# Objective
1. Previously, the `change_tick` and `last_change_tick` fields on `SystemChangeTick` [were `pub`](https://docs.rs/bevy/0.6.1/bevy/ecs/system/struct.SystemChangeTick.html).
1. This was actively misleading, as while this can be fetched as a `SystemParam`, a copy is returned instead
2. This information could be useful for debugging, but there was no way to investigate when data was changed.
3. There were no docs!
## Solution
1. Move these to a getter method.
2. Add `last_changed` method to the `DetectChanges` trait to enable inspection of when data was last changed.
3. Add docs.
# Changelog
`SystemChangeTick` now provides getter methods for the current and previous change tick, rather than public fields.
This can be combined with `DetectChanges::last_changed()` to debug the timing of changes.
# Migration guide
The `change_tick` and `last_change_tick` fields on `SystemChangeTick` are now private, use the corresponding getter method instead.
# Objective
`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.
## Solution
Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.
The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.
## Changelog
TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.
- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
- this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
- was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
- this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
- allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
- required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
- allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
- this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
- `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
- allows the fetches to store borrows of world data instead of using raw pointers
## Migration guide
- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using
### Type inference regression
in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:
```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
--> crates/bevy_pbr/src/render/light.rs:1413:30
|
1413 | main_view_query: QueryState::new(world),
| ^^^^^^^^^^^^^^^ expected `bool`, found `()`
|
= note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
--> crates/bevy_ecs/src/query/state.rs:49:32
|
49 | for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
| ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```
---
Made with help from @BoxyUwU and @alice-i-cecile
Co-authored-by: Boxy <supbscripter@gmail.com>
# Objective
- Clarify `RemovedComponents` are flushed in `CoreStage::Last` and systems relying on that should run before that stage
## Solution
- Update `RemovedComponents` doc comment
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.
## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.
Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
# Objective
- Fixes#3300
- `RunSystem` is messy
## Solution
- Adds the trick theorised in https://github.com/bevyengine/bevy/issues/3300#issuecomment-991791234
P.S. I also want this for an experimental refactoring of `Assets`, to remove the duplication of `Events<AssetEvent<T>>`
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fix the ugliness of the `config` api.
- Supercedes #2440, #2463, #2491
## Solution
- Since #2398, capturing closure systems have worked.
- Use those instead where we needed config before
- Remove the rest of the config api.
- Related: #2777
# Objective
- Closes#786
- Closes#2252
- Closes#2588
This PR implements a derive macro that allows users to define their queries as structs with named fields.
## Example
```rust
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct NumQuery<'w, T: Component, P: Component> {
entity: Entity,
u: UNumQuery<'w>,
generic: GenericQuery<'w, T, P>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct UNumQuery<'w> {
u_16: &'w u16,
u_32_opt: Option<&'w u32>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct GenericQuery<'w, T: Component, P: Component> {
generic: (&'w T, &'w P),
}
#[derive(WorldQuery)]
#[world_query(filter)]
struct NumQueryFilter<T: Component, P: Component> {
_u_16: With<u16>,
_u_32: With<u32>,
_or: Or<(With<i16>, Changed<u16>, Added<u32>)>,
_generic_tuple: (With<T>, With<P>),
_without: Without<Option<u16>>,
_tp: PhantomData<(T, P)>,
}
fn print_nums_readonly(query: Query<NumQuery<u64, i64>, NumQueryFilter<u64, i64>>) {
for num in query.iter() {
println!("{:#?}", num);
}
}
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct MutNumQuery<'w, T: Component, P: Component> {
i_16: &'w mut i16,
i_32_opt: Option<&'w mut i32>,
}
fn print_nums(mut query: Query<MutNumQuery, NumQueryFilter<u64, i64>>) {
for num in query.iter_mut() {
println!("{:#?}", num);
}
}
```
## TODOs:
- [x] Add support for `&T` and `&mut T`
- [x] Test
- [x] Add support for optional types
- [x] Test
- [x] Add support for `Entity`
- [x] Test
- [x] Add support for nested `WorldQuery`
- [x] Test
- [x] Add support for tuples
- [x] Test
- [x] Add support for generics
- [x] Test
- [x] Add support for query filters
- [x] Test
- [x] Add support for `PhantomData`
- [x] Test
- [x] Refactor `read_world_query_field_type_info`
- [x] Properly document `readonly` attribute for nested queries and the static assertions that guarantee safety
- [x] Test that we never implement `ReadOnlyFetch` for types that need mutable access
- [x] Test that we insert static assertions for nested `WorldQuery` that a user marked as readonly
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
# Objective
- Provide impls for mutable types to relevant immutable types.
