
`From<Vec3>`, `From<Vec3A>`, and `From<Quat>` for `Isometry3d`. These
are lossless conversions that fit the semantics of `From`.
This makes the proposed API possible! The methods must now simply take
an `impl Into<IsometryNd>`, and this works:
```rust
gizmos.cross_2d(Vec2::new(-160.0, 120.0), 12.0, FUCHSIA);
```
# Objective
If you want to draw / generate images from the CPU, such as:
- to create procedurally-generated assets
- for games whose artstyle is best implemented by poking pixels directly
from the CPU, instead of using shaders
It is currently very unergonomic to do in Bevy, because you have to deal
with the raw bytes inside `image.data`, take care of the pixel format,
etc.
## Solution
This PR adds some helper methods to `Image` for pixel manipulation.
These methods allow you to use Bevy's user-friendly `Color` struct to
read and write the colors of pixels, at arbitrary coordinates (specified
as `UVec3` to support any texture dimension). They handle
encoding/decoding to the `Image`s `TextureFormat`, incl. any sRGB
conversion.
While we are at it, also add methods to help with direct access to the
raw bytes. It is now easy to compute the offset where the bytes of a
specific pixel coordinate are found, or to just get a Rust slice to
access them.
Caveat: `Color` roundtrips are obviously going to be lossy for non-float
`TextureFormat`s. Using `set_color_at` followed by `get_color_at` will
return a different value, due to the data conversions involved (such as
`f32` -> `u8` -> `f32` for the common `Rgba8UnormSrgb` texture format).
Be careful when comparing colors (such as checking for a color you wrote
before)!
Also adding a new example: `cpu_draw` (under `2d`), to showcase these
new APIs.
---
## Changelog
### Added
- `Image` APIs for easy access to the colors of specific pixels.
---------
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: ltdk <usr@ltdk.xyz>
# Objective
Yet another PR for migrating stuff to required components. This time,
cameras!
## Solution
As per the [selected
proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected),
deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d`
and `Camera3d`.
Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning,
as suggested by Cart [on
Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273).
I would personally like cameras to work a bit differently and be split
into a few more components, to avoid some footguns and confusing
semantics, but that is more controversial, and shouldn't block this core
migration.
## Testing
I ran a few 2D and 3D examples, and tried cameras with and without
render graphs.
---
## Migration Guide
`Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of
`Camera2d` and `Camera3d`. Inserting them will now also insert the other
components required by them automatically.
As discussed in #15521
- Partial revert of #14897, reverting the change to the methods to
consume `self`
- The `insert_if` method is kept
The migration guide of #14897 should be removed
Closes#15521
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Improve code quality in preparation for
https://github.com/bevyengine/bevy/discussions/15014
## Solution
- Rename BreakLineOn to LineBreak.
## Migration Guide
`BreakLineOn` was renamed to `LineBreak`, and paramters named
`linebreak_behavior` were renamed to `linebreak`.
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Mostly covers the first point in
https://github.com/bevyengine/bevy/issues/13713#issuecomment-2364786694
The idea here is that a lot of people want to load their own texture
atlases, and many of them do this by deserializing some custom version
of `TextureAtlasLayout`. This makes that a little easier by providing
`serde` impls for them.
## Solution
In order to make `TextureAtlasLayout` serializable, the custom texture
mappings that are added by `TextureAtlasBuilder` were separated into
their own type, `TextureAtlasSources`. The inner fields are made public
so people can create their own version of this type, although because it
embeds asset IDs, it's not as easily serializable. In particular,
atlases that are loaded directly (e.g. sprite sheets) will not have a
copy of this map, and so, don't need to construct it at all.
As an aside, since this is the very first thing in `bevy_sprite` with
`serde` impls, I've added a `serialize` feature to the crate and made
sure it gets activated when the `serialize` feature is enabled on the
parent `bevy` crate.
## Testing
I was kind of shocked that there isn't anywhere in the code besides a
single example that actually used this functionality, so, it was
relatively straightforward to do.
