2
0
Fork 0
mirror of https://github.com/bevyengine/bevy synced 2025-01-01 15:58:52 +00:00
Commit graph

143 commits

Author SHA1 Message Date
Carter Anderson
00c2edf7b2
Revert most of and add gamepad accessors ()
# Objective

 regressed the user experience of actually using gamepads:

```rust
// Before 16222
gamepad.just_pressed(GamepadButton::South)

// After 16222
gamepad.digital.just_pressed(GamepadButton::South)

// Before 16222
gamepad.get(GamepadButton::RightTrigger2)

// After 16222
gamepad.analog.get(GamepadButton::RighTrigger2)
```

Users shouldn't need to think about "digital vs analog" when checking if
a button is pressed. This abstraction was intentional and I strongly
believe it is in our users' best interest. Buttons and Axes are _both_
digital and analog, and this is largely an implementation detail. I
don't think reverting this will be controversial.

## Solution

- Revert most of 
- Add the `Into<T>` from  to the internals
- Expose read/write `digital` and `analog` accessors on gamepad, in the
interest of enabling the mocking scenarios covered in  (and
allowing the minority of users that care about the "digital" vs "analog"
distinction in this context to make that distinction)

---------

Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-11-19 00:00:16 +00:00
Joona Aalto
3ada15ee1c
Add more Glam types and constructors to prelude ()
# Objective

Glam has some common and useful types and helpers that are not in the
prelude of `bevy_math`. This includes shorthand constructors like
`vec3`, or even `Vec3A`, the aligned version of `Vec3`.

```rust
// The "normal" way to create a 3D vector
let vec = Vec3::new(2.0, 1.0, -3.0);

// Shorthand version
let vec = vec3(2.0, 1.0, -3.0);
```

## Solution

Add the following types and methods to the prelude:

- `vec2`, `vec3`, `vec3a`, `vec4`
- `uvec2`, `uvec3`, `uvec4`
- `ivec2`, `ivec3`, `ivec4`
- `bvec2`, `bvec3`, `bvec3a`, `bvec4`, `bvec4a`
- `mat2`, `mat3`, `mat3a`, `mat4`
- `quat` (not sure if anyone uses this, but for consistency)
- `Vec3A`
- `BVec3A`, `BVec4A`
- `Mat3A`

I did not add the u16, i16, or f64 variants like `dvec2`, since there
are currently no existing types like those in the prelude.

The shorthand constructors are currently used a lot in some places in
Bevy, and not at all in others. In a follow-up, we might want to
consider if we have a preference for the shorthand, and make a PR to
change the codebase to use it more consistently.
2024-11-11 18:47:16 +00:00
Hennadii Chernyshchyk
282ca735ba
Use Name component for gamepad ()
# Objective

Addressing a suggestion I made in Discord: store gamepad name as a
`Name` component.
Advantages: 
- Will be nicely displayed in inspector / editor.
- Easier to spawn in tests, just `world.spawn(Gamepad::default())`.

## Solution

`Gamepad` component now stores only vendor and product IDs and `Name`
stores the gamepad name.
Since `GamepadInfo` is no longer necessary, I removed it and merged its
fields into the connection event.

## Testing

- Run unit tests.

---

## Migration Guide

- `GamepadInfo` no longer exists:
  -  Name now accesible via `Name` component.
  -  Other information available on `Gamepad` component directly.
  - `GamepadConnection::Connected` now stores all info fields directly.
2024-11-05 00:30:48 +00:00
Hennadii Chernyshchyk
b0058dc54b
Gamepad improvements ()
# Objective

Closes .

## Solution

- Make `Gamepad` fields public and remove delegates / getters.
- Move `impl Into` to `Axis` methods (delegates for `Axis` used `impl
Into` to allow passing both `GamepadAxis` and `GamepadButton`).
- Improve docs.

## Testing

- I run tests.

Not sure if the migration guide is needed, since it's a feature from RC,
but I wrote it just in case.

---

## Migration Guide

- `Gamepad` fields are now public.
- Instead of using `Gamepad` delegates like `Gamepad::just_pressed`,
call these methods directly on the fields.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-11-04 17:05:24 +00:00
Carter Anderson
015f2c69ca
Merge Style properties into Node. Use ComputedNode for computed properties. ()
# Objective

Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)

## Solution

As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.