- Closes#2005
## Solution
- impl From<ResMut> for Res
- impl From<NonSendMut> for NonSend
- Mut to &/&mut already impl'd in change_detection_impl! macro
# Objective
Make it possible to use `&World` as a system parameter
## Solution
It seems like all the pieces were already in place, very simple impl
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
A user on Discord couldn't derive SystemParam for this Struct:
```rs
#[derive(SystemParam)]
pub struct SpatialQuery<'w, 's, Q: WorldQuery + Send + Sync + 'static, F: WorldQuery + Send + Sync + 'static = ()>
where
F::Fetch: FilterFetch,
{
query: Query<'w, 's, (C, &'static Transform), F>,
}
```
## Solution
1. The `where`-clause is now also copied to the `SystemParamFetch` impl Block.
2. The `SystemParamState` impl Block no longer gets any defaults for generics
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_ecs` crate.
# Objective
- Fixes#1920.
- Users often want to know how to get the values of removed components (#1655).
- Stand-alone `bevy_ecs` behavior is very unintuitive, as `World::clear_trackers()` must be manually called.
- Fixes#2999 by extending the existing test (thanks @hymm for pointing me to it) to be clearer and check for component removal as well.
## Solution
- Better docs!
- Better tests!
# Objective
- Improve error descriptions and help understand how to fix them
- I noticed one today that could be expanded, it seemed like a good starting point
## Solution
- Start something like https://github.com/rust-lang/rust/tree/master/compiler/rustc_error_codes/src/error_codes
- Remove sentence about Rust mutability rules which is not very helpful in the error message
I decided to start the error code with B for Bevy so that they're not confused with error code from rust (which starts with E)
Longer term, there are a few more evolutions that can continue this:
- the code samples should be compiled check, and even executed for some of them to check they have the correct error code in a panic
- the error could be build on a page in the website like https://doc.rust-lang.org/error-index.html
- most panic should have their own error code
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts.
To make rendering more modular, I made a number of changes:
* Entities now drive rendering:
* We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering"
* To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815
* Reworked the `Draw` abstraction:
* Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key"
* Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems)
* `Draw` trait and and `DrawFunctions` are now generic on PhaseItem
* Modular / Ergonomic `DrawFunctions` via `RenderCommands`
* RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations:
```rust
pub type DrawPbr = (
SetPbrPipeline,
SetMeshViewBindGroup<0>,
SetStandardMaterialBindGroup<1>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function:
```rust
type DrawCustom = (
SetCustomMaterialPipeline,
SetMeshViewBindGroup<0>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* ExtractComponentPlugin and UniformComponentPlugin:
* Simple, standardized ways to easily extract individual components and write them to GPU buffers
* Ported PBR and Sprite rendering to the new primitives above.
* Removed staging buffer from UniformVec in favor of direct Queue usage
* Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems).
* Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark!
* Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know!
* RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers).
* RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes.
* Updated some built in shaders to account for missing MeshUniform fields
## Objective
The upcoming Bevy Book makes many references to the API documentation of bevy.
Most references belong to the first two chapters of the Bevy Book:
- bevyengine/bevy-website#176
- bevyengine/bevy-website#182
This PR attempts to improve the documentation of `bevy_ecs` and `bevy_app` in order to help readers of the Book who want to delve deeper into technical details.
## Solution
- Add crate and level module documentation
- Document the most important items (basically those included in the preludes), with the following style, where applicable:
- **Summary.** Short description of the item.
- **Second paragraph.** Detailed description of the item, without going too much in the implementation.
- **Code example(s).**
- **Safety or panic notes.**
## Collaboration
Any kind of collaboration is welcome, especially corrections, wording, new ideas and guidelines on where the focus should be put in.