In #13713, among other places, folks have mentioned adding custom
serialization into their pipelines. It would be nice to hear from people
whether this change matches what they're doing in their code, and if
it's relatively seamless to adapt to. I suspect that the answer is yes,
but, that's mainly the only other kind of testing that can be added.
## Migration Guide
`TextureAtlasBuilder` no longer stores a mapping back to the original
images in `TextureAtlasLayout`; that functionality has been added to a
new struct, `TextureAtlasSources`, instead. This also means that the
signature for `TextureAtlasBuilder::finish` has changed, meaning that
calls of the form:
```rust
let (atlas_layout, image) = builder.build()?;
```
Will now change to the form:
```rust
let (atlas_layout, atlas_sources, image) = builder.build()?;
```
And instead of performing a reverse-lookup from the layout, like so:
```rust
let atlas_layout_handle = texture_atlases.add(atlas_layout.clone());
let index = atlas_layout.get_texture_index(&my_handle);
let handle = TextureAtlas {
layout: atlas_layout_handle,
index,
};
```
You can perform the lookup from the sources instead:
```rust
let atlas_layout = texture_atlases.add(atlas_layout);
let index = atlas_sources.get_texture_index(&my_handle);
let handle = TextureAtlas {
layout: atlas_layout,
index,
};
```
Additionally, `TextureAtlasSources` also has a convenience method,
`handle`, which directly combines the index and an existing
`TextureAtlasLayout` handle into a new `TextureAtlas`:
```rust
let atlas_layout = texture_atlases.add(atlas_layout);
let handle = atlas_sources.handle(atlas_layout, &my_handle);
```
## Extra notes
In the future, it might make sense to combine the three types returned
by `TextureAtlasBuilder` into their own struct, just so that people
don't need to assign variable names to all three parts. In particular,
when creating a version that can be loaded directly (like #11873), we
could probably use this new type.
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fixes#10720
- Adds the ability to control font smoothing of rendered text
## Solution
- Introduce the `FontSmoothing` enum, with two possible variants
(`FontSmoothing::None` and `FontSmoothing::AntiAliased`):
- This is based on `-webkit-font-smoothing`, in line with our practice
of adopting CSS-like properties/names for UI;
- I could have gone instead for the [`font-smooth`
property](https://developer.mozilla.org/en-US/docs/Web/CSS/font-smooth)
that's also supported by browsers, but didn't since it's also
non-standard, has an uglier name, and doesn't allow controlling the type
of antialias applied.
- Having an enum instead of e.g. a boolean, leaves the path open for
adding `FontSmoothing::SubpixelAntiAliased` in the future, without a
breaking change;
- Add all the necessary plumbing to get the `FontSmoothing` information
to where we rasterize the glyphs and store them in the atlas;
- Change the font atlas key to also take into account the smoothing
setting, not only font and font size;
- Since COSMIC Text [doesn't support controlling font
smoothing](https://github.com/pop-os/cosmic-text/issues/279), we roll
out our own threshold-based “implementation”:
- This has the downside of **looking ugly for “regular” vector fonts**
⚠️, since it doesn't properly take the hinting information into account
like a proper implementation on the rasterizer side would.
- However, **for fonts that have been specifically authored to be pixel
fonts, (a common use case in games!) this is not as big of a problem**,
since all lines are vertical/horizontal, and close to the final pixel
boundaries (as long as the font is used at a multiple of the size
originally intended by the author)
- Once COSMIC exposes this functionality, we can switch to using it
directly, and get better results;
- Use a nearest neighbor sampler for atlases with font smoothing
disabled, so that you can scale the text via transform and still get the
pixelated look;
- Add a convenience method to `Text` for setting the font smoothing;
- Add a demonstration of using the `FontSmoothing` property to the
`text2d` example.
## Testing
- Did you test these changes? If so, how?
- Yes. Via the `text2d`example, and also in my game.