This accomplishes a number of goals:

## Ergonomics wins

Specifying both `Node` and `Style` is now no longer required for
non-default styles

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

## Conceptual clarity

`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).

By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.

## Next Steps

* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.

---

## Migration Guide

Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:

Before:
```rust
fn system(nodes: Query<&Node>) {
    for node in &nodes {
        let computed_size = node.size();
    }
}
```

After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
    for computed_node in &computed_nodes {
        let computed_size = computed_node.size();
    }
}
```
2024-10-18 22:25:33 +00:00
andristarr
7482a0d26d
aligning public apis of Time,Timer and Stopwatch ()
Fixes 

## Migration Guide

The APIs of `Time`, `Timer` and `Stopwatch` have been cleaned up for
consistency with each other and the standard library's `Duration` type.
The following methods have been renamed:

- `Stowatch::paused` -> `Stopwatch::is_paused`
- `Time::elapsed_seconds` -> `Time::elasped_secs` (including `_f64` and
`_wrapped` variants)
2024-10-16 21:09:32 +00:00
MiniaczQ
f602edad09
Text Rework cleanup ()
# Objective

Cleanup naming and docs, add missing migration guide after  

All text root nodes now use `Text` (UI) / `Text2d`.
All text readers/writers use `Text<Type>Reader`/`Text<Type>Writer`
convention.

---

## Migration Guide

Doubles as  migration guide.

Text bundles (`TextBundle` and `Text2dBundle`) were removed in favor of
`Text` and `Text2d`.
Shared configuration fields were replaced with `TextLayout`, `TextFont`
and `TextColor` components.
Just `TextBundle`'s additional field turned into `TextNodeFlags`
component,
while `Text2dBundle`'s additional fields turned into `TextBounds` and
`Anchor` components.

Text sections were removed in favor of hierarchy-based approach.
For root text entities with `Text` or `Text2d` components, child
entities with `TextSpan` will act as additional text sections.
To still access text spans by index, use the new `TextUiReader`,
`Text2dReader` and `TextUiWriter`, `Text2dWriter` system parameters.
2024-10-15 02:32:34 +00:00
Benjamin Brienen
93fc2d12cf
Remove incorrect equality comparisons for asset load error types ()
# Objective

The type `AssetLoadError` has `PartialEq` and `Eq` impls, which is
problematic due to the fact that the `AssetLoaderError` and
`AddAsyncError` variants lie in their impls: they will return `true` for
any `Box<dyn Error>` with the same `TypeId`, even if the actual value is
different. This can lead to subtle bugs if a user relies on the equality
comparison to ensure that two values are equal.

The same is true for `DependencyLoadState`,
`RecursiveDependencyLoadState`.

More generally, it is an anti-pattern for large error types involving
dynamic dispatch, such as `AssetLoadError`, to have equality
comparisons. Directly comparing two errors for equality is usually not
desired -- if some logic needs to branch based on the value of an error,
it is usually more correct to check for specific variants and inspect
their fields.

As far as I can tell, the only reason these errors have equality
comparisons is because the `LoadState` enum wraps `AssetLoadError` for
its `Failed` variant. This equality comparison is only used to check for
`== LoadState::Loaded`, which we can easily replace with an `is_loaded`
method.

## Solution

Remove the `{Partial}Eq` impls from `LoadState`, which also allows us to
remove it from the error types.

## Migration Guide

The types `bevy_asset::AssetLoadError` and `bevy_asset::LoadState` no
longer support equality comparisons. If you need to check for an asset's
load state, consider checking for a specific variant using
`LoadState::is_loaded` or the `matches!` macro. Similarly, consider
using the `matches!` macro to check for specific variants of the
`AssetLoadError` type if you need to inspect the value of an asset load
error in your code.

`DependencyLoadState` and `RecursiveDependencyLoadState` are not