---
### Related issues
- Fixes#2246
This updates the `pipelined-rendering` branch to use the latest `bevy_ecs` from `main`. This accomplishes a couple of goals:
1. prepares for upcoming `custom-shaders` branch changes, which were what drove many of the recent bevy_ecs changes on `main`
2. prepares for the soon-to-happen merge of `pipelined-rendering` into `main`. By including bevy_ecs changes now, we make that merge simpler / easier to review.
I split this up into 3 commits:
1. **add upstream bevy_ecs**: please don't bother reviewing this content. it has already received thorough review on `main` and is a literal copy/paste of the relevant folders (the old folders were deleted so the directories are literally exactly the same as `main`).
2. **support manual buffer application in stages**: this is used to enable the Extract step. we've already reviewed this once on the `pipelined-rendering` branch, but its worth looking at one more time in the new context of (1).
3. **support manual archetype updates in QueryState**: same situation as (2).
# Objective
Fix `Option<NonSend<T>>` to work when T isn't `Send`
Fix `Option<NonSendMut<T>>` to work when T isnt in the world.
## Solution
Simple two row fix, properly initialize T in `OptionNonSendState` and remove `T: Component` bound for `Option<NonSendMut<T>>`
also added a rudimentary test
Co-authored-by: Ïvar Källström <ivar.kallstrom@gmail.com>
# Objective
Enable using exact World lifetimes during read-only access . This is motivated by the new renderer's need to allow read-only world-only queries to outlive the query itself (but still be constrained by the world lifetime).
For example:
115b170d1f/pipelined/bevy_pbr2/src/render/mod.rs (L774)
## Solution
Split out SystemParam state and world lifetimes and pipe those lifetimes up to read-only Query ops (and add into_inner for Res). According to every safety test I've run so far (except one), this is safe (see the temporary safety test commit). Note that changing the mutable variants to the new lifetimes would allow aliased mutable pointers (try doing that to see how it affects the temporary safety tests).
The new state lifetime on SystemParam does make `#[derive(SystemParam)]` more cumbersome (the current impl requires PhantomData if you don't use both lifetimes). We can make this better by detecting whether or not a lifetime is used in the derive and adjusting accordingly, but that should probably be done in its own pr.
## Why is this a draft?
The new lifetimes break QuerySet safety in one very specific case (see the query_set system in system_safety_test). We need to solve this before we can use the lifetimes given.
This is due to the fact that QuerySet is just a wrapper over Query, which now relies on world lifetimes instead of `&self` lifetimes to prevent aliasing (but in systems, each Query has its own implied lifetime, not a centralized world lifetime). I believe the fix is to rewrite QuerySet to have its own World lifetime (and own the internal reference). This will complicate the impl a bit, but I think it is doable. I'm curious if anyone else has better ideas.
Personally, I think these new lifetimes need to happen. We've gotta have a way to directly tie read-only World queries to the World lifetime. The new renderer is the first place this has come up, but I doubt it will be the last. Worst case scenario we can come up with a second `WorldLifetimeQuery<Q, F = ()>` parameter to enable these read-only scenarios, but I'd rather not add another type to the type zoo.
* bevy_pbr2: Add support for most of the StandardMaterial textures
Normal maps are not included here as they require tangents in a vertex attribute.
* bevy_pbr2: Ensure RenderCommandQueue is ready for PbrShaders init
* texture_pipelined: Add a light to the scene so we can see stuff
* WIP bevy_pbr2: back to front sorting hack
* bevy_pbr2: Uniform control flow for texture sampling in pbr.frag
From 'fintelia' on the Bevy Render Rework Round 2 discussion:
"My understanding is that GPUs these days never use the "execute both branches
and select the result" strategy. Rather, what they do is evaluate the branch
condition on all threads of a warp, and jump over it if all of them evaluate to
false. If even a single thread needs to execute the if statement body, however,
then the remaining threads are paused until that is completed."
* bevy_pbr2: Simplify texture and sampler names
The StandardMaterial_ prefix is no longer needed
* bevy_pbr2: Match default 'AmbientColor' of current bevy_pbr for now
* bevy_pbr2: Convert from non-linear to linear sRGB for the color uniform
* bevy_pbr2: Add pbr_pipelined example
* Fix view vector in pbr frag to work in ortho
* bevy_pbr2: Use a 90 degree y fov and light range projection for lights
* bevy_pbr2: Add AmbientLight resource
* bevy_pbr2: Convert PointLight color to linear sRGB for use in fragment shader
* bevy_pbr2: pbr.frag: Rename PointLight.projection to view_projection
The uniform contains the view_projection matrix so this was incorrect.