- Are there any parts that need more testing?
- I'd like help from someone for testing this on devices/OSs with
fractional scaling (Android/Windows)
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Both via the `text2d` example and also by using it directly on your
projects.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- macOS
---
## Showcase
```rust
commands.spawn(Text2dBundle {
text: Text::from_section("Hello, World!", default())
.with_font_smoothing(FontSmoothing::None),
..default()
});
```
![Screenshot 2024-09-22 at 12 33
39](https://github.com/user-attachments/assets/93e19672-b8c0-4cba-a8a3-4525fe2ae1cb)
<img width="740" alt="image"
src="https://github.com/user-attachments/assets/b881b02c-4e43-410b-902f-6985c25140fc">
## Migration Guide
- `Text` now contains a `font_smoothing: FontSmoothing` property, make
sure to include it or add `..default()` when using the struct directly;
- `FontSizeKey` has been renamed to `FontAtlasKey`, and now also
contains the `FontSmoothing` setting;
- The following methods now take an extra `font_smoothing:
FontSmoothing` argument:
- `FontAtlas::new()`
- `FontAtlasSet::add_glyph_to_atlas()`
- `FontAtlasSet::get_glyph_atlas_info()`
- `FontAtlasSet::get_outlined_glyph_texture()`
# Objective
- Fixes#15319
- Fixes#15317
## Solution
- Updated CI task to check for _any_ `bevy_*` crates, rather than just
`bevy_internal`
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fixes#15236
## Solution
- Use bevy_math::ops instead of std floating point operations.
## Testing
- Did you test these changes? If so, how?
Unit tests and `cargo run -p ci -- test`
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Execute `cargo run -p ci -- test` on Windows.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Windows
## Migration Guide
- Not a breaking change
- Projects should use bevy math where applicable
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
The names of numerous rendering components in Bevy are inconsistent and
a bit confusing. Relevant names include:
- `AutoExposureSettings`
- `AutoExposureSettingsUniform`
- `BloomSettings`
- `BloomUniform` (no `Settings`)
- `BloomPrefilterSettings`
- `ChromaticAberration` (no `Settings`)
- `ContrastAdaptiveSharpeningSettings`
- `DepthOfFieldSettings`
- `DepthOfFieldUniform` (no `Settings`)
- `FogSettings`
- `SmaaSettings`, `Fxaa`, `TemporalAntiAliasSettings` (really
inconsistent??)
- `ScreenSpaceAmbientOcclusionSettings`
- `ScreenSpaceReflectionsSettings`
- `VolumetricFogSettings`
Firstly, there's a lot of inconsistency between `Foo`/`FooSettings` and
`FooUniform`/`FooSettingsUniform` and whether names are abbreviated or
not.
Secondly, the `Settings` post-fix seems unnecessary and a bit confusing
semantically, since it makes it seem like the component is mostly just
auxiliary configuration instead of the core *thing* that actually
enables the feature. This will be an even bigger problem once bundles
like `TemporalAntiAliasBundle` are deprecated in favor of required
components, as users will expect a component named `TemporalAntiAlias`
(or similar), not `TemporalAntiAliasSettings`.
## Solution
Drop the `Settings` post-fix from the component names, and change some
names to be more consistent.
- `AutoExposure`
- `AutoExposureUniform`
- `Bloom`
- `BloomUniform`
- `BloomPrefilter`
- `ChromaticAberration`
- `ContrastAdaptiveSharpening`
- `DepthOfField`
- `DepthOfFieldUniform`
- `DistanceFog`
- `Smaa`, `Fxaa`, `TemporalAntiAliasing` (note: we might want to change
to `Taa`, see "Discussion")
- `ScreenSpaceAmbientOcclusion`
- `ScreenSpaceReflections`
- `VolumetricFog`
I kept the old names as deprecated type aliases to make migration a bit
less painful for users. We should remove them after the next release.