released yet, so no migration needed,

---------

Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
2024-10-14 01:00:45 +00:00
Pablo Reinhardt
d96a9d15f6
Migrate from Query::single and friends to Single ()
# Objective

- closes 

## Solution

- Simply migrate where possible.

## Testing

- Expect that CI will do most of the work. Examples is another way of
testing this, as most of the work is in that area.
---

## Notes
For now, this PR doesn't migrate `QueryState::single` and friends as for
now, this look like another issue. So for example, QueryBuilders that
used single or `World::query` that used single wasn't migrated. If there
is a easy way to migrate those, please let me know.

Most of the uses of `Query::single` were removed, the only other uses
that I found was related to tests of said methods, so will probably be
removed when we remove `Query::single`.
2024-10-13 20:32:06 +00:00
NiseVoid
bdd0af6bfb
Deprecate SpatialBundle ()
# Objective

- Required components replace bundles, but `SpatialBundle` is yet to be
deprecated

## Solution

- Deprecate `SpatialBundle`
- Insert `Transform` and `Visibility` instead in examples using it
- In `spawn` or `insert` inserting a default `Transform` or `Visibility`
with component already requiring either, remove those components from
the tuple

## Testing

- Did you test these changes? If so, how?
Yes, I ran the examples I changed and tests
- Are there any parts that need more testing?
The `gamepad_viewer` and and `custom_shader_instancing` examples don't
work as intended due to entirely unrelated code, didn't check main.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Run examples, or just check that all spawned values are identical
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Linux, wayland trough x11 (cause that's the default feature)

---

## Migration Guide

`SpatialBundle` is now deprecated, insert `Transform` and `Visibility`
instead which will automatically insert all other components that were
in the bundle. If you do not specify these values and any other
components in your `spawn`/`insert` call already requires either of
these components you can leave that one out.

before:
```rust
commands.spawn(SpatialBundle::default());
```

after:
```rust
commands.spawn((Transform::default(), Visibility::default());
```
2024-10-13 17:28:22 +00:00
ickshonpe
6f7d0e5725
split up TextStyle ()
# Objective

Currently text is recomputed unnecessarily on any changes to its color,
which is extremely expensive.

## Solution
Split up `TextStyle` into two separate components `TextFont` and
`TextColor`.

## Testing

I added this system to `many_buttons`:
```rust
fn set_text_colors_changed(mut colors: Query<&mut TextColor>) {
    for mut text_color in colors.iter_mut() {
        text_color.set_changed();
    }
}
```

reports ~4fps on main, ~50fps with this PR.

## Migration Guide
`TextStyle` has been renamed to `TextFont` and its `color` field has
been moved to a separate component named `TextColor` which newtypes
`Color`.
2024-10-13 17:06:22 +00:00
Rob Parrett
cdd71afde5
Fix panic in gamepad_viewer example when gamepad is connected ()
# Objective

Fixes 

## Solution

It seems that this was just a transliteration mistake during .

Update the correct text span index.

## Testing

I tested on macos with:

`cargo run --example gamepad_viewer`
- without gamepad connected
- with gamepad connected
- disconnecting and reconnecting gamepad while running
2024-10-11 16:40:21 +00:00
UkoeHB
c2c19e5ae4
Text rework ()
**Ready for review. Examples migration progress: 100%.**

# Objective

- Implement https://github.com/bevyengine/bevy/discussions/15014

## Solution

This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.

Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.

## Testing

- [x] Text examples all work.

---

## Showcase

TODO: showcase-worthy

## Migration Guide

TODO: very breaking

### Accessing text spans by index

Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.

Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
    let text = query.single_mut();
    text.sections[1].value = format_time(time.elapsed());
}
```