* bevy_pbr2: PointLight is an OmniLight as it has a radius
* bevy_pbr2: Factoring out duplicated code
* bevy_pbr2: Implement RenderAsset for StandardMaterial
* Remove unnecessary texture and sampler clones
* fix comment formatting
* remove redundant Buffer:from
* Don't extract meshes when their material textures aren't ready
* make missing textures in the queue step an error
Co-authored-by: Aevyrie <aevyrie@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Beginners semi-regularly appear on the Discord asking for help with using `QuerySet` when they have a system with conflicting data access.
This happens because the Resulting Panic message only mentions `QuerySet` as a solution, even if in most cases `Without<T>` was enough to solve the problem.
## Solution
Mention the usage of `Without<T>` to create disjoint queries as an alternative to `QuerySet`
## Open Questions
- Is `disjoint` a too technical/mathematical word?
- Should `Without<T>` be mentioned before or after `QuerySet`?
- Before: Using `Without<T>` should be preferred and mentioning it first reinforces this for a reader.
- After: The Panics can be very long and a Reader could skip to end and only see the `QuerySet`
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
# Objective
Currently, you can add `Option<Res<T>` or `Option<ResMut<T>` as a SystemParam, if the Resource could potentially not exist, but this functionality doesn't exist for `NonSend` and `NonSendMut`
## Solution
Adds implementations to use `Option<NonSend<T>>` and Option<NonSendMut<T>> as SystemParams.
# Objective
- The `DetectChanges` trait is used for types that detect change on mutable access (such as `ResMut`, `Mut`, etc...)
- `DetectChanges` was not implemented for `NonSendMut`
## Solution
- implement `NonSendMut` in terms of `DetectChanges`
# Objective
Currently, you can't call `is_added` or `is_changed` on a `NonSend` SystemParam, unless the Resource is a Component (implements `Send` and `Sync`).
This defeats the purpose of providing change detection for NonSend Resources.
While fixing this, I also noticed that `NonSend` does not have a bound at all on its struct.
## Solution
Change the bounds of `T` to always be `'static`.
This enables `SystemParams` to be used outside of function systems. Anything can create and store `SystemState`, which enables efficient "param state cached" access to `SystemParams`.
It adds a `ReadOnlySystemParamFetch` trait, which enables safe `SystemState::get` calls without unique world access.
I renamed the old `SystemState` to `SystemMeta` to enable us to mirror the `QueryState` naming convention (but I'm happy to discuss alternative names if people have other ideas). I initially pitched this as `ParamState`, but given that it needs to include full system metadata, that doesn't feel like a particularly accurate name.
```rust
#[derive(Eq, PartialEq, Debug)]
struct A(usize);
#[derive(Eq, PartialEq, Debug)]
struct B(usize);
let mut world = World::default();
world.insert_resource(A(42));
world.spawn().insert(B(7));
// we get nice lifetime elision when declaring the type on the left hand side
let mut system_state: SystemState<(Res<A>, Query<&B>)> = SystemState::new(&mut world);
let (a, query) = system_state.get(&world);
assert_eq!(*a, A(42), "returned resource matches initial value");
assert_eq!(
*query.single().unwrap(),
B(7),
"returned component matches initial value"
);
// mutable system params require unique world access
let mut system_state: SystemState<(ResMut<A>, Query<&mut B>)> = SystemState::new(&mut world);
let (a, query) = system_state.get_mut(&mut world);
// static lifetimes are required when declaring inside of structs
struct SomeContainer {
state: SystemState<(Res<'static, A>, Res<'static, B>)>
}
// this can be shortened using type aliases, which will be useful for complex param tuples
type MyParams<'a> = (Res<'a, A>, Res<'a, B>);
struct SomeContainer {
state: SystemState<MyParams<'static>>
}
// It is the user's responsibility to call SystemState::apply(world) for parameters that queue up work
let mut system_state: SystemState<(Commands, Query<&B>)> = SystemState::new(&mut world);
{
let (mut commands, query) = system_state.get(&world);
commands.insert_resource(3.14);
}
system_state.apply(&mut world);
```
## Future Work
* Actually use SystemState inside FunctionSystem. This would be trivial, but it requires FunctionSystem to wrap SystemState in Option in its current form (which complicates system metadata lookup). I'd prefer to hold off until we adopt something like the later designs linked in #1364, which enable us to contruct Systems using a World reference (and also remove the need for `.system`).