(And let me know if I should just... not add them at all)
I also added some very basic docs for a few types where they were
missing, like on `Fxaa` and `DepthOfField`.
## Discussion
- `TemporalAntiAliasing` is still inconsistent with `Smaa` and `Fxaa`.
Consensus [on
Discord](https://discord.com/channels/691052431525675048/743663924229963868/1280601167209955431)
seemed to be that renaming to `Taa` would probably be fine, but I think
it's a bit more controversial, and it would've required renaming a lot
of related types like `TemporalAntiAliasNode`,
`TemporalAntiAliasBundle`, and `TemporalAntiAliasPlugin`, so I think
it's better to leave to a follow-up.
- I think `Fog` should probably have a more specific name like
`DistanceFog` considering it seems to be distinct from `VolumetricFog`.
~~This should probably be done in a follow-up though, so I just removed
the `Settings` post-fix for now.~~ (done)
---
## Migration Guide
Many rendering components have been renamed for improved consistency and
clarity.
- `AutoExposureSettings` → `AutoExposure`
- `BloomSettings` → `Bloom`
- `BloomPrefilterSettings` → `BloomPrefilter`
- `ContrastAdaptiveSharpeningSettings` → `ContrastAdaptiveSharpening`
- `DepthOfFieldSettings` → `DepthOfField`
- `FogSettings` → `DistanceFog`
- `SmaaSettings` → `Smaa`
- `TemporalAntiAliasSettings` → `TemporalAntiAliasing`
- `ScreenSpaceAmbientOcclusionSettings` → `ScreenSpaceAmbientOcclusion`
- `ScreenSpaceReflectionsSettings` → `ScreenSpaceReflections`
- `VolumetricFogSettings` → `VolumetricFog`
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Hello! I am adopting #11022 to resolve conflicts with `main`. tldr: this
removes `scale` in favour of `scaling_mode`. Please see the original PR
for explanation/discussion.
Also relates to #2580.
## Migration Guide
Replace all uses of `scale` with `scaling_mode`, keeping in mind that
`scale` is (was) a multiplier. For example, replace
```rust
scale: 2.0,
scaling_mode: ScalingMode::FixedHorizontal(4.0),
```
with
```rust
scaling_mode: ScalingMode::FixedHorizontal(8.0),
```
---------
Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
# Objective
`EntityHash` and related types were moved from `bevy_utils` to
`bevy_ecs` in #11498, but seemed to have been accidentally reintroduced
a week later in #11707.
## Solution
Remove the old leftover code.
---
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity`.
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/14593.
## Solution
- Add `ViewportConversionError` and return it from viewport conversion
methods on Camera.
## Testing
- I successfully compiled and ran all changed examples.
## Migration Guide
The following methods on `Camera` now return a `Result` instead of an
`Option` so that they can provide more information about failures:
- `world_to_viewport`
- `world_to_viewport_with_depth`
- `viewport_to_world`
- `viewport_to_world_2d`
Call `.ok()` on the `Result` to turn it back into an `Option`, or handle
the `Result` directly.
---------
Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Replaced the existing instantiation of the 2D Circle in the 2d_shapes.rs
file with the `new` method.
- Ensures consistency in instantiating 2D primitive shapes in the
examples.
## Solution
Replaced the existing instantiation of the 2D Circle in the 2d_shapes.rs
file with the `new` method.
- Ensures consistency in instantiating 2D primitive shapes in the
examples.
## Testing
- None: Should be straight-forward enough to not warrant a test (I will
eat my words if I am wrong).
---
# Objective
- Solves the last bullet in and closes#14319
- Make better use of the `Isometry` types
- Prevent issues like #14655
- Probably simplify and clean up a lot of code through the use of Gizmos
as well (i.e. the 3D gizmos for cylinders circles & lines don't connect
well, probably due to wrong rotations)
## Solution
- go through the `bevy_gizmos` crate and give all methods a slight
workover
## Testing
- For all the changed examples I run `git switch main && cargo rr
--example <X> && git switch <BRANCH> && cargo rr --example <X>` and
compare the visual results
- Check if all doc tests are still compiling
- Check the docs in general and update them !!!