After:
```rust
fn refresh_text(
    query: Query<Entity, With<TimeText>>,
    mut writer: UiTextWriter,
    time: Res<Time>
) {
    let entity = query.single();
    *writer.text(entity, 1) = format_time(time.elapsed());
}
```

### Iterating text spans

Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.

---------

Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
Emerson Coskey
7d40e3ec87
Migrate bevy_sprite to required components ()
# Objective

Continue migration of bevy APIs to required components, following
guidance of https://hackmd.io/@bevy/required_components/

## Solution

- Make `Sprite` require `Transform` and `Visibility` and
`SyncToRenderWorld`
- move image and texture atlas handles into `Sprite`
- deprecate `SpriteBundle`
- remove engine uses of `SpriteBundle`

## Testing

ran cargo tests on bevy_sprite and tested several sprite examples.

---

## Migration Guide

Replace all uses of `SpriteBundle` with `Sprite`. There are several new
convenience constructors: `Sprite::from_image`,
`Sprite::from_atlas_image`, `Sprite::from_color`.

WARNING: use of `Handle<Image>` and `TextureAtlas` as components on
sprite entities will NO LONGER WORK. Use the fields on `Sprite` instead.
I would have removed the `Component` impls from `TextureAtlas` and
`Handle<Image>` except it is still used within ui. We should fix this
moving forward with the migration.
2024-10-09 16:17:26 +00:00
Tim
700123ec64
Replace Handle<AnimationGraph> component with a wrapper ()
# Objective

- Closes  

## Solution

- Wrap the handle in a new wrapper component: `AnimationGraphHandle`.

## Testing

Searched for all instances of `AnimationGraph` in the examples and
updated and tested those

## Migration Guide

`Handle<AnimationGraph>` is no longer a component. Instead, use the
`AnimationGraphHandle` component which contains a
`Handle<AnimationGraph>`.
2024-10-08 22:41:24 +00:00
Joona Aalto
25bfa80e60
Migrate cameras to required components ()
# Objective

Yet another PR for migrating stuff to required components. This time,
cameras!

## Solution

As per the [selected
proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected),
deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d`
and `Camera3d`.

Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning,
as suggested by Cart [on
Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273).
I would personally like cameras to work a bit differently and be split
into a few more components, to avoid some footguns and confusing
semantics, but that is more controversial, and shouldn't block this core
migration.

## Testing

I ran a few 2D and 3D examples, and tried cameras with and without
render graphs.

---

## Migration Guide

`Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of
`Camera2d` and `Camera3d`. Inserting them will now also insert the other
components required by them automatically.
2024-10-05 01:59:52 +00:00
Joona Aalto
54006b107b
Migrate meshes and materials to required components ()
# Objective

A big step in the migration to required components: meshes and
materials!

## Solution

As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):

- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:

![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)

![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)

Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.

## Testing

I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!

## Implementation Notes

- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.

---

## Migration Guide

Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.

Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.

The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.

---------

Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
Joona Aalto
de888a373d
Migrate lights to required components ()
# Objective

Another step in the migration to required components: lights!

Note that this does not include `EnvironmentMapLight` or reflection
probes yet, because their API hasn't been fully chosen yet.

## Solution

As per the [selected
proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg):

- Deprecate `PointLightBundle` in favor of the `PointLight` component
- Deprecate `SpotLightBundle` in favor of the `PointLight` component
- Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight`
component

## Testing

I ran some examples with lights.

---

## Migration Guide

`PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have
been deprecated. Use the `PointLight`, `SpotLight`, and
`DirectionalLight` components instead. Adding them will now insert the
other components required by them automatically.
2024-10-01 03:20:43 +00:00
s-puig
e788e3bc83
Implement gamepads as entities ()
# Objective

- Significantly improve the ergonomics of gamepads and allow new
features

Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.

1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:

```rust
for gamepad in gamepads.iter() {
        if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
            info!("{:?} just pressed South", gamepad);
        } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
        {
            info!("{:?} just released South", gamepad);
        }
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.

- Previously attempted by  and 


## Solution

- Implement gamepads as entities.

Using entities solves all the problems above and opens new
possibilities.

1. Reduce boilerplate and allows iteration

```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again 
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
    player: Query<&Transform, With<Player<T>>>,
    gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
    if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
        if gamepad_buttons.pressed(GamepadButtonType::South) {
            // move player
        }
    }
}
```
---

## Follow-up

- [ ] Run conditions?
- [ ] Rumble component

# Changelog

## Added

TODO

## Changed

TODO

## Removed

TODO


## Migration Guide

TODO

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
Clar Fon
efda7f3f9c
Simpler lint fixes: makes ci lints work but disables a lint for now ()
Takes the first two commits from  and adds suggestions from this
comment:
https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300

See  for more reasoning/motivation.

## Rebasing (rerunning)