* Consider a "scoped" approach to automatically call SystemState::apply when systems params are no longer being used (either a container type with a Drop impl, or a function that takes a closure for user logic operating on params).
Continuing the work on reducing the safety footguns in the code, I've removed one extra `UnsafeCell` in favour of safe `Cell` usage inisde `ComponentTicks`. That change led to discovery of misbehaving component insert logic, where data wasn't properly dropped when overwritten. Apart from that being fixed, some method names were changed to better convey the "initialize new allocation" and "replace existing allocation" semantic.
Depends on #2221, I will rebase this PR after the dependency is merged. For now, review just the last commit.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
`ResMut`, `Mut` and `ReflectMut` all share very similar code for change detection.
This PR is a first pass at refactoring these implementation and removing a lot of the duplicated code.
Note, this introduces a new trait `ChangeDetectable`.
Please feel free to comment away and let me know what you think!
This new api stems from this [discord conversation](https://discord.com/channels/691052431525675048/742569353878437978/844057268172357663).
This exposes a public facing `set_changed` method on `ResMut` and `Mut`.
As a side note: `ResMut` and `Mut` have a lot of duplicated code, I have a PR I may put up later that refactors these commonalities into a trait.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
While trying to figure out how to implement a `SystemParam`, I spent a
long time looking for a feature that would do exactly what `Config`
does. I ignored it at first because all the examples I could find used
`()` and I couldn't see a way to modify it.
This is documented in other places, but `Config` is a logical place to
include some breadcrumbs. I've added some text that gives a brief
overview of what `Config` is for, and links to the existing docs on
`FunctionSystem::config` for more details.
This would have saved me from embarrassing myself by filing https://github.com/bevyengine/bevy/issues/2178.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This can save users from having to type `&*X` all the time at the cost of some complexity in the type signature. For instance, this allows me to accommodate @jakobhellermann's suggestion in #1799 without requiring users to type `&*windows` 99% of the time.
Some panic messages for systems include the system name, but there's a few panic messages which do not. This PR adds the system name for the remaining panic messages.
This is a continuation of the work done in #1864.
Related: #1846
This includes a lot of single line comments where either saying more wasn't helpful or due to me not knowing enough about things yet to be able to go more indepth. Proofreading is very much welcome.
Fixes#1846
Got scared of the other "Requested resource does not exist" error at line 395 in `system_param.rs`, under `impl<'a, T: Component> SystemParamFetch<'a> for ResMutState<T> {`. Someone with better knowledge of the code might be able to go in and improve that one.
fixes#1772
1st commit: the limit was at 11 as the macro was not using a range including the upper end. I changed that as it feels the purpose of the macro is clearer that way.
2nd commit: as suggested in the `// TODO`, I added a `Config` trait to go to 16 elements tuples. This means that if someone has a custom system parameter with a config that is not a tuple or an `Option`, they will have to implement `Config` for it instead of the standard `Default`.
# Problem Definition
The current change tracking (via flags for both components and resources) fails to detect changes made by systems that are scheduled to run earlier in the frame than they are.
This issue is discussed at length in [#68](https://github.com/bevyengine/bevy/issues/68) and [#54](https://github.com/bevyengine/bevy/issues/54).
This is very much a draft PR, and contributions are welcome and needed.
# Criteria
1. Each change is detected at least once, no matter the ordering.
2. Each change is detected at most once, no matter the ordering.
3. Changes should be detected the same frame that they are made.
4. Competitive ergonomics. Ideally does not require opting-in.
5. Low CPU overhead of computation.
6. Memory efficient. This must not increase over time, except where the number of entities / resources does.
7. Changes should not be lost for systems that don't run.
8. A frame needs to act as a pure function. Given the same set of entities / components it needs to produce the same end state without side-effects.
**Exact** change-tracking proposals satisfy criteria 1 and 2.
**Conservative** change-tracking proposals satisfy criteria 1 but not 2.
**Flaky** change tracking proposals satisfy criteria 2 but not 1.
# Code Base Navigation
There are three types of flags:
- `Added`: A piece of data was added to an entity / `Resources`.