---
## Migration Guide
The gizmos methods function signature changes as follows:
- 2D
- if it took `position` & `rotation_angle` before ->
`Isometry2d::new(position, Rot2::radians(rotation_angle))`
- if it just took `position` before ->
`Isometry2d::from_translation(position)`
- 3D
- if it took `position` & `rotation` before ->
`Isometry3d::new(position, rotation)`
- if it just took `position` before ->
`Isometry3d::from_translation(position)`
# Objective
Fixes#14883
## Solution
Pretty simple update to `EntityCommands` methods to consume `self` and
return it rather than taking `&mut self`. The things probably worth
noting:
* I added `#[allow(clippy::should_implement_trait)]` to the `add` method
because it causes a linting conflict with `std::ops::Add`.
* `despawn` and `log_components` now return `Self`. I'm not sure if
that's exactly the desired behavior so I'm happy to adjust if that seems
wrong.
## Testing
Tested with `cargo run -p ci`. I think that should be sufficient to call
things good.
## Migration Guide
The most likely migration needed is changing code from this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity.insert(DepthPrepass);
}
if normal_prepass {
entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
to this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity = entity.insert(DepthPrepass);
}
if normal_prepass {
entity = entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity = entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
as can be seen in several of the example code updates here. There will
probably also be instances where mutable `EntityCommands` vars no longer
need to be mutable.
Fix `mesh2d_manual` example from changes in #13069.
```
wgpu error: Validation Error
Caused by:
In RenderPass::end
In a set_pipeline command
Render pipeline targets are incompatible with render pass
Incompatible depth-stencil attachment format: the RenderPass uses a texture with format Some(Depth32Float) but the RenderPipeline with 'colored_mesh2d_pipeline' label uses an attachment with format None
```
# Objective
- Fix error when closing window in 2d_viewport_to_world example.
Before
```
2024-08-17T22:51:47.690252Z INFO bevy_winit::system: Creating new window "App" (0v1#4294967296)
2024-08-17T22:52:22.062959Z INFO bevy_window::system: No windows are open, exiting
2024-08-17T22:52:22.064045Z INFO bevy_winit::system: Closing window 0v1#4294967296
thread 'Compute Task Pool (5)' panicked at examples/2d/2d_viewport_to_world.rs:20:41:
called `Result::unwrap()` on an `Err` value: NoEntities("bevy_ecs::query::state::QueryState<&bevy_window:🪟:Window>")
```
After
```
2024-08-17T22:57:31.623499Z INFO bevy_winit::system: Creating new window "App" (0v1#4294967296)
2024-08-17T22:57:32.990058Z INFO bevy_window::system: No windows are open, exiting
2024-08-17T22:57:32.991152Z INFO bevy_winit::system: Closing window 0v1#4294967296
2024-08-17T22:57:32.994426Z INFO bevy_window::system: No windows are open, exiting
* Terminal will be reused by tasks, press any key to close it.
```
## Solution
- Check if the window still exists before drawing the cursor
# Objective
- Bevy now supports an opaque phase for mesh2d, but it's very common for
2d textures to have a transparent alpha channel.
## Solution
- Add an alpha mask phase identical to the one in 3d. It will do the
alpha masking in the shader before drawing the mesh.
- Uses the BinnedRenderPhase
- Since it's an opaque draw it also correctly writes to depth
## Testing
- Tested the mes2d_alpha_mode example and the bevymark example with
alpha mask mode enabled
---
## Showcase
![image](https://github.com/user-attachments/assets/9e5e4561-d0a7-4aa3-b049-d4b1247d5ed4)
The white logo on the right is rendered with alpha mask enabled.
Running the bevymark example I can get 65fps for 120k mesh2d all using
alpha mask.