- `Mutated`: A piece of data was able to be modified, because its `DerefMut` was accessed
- `Changed`: The bitwise OR of `Added` and `Changed`
The special behavior of `ChangedRes`, with respect to the scheduler is being removed in [#1313](https://github.com/bevyengine/bevy/pull/1313) and does not need to be reproduced.
`ChangedRes` and friends can be found in "bevy_ecs/core/resources/resource_query.rs".
The `Flags` trait for Components can be found in "bevy_ecs/core/query.rs".
`ComponentFlags` are stored in "bevy_ecs/core/archetypes.rs", defined on line 446.
# Proposals
**Proposal 5 was selected for implementation.**
## Proposal 0: No Change Detection
The baseline, where computations are performed on everything regardless of whether it changed.
**Type:** Conservative
**Pros:**
- already implemented
- will never miss events
- no overhead
**Cons:**
- tons of repeated work
- doesn't allow users to avoid repeating work (or monitoring for other changes)
## Proposal 1: Earlier-This-Tick Change Detection
The current approach as of Bevy 0.4. Flags are set, and then flushed at the end of each frame.
**Type:** Flaky
**Pros:**
- already implemented
- simple to understand
- low memory overhead (2 bits per component)
- low time overhead (clear every flag once per frame)
**Cons:**
- misses systems based on ordering
- systems that don't run every frame miss changes
- duplicates detection when looping
- can lead to unresolvable circular dependencies
## Proposal 2: Two-Tick Change Detection
Flags persist for two frames, using a double-buffer system identical to that used in events.
A change is observed if it is found in either the current frame's list of changes or the previous frame's.
**Type:** Conservative
**Pros:**
- easy to understand
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)
**Cons:**
- can result in a great deal of duplicated work
- systems that don't run every frame miss changes
- duplicates detection when looping
## Proposal 3: Last-Tick Change Detection
Flags persist for two frames, using a double-buffer system identical to that used in events.
A change is observed if it is found in the previous frame's list of changes.
**Type:** Exact
**Pros:**
- exact
- easy to understand
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)
**Cons:**
- change detection is always delayed, possibly causing painful chained delays
- systems that don't run every frame miss changes
- duplicates detection when looping
## Proposal 4: Flag-Doubling Change Detection
Combine Proposal 2 and Proposal 3. Differentiate between `JustChanged` (current behavior) and `Changed` (Proposal 3).
Pack this data into the flags according to [this implementation proposal](https://github.com/bevyengine/bevy/issues/68#issuecomment-769174804).
**Type:** Flaky + Exact
**Pros:**
- allows users to acc
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)
**Cons:**
- users must specify the type of change detection required
- still quite fragile to system ordering effects when using the flaky `JustChanged` form
- cannot get immediate + exact results
- systems that don't run every frame miss changes
- duplicates detection when looping
## [SELECTED] Proposal 5: Generation-Counter Change Detection
A global counter is increased after each system is run. Each component saves the time of last mutation, and each system saves the time of last execution. Mutation is detected when the component's counter is greater than the system's counter. Discussed [here](https://github.com/bevyengine/bevy/issues/68#issuecomment-769174804). How to handle addition detection is unsolved; the current proposal is to use the highest bit of the counter as in proposal 1.
**Type:** Exact (for mutations), flaky (for additions)
**Pros:**
- low time overhead (set component counter on access, set system counter after execution)
- robust to systems that don't run every frame
- robust to systems that loop
**Cons:**
- moderately complex implementation
- must be modified as systems are inserted dynamically
- medium memory overhead (4 bytes per component + system)
- unsolved addition detection
## Proposal 6: System-Data Change Detection
For each system, track which system's changes it has seen. This approach is only worth fully designing and implementing if Proposal 5 fails in some way.
**Type:** Exact
**Pros:**
- exact
- conceptually simple
**Cons:**
- requires storing data on each system
- implementation is complex
- must be modified as systems are inserted dynamically
## Proposal 7: Total-Order Change Detection
Discussed [here](https://github.com/bevyengine/bevy/issues/68#issuecomment-754326523). This proposal is somewhat complicated by the new scheduler, but I believe it should still be conceptually feasible. This approach is only worth fully designing and implementing if Proposal 5 fails in some way.
**Type:** Exact
**Pros:**
- exact
- efficient data storage relative to other exact proposals
**Cons:**
- requires access to the scheduler
- complex implementation and difficulty grokking
- must be modified as systems are inserted dynamically
# Tests
- We will need to verify properties 1, 2, 3, 7 and 8. Priority: 1 > 2 = 3 > 8 > 7
- Ideally we can use identical user-facing syntax for all proposals, allowing us to re-use the same syntax for each.
- When writing tests, we need to carefully specify order using explicit dependencies.
- These tests will need to be duplicated for both components and resources.
- We need to be sure to handle cases where ambiguous system orders exist.
`changing_system` is always the system that makes the changes, and `detecting_system` always detects the changes.
The component / resource changed will be simple boolean wrapper structs.
## Basic Added / Mutated / Changed
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs before `detecting_system`
- verify at the end of tick 2
## At Least Once
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs after `detecting_system`
- verify at the end of tick 2
## At Most Once
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs once before `detecting_system`
- increment a counter based on the number of changes detected
- verify at the end of tick 2
## Fast Detection
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs before `detecting_system`
- verify at the end of tick 1
## Ambiguous System Ordering Robustness
2 x 3 x 2 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs [before/after] `detecting_system` in tick 1
- `changing_system` runs [after/before] `detecting_system` in tick 2
## System Pausing
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs in tick 1, then is disabled by run criteria
- `detecting_system` is disabled by run criteria until it is run once during tick 3
- verify at the end of tick 3
## Addition Causes Mutation
2 design:
- Resources vs. Components
- `adding_system_1` adds a component / resource
- `adding system_2` adds the same component / resource
- verify the `Mutated` flag at the end of the tick
- verify the `Added` flag at the end of the tick
First check tests for: https://github.com/bevyengine/bevy/issues/333
Second check tests for: https://github.com/bevyengine/bevy/issues/1443
## Changes Made By Commands
- `adding_system` runs in Update in tick 1, and sends a command to add a component
- `detecting_system` runs in Update in tick 1 and 2, after `adding_system`
- We can't detect the changes in tick 1, since they haven't been processed yet
- If we were to track these changes as being emitted by `adding_system`, we can't detect the changes in tick 2 either, since `detecting_system` has already run once after `adding_system` :(
# Benchmarks
See: [general advice](https://github.com/bevyengine/bevy/blob/master/docs/profiling.md), [Criterion crate](https://github.com/bheisler/criterion.rs)
There are several critical parameters to vary:
1. entity count (1 to 10^9)
2. fraction of entities that are changed (0% to 100%)
3. cost to perform work on changed entities, i.e. workload (1 ns to 1s)
1 and 2 should be varied between benchmark runs. 3 can be added on computationally.
We want to measure:
- memory cost
- run time
We should collect these measurements across several frames (100?) to reduce bootup effects and accurately measure the mean, variance and drift.
Entity-component change detection is much more important to benchmark than resource change detection, due to the orders of magnitude higher number of pieces of data.
No change detection at all should be included in benchmarks as a second control for cases where missing changes is unacceptable.
## Graphs
1. y: performance, x: log_10(entity count), color: proposal, facet: performance metric. Set cost to perform work to 0.
2. y: run time, x: cost to perform work, color: proposal, facet: fraction changed. Set number of entities to 10^6
3. y: memory, x: frames, color: proposal
# Conclusions
1. Is the theoretical categorization of the proposals correct according to our tests?
2. How does the performance of the proposals compare without any load?
3. How does the performance of the proposals compare with realistic loads?
4. At what workload does more exact change tracking become worth the (presumably) higher overhead?
5. When does adding change-detection to save on work become worthwhile?
6. Is there enough divergence in performance between the best solutions in each class to ship more than one change-tracking solution?
# Implementation Plan
1. Write a test suite.
2. Verify that tests fail for existing approach.
3. Write a benchmark suite.
4. Get performance numbers for existing approach.
5. Implement, test and benchmark various solutions using a Git branch per proposal.
6. Create a draft PR with all solutions and present results to team.
7. Select a solution and replace existing change detection.
Co-authored-by: Brice DAVIER <bricedavier@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>