## Notes
This is one more step for mesh2d improvements
https://github.com/bevyengine/bevy/issues/13265
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
- Wireframe plugins have inconsistencies between 3D and 2D versions.
This PR addresses the following
- 2d version uses `Srgba` for colors, 3d version uses `Color`.
## Solution
- This PR brings consistency by doing the following change
- `Wireframe2d` now uses `Color` instead of `Srgba`
## Testing
- `wireframe_2d` and `wireframe` examples were verified and they work as
before.
---
## Migration Guide
- `Wireframe2dConfig`.`default_color` type is now `Color` instead of
`Srgba`. Use `.into()` to convert between them.
- `Wireframe2dColor`.`color` type is now `Color` instead of `Srgba`. Use
`.into()` to convert between them.
This PR is based on top of #12982
# Objective
- Mesh2d currently only has an alpha blended phase. Most sprites don't
need transparency though.
- For some 2d games it can be useful to have a 2d depth buffer
## Solution
- Add an opaque phase to render Mesh2d that don't need transparency
- This phase currently uses the `SortedRenderPhase` to make it easier to
implement based on the already existing transparent phase. A follow up
PR will switch this to `BinnedRenderPhase`.
- Add a 2d depth buffer
- Use that depth buffer in the transparent phase to make sure that
sprites and transparent mesh2d are displayed correctly
## Testing
I added the mesh2d_transforms example that layers many opaque and
transparent mesh2d to make sure they all get displayed correctly. I also
confirmed it works with sprites by modifying that example locally.
---
## Changelog
- Added `AlphaMode2d`
- Added `Opaque2d` render phase
- Camera2d now have a `ViewDepthTexture` component
## Migration Guide
- `ColorMaterial` now contains `AlphaMode2d`. To keep previous
behaviour, use `AlphaMode::BLEND`. If you know your sprite is opaque,
use `AlphaMode::OPAQUE`
## Follow up PRs
- See tracking issue: #13265
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com>
# Objective
Previously, this area of bevy_math used raw translation and rotations to
encode isometries, which did not exist earlier. The goal of this PR is
to make the codebase of bevy_math more harmonious by using actual
isometries (`Isometry2d`/`Isometry3d`) in these places instead — this
will hopefully make the interfaces more digestible for end-users, in
addition to facilitating conversions.
For instance, together with the addition of #14478, this means that a
bounding box for a collider with an isometric `Transform` can be
computed as
```rust
collider.aabb_3d(collider_transform.to_isometry())
```
instead of using manual destructuring.
## Solution
- The traits `Bounded2d` and `Bounded3d` now use `Isometry2d` and
`Isometry3d` (respectively) instead of `translation` and `rotation`
parameters; e.g.:
```rust
/// A trait with methods that return 3D bounding volumes for a shape.
pub trait Bounded3d {
/// Get an axis-aligned bounding box for the shape translated and
rotated by the given isometry.
fn aabb_3d(&self, isometry: Isometry3d) -> Aabb3d;
/// Get a bounding sphere for the shape translated and rotated by the
given isometry.
fn bounding_sphere(&self, isometry: Isometry3d) -> BoundingSphere;
}
```
- Similarly, the `from_point_cloud` constructors for axis-aligned
bounding boxes and bounding circles/spheres now take isometries instead
of separate `translation` and `rotation`; e.g.:
```rust
/// Computes the smallest [`Aabb3d`] containing the given set of points,
/// transformed by the rotation and translation of the given isometry.
///
/// # Panics
///
/// Panics if the given set of points is empty.
#[inline(always)]
pub fn from_point_cloud(
isometry: Isometry3d,
points: impl Iterator<Item = impl Into<Vec3A>>,
) -> Aabb3d { //... }
```
This has a couple additional results:
1. The end-user no longer interacts directly with `Into<Vec3A>` or
`Into<Rot2>` parameters; these conversions all happen earlier now,
inside the isometry types.
2. Similarly, almost all intermediate `Vec3 -> Vec3A` conversions have
been eliminated from the `Bounded3d` implementations for primitives.
This probably has some performance benefit, but I have not measured it
as of now.
## Testing
Existing unit tests help ensure that nothing has been broken in the
refactor.
---
## Migration Guide
The `Bounded2d` and `Bounded3d` traits now take `Isometry2d` and
`Isometry3d` parameters (respectively) instead of separate translation
and rotation arguments. Existing calls to `aabb_2d`, `bounding_circle`,
`aabb_3d`, and `bounding_sphere` will have to be changed to use
isometries instead. A straightforward conversion is to refactor just by
calling `Isometry2d/3d::new`, as follows:
```rust
// Old:
let aabb = my_shape.aabb_2d(my_translation, my_rotation);
// New:
let aabb = my_shape.aabb_2d(Isometry2d::new(my_translation, my_rotation));
```
However, if the old translation and rotation are 3d
translation/rotations originating from a `Transform` or
`GlobalTransform`, then `to_isometry` may be used instead. For example:
```rust
// Old:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.translation, shape_transform.rotation);
// New:
let bounding_sphere = my_shape.bounding_sphere(shape_transform.to_isometry());
```
This discussion also applies to the `from_point_cloud` construction
method of `Aabb2d`/`BoundingCircle`/`Aabb3d`/`BoundingSphere`, which has
similarly been altered to use isometries.
Switches `Msaa` from being a globally configured resource to a per
camera view component.
Closes#7194
# Objective
Allow individual views to describe their own MSAA settings. For example,
when rendering to different windows or to different parts of the same
view.
## Solution
Make `Msaa` a component that is required on all camera bundles.
## Testing
Ran a variety of examples to ensure that nothing broke.
TODO:
- [ ] Make sure android still works per previous comment in
`extract_windows`.
---
## Migration Guide
`Msaa` is no longer configured as a global resource, and should be
specified on each spawned camera if a non-default setting is desired.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
This commit uses the [`offset-allocator`] crate to combine vertex and
index arrays from different meshes into single buffers. Since the
primary source of `wgpu` overhead is from validation and synchronization
when switching buffers, this significantly improves Bevy's rendering
performance on many scenes.
This patch is a more flexible version of #13218, which also used slabs.
Unlike #13218, which used slabs of a fixed size, this commit implements
slabs that start small and can grow. In addition to reducing memory
usage, supporting slab growth reduces the number of vertex and index
buffer switches that need to happen during rendering, leading to
improved performance. To prevent pathological fragmentation behavior,
slabs are capped to a maximum size, and mesh arrays that are too large
get their own dedicated slabs.
As an additional improvement over #13218, this commit allows the
application to customize all allocator heuristics. The
`MeshAllocatorSettings` resource contains values that adjust the minimum
and maximum slab sizes, the cutoff point at which meshes get their own
dedicated slabs, and the rate at which slabs grow. Hopefully-sensible
defaults have been chosen for each value.
Unfortunately, WebGL 2 doesn't support the *base vertex* feature, which
is necessary to pack vertex arrays from different meshes into the same
buffer. `wgpu` represents this restriction as the downlevel flag
`BASE_VERTEX`. This patch detects that bit and ensures that all vertex
buffers get dedicated slabs on that platform. Even on WebGL 2, though,
we can combine all *index* arrays into single buffers to reduce buffer
changes, and we do so.
The following measurements are on Bistro:
Overall frame time improves from 8.74 ms to 5.53 ms (1.58x speedup):
![Screenshot 2024-07-09
163521](https://github.com/bevyengine/bevy/assets/157897/5d83c824-c0ee-434c-bbaf-218ff7212c48)
Render system time improves from 6.57 ms to 3.54 ms (1.86x speedup):
![Screenshot 2024-07-09
163559](https://github.com/bevyengine/bevy/assets/157897/d94e2273-c3a0-496a-9f88-20d394129610)
Opaque pass time improves from 4.64 ms to 2.33 ms (1.99x speedup):
![Screenshot 2024-07-09
163536](https://github.com/bevyengine/bevy/assets/157897/e4ef6e48-d60e-44ae-9a71-b9a731c99d9a)
## Migration Guide
### Changed
* Vertex and index buffers for meshes may now be packed alongside other
buffers, for performance.
* `GpuMesh` has been renamed to `RenderMesh`, to reflect the fact that
it no longer directly stores handles to GPU objects.
* Because meshes no longer have their own vertex and index buffers, the
responsibility for the buffers has moved from `GpuMesh` (now called
`RenderMesh`) to the `MeshAllocator` resource. To access the vertex data
for a mesh, use `MeshAllocator::mesh_vertex_slice`. To access the index
data for a mesh, use `MeshAllocator::mesh_index_slice`.
[`offset-allocator`]: https://github.com/pcwalton/offset-allocator
# Replace ab_glyph with the more capable cosmic-text
Fixes#7616.
Cosmic-text is a more mature text-rendering library that handles scripts
and ligatures better than ab_glyph, it can also handle system fonts
which can be implemented in bevy in the future
Rebase of https://github.com/bevyengine/bevy/pull/8808
## Changelog
Replaces text renderer ab_glyph with cosmic-text
The definition of the font size has changed with the migration to cosmic
text. The behavior is now consistent with other platforms (e.g. the
web), where the font size in pixels measures the height of the font (the
distance between the top of the highest ascender and the bottom of the
lowest descender). Font sizes in your app need to be rescaled to
approximately 1.2x smaller; for example, if you were using a font size
of 60.0, you should now use a font size of 50.0.
## Migration guide
- `Text2dBounds` has been replaced with `TextBounds`, and it now accepts
`Option`s to the bounds, instead of using `f32::INFINITY` to inidicate
lack of bounds
- Textsizes should be changed, dividing the current size with 1.2 will
result in the same size as before.
- `TextSettings` struct is removed
- Feature `subpixel_alignment` has been removed since cosmic-text
already does this automatically
- TextBundles and things rendering texts requires the `CosmicBuffer`
Component on them as well
## Suggested followups:
- TextPipeline: reconstruct byte indices for keeping track of eventual
cursors in text input
- TextPipeline: (future work) split text entities into section entities
- TextPipeline: (future work) text editing
- Support line height as an option. Unitless `1.2` is the default used
in browsers (1.2x font size).
- Support System Fonts and font families
- Example showing of animated text styles. Eg. throbbing hyperlinks
---------
Co-authored-by: tigregalis <anak.harimau@gmail.com>
Co-authored-by: Nico Burns <nico@nicoburns.com>
Co-authored-by: sam edelsten <samedelsten1@gmail.com>
Co-authored-by: Dimchikkk <velo.app1@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
A couple issues with this example are evident from this screenshot of
the example showcase:
<img width="319" alt="image"
src="https://github.com/bevyengine/bevy/assets/200550/5325bb29-9576-4989-a5a3-a972c8bbf1af">
- The images are misaligned, closer to the right edge of the screen
- The example uses a custom window resolution with a different aspect
ratio from the default, which results in black bars
## Solution
- Use the default window size
- Adjust positions so that things are centered
This isn't really fixing a problem, but I also:
- Used the default font size and adjusted the text labels and gaps so
that everything still fits
Which is how I got here in the first place (one less font size to adjust
for the cosmic text PR).
## Before
<img width="1350" alt="Screenshot 2024-06-20 at 12 23 10 PM"
src="https://github.com/bevyengine/bevy/assets/200550/1c7cfcfe-7edc-4561-a4e7-9b3bc8f87f75">
## After
<img width="1280" alt="Screenshot 2024-06-20 at 12 23 30 PM"
src="https://github.com/bevyengine/bevy/assets/200550/abab8a46-4e11-4ee6-a407-ae3b8bf31975">