```rust
git switch simpler-lint-fixes
git reset --hard main
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "rustfmt"
cargo clippy --workspace --all-targets --all-features --fix
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "clippy"
git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887
```
2024-09-24 11:42:59 +00:00
Tero Laxström
522d82b21a
Fixing text sizes for examples ()
# Objective

- Fixes 

## Solution

- Go through Pixel Eagle examples (and examples all in all)
- If default size is used it is usually left there
- If size of font is touched try dividing with 1.2 and round it to
nearest whole number

## Testing

- Run example before and after
- Make sure examples text are readable or like before cosmic-text change

---

## Showcase

Before:

![image](https://github.com/user-attachments/assets/beb2d5af-d1ee-4c2c-89c4-8e59c53b53b4)

After:

![image](https://github.com/user-attachments/assets/fef28a8d-dc26-4e0e-9870-6b216de906e8)
2024-09-16 23:14:37 +00:00
Sou1gh0st
9da18cce2a
Add support for environment map transformation ()
# Objective

- Fixes: https://github.com/bevyengine/bevy/issues/14036

## Solution

- Add a world space transformation for the environment sample direction.

## Testing

- I have tested the newly added `transform` field using the newly added
`rotate_environment_map` example.


https://github.com/user-attachments/assets/2de77c65-14bc-48ee-b76a-fb4e9782dbdb


## Migration Guide

- Since we have added a new filed to the `EnvironmentMapLight` struct,
users will need to include `..default()` or some rotation value in their
initialization code.
2024-07-19 15:00:50 +00:00
Lura
856b39d821
Apply Clippy lints regarding lazy evaluation and closures ()
# Objective

- Lazily evaluate
[default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)~~/[or](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~
values where it makes sense
  - ~~`unwrap_or(foo())` -> `unwrap_or_else(|| foo())`~~
  - `unwrap_or(Default::default())` -> `unwrap_or_default()`
  - etc.
- Avoid creating [redundant
closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure),
even for [method
calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls)
  - `map(|something| something.into())` -> `map(Into:into)`

## Solution

- Apply Clippy lints:
-
~~[or_fun_call](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~
-
[unwrap_or_default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)
-
[redundant_closure_for_method_calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls)
([redundant
closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure)
is already enabled)

## Testing

- Tested on Windows 11 (`stable-x86_64-pc-windows-gnu`, 1.79.0)
- Bevy compiles without errors or warnings and examples seem to work as
intended
  - `cargo clippy` 
  - `cargo run -p ci -- compile` 

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-07-01 15:54:40 +00:00
Martín Maita
f237cf2441
Updates default Text font size to 24px ()
# Objective

- The default font size is too small to be useful in examples or for
debug text.
- Fixes 

## Solution

- Updated the default font size value in `TextStyle` from 12px to 24px.
- Resorted to Text defaults in examples to use the default font size in
most of them.

## Testing

- WIP

---

## Migration Guide

- The default font size has been increased to 24px from 12px. Make sure
you set the font to the appropriate values in places you were using
`Default` text style.
2024-05-31 16:41:27 +00:00
BD103
84363f2fab
Remove redundant imports ()
# Objective

- There are several redundant imports in the tests and examples that are
not caught by CI because additional flags need to be passed.

## Solution

- Run `cargo check --workspace --tests` and `cargo check --workspace
--examples`, then fix all warnings.
- Add `test-check` to CI, which will be run in the check-compiles job.
This should catch future warnings for tests. Examples are already
checked, but I'm not yet sure why they weren't caught.

## Discussion

- Should the `--tests` and `--examples` flags be added to CI, so this is
caught in the future?
- If so,  will need to be merged first. It was also a warning
raised by checking the examples, but I chose to split off into a
separate PR.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-01 19:59:08 +00:00
Patrick Walton
dfdf2b9ea4
Implement the AnimationGraph, allowing for multiple animations to be blended together. ()
This is an implementation of RFC :
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md

Note that the implementation strategy is different from the one outlined
in that RFC, because two-phase animation has now landed.

# Objective

Bevy needs animation blending. The RFC for this is [RFC 51].

## Solution

This is an implementation of the RFC. Note that the implementation
strategy is different from the one outlined there, because two-phase
animation has now landed.

This is just a draft to get the conversation started. Currently we're
missing a few things:

- [x] A fully-fleshed-out mechanism for transitions
- [x] A serialization format for `AnimationGraph`s
- [x] Examples are broken, other than `animated_fox`
- [x] Documentation

---

## Changelog

### Added

* The `AnimationPlayer` has been reworked to support blending multiple
animations together through an `AnimationGraph`, and as such will no
longer function unless a `Handle<AnimationGraph>` has been added to the
entity containing the player. See [RFC 51] for more details.

* Transition functionality has moved from the `AnimationPlayer` to a new
component, `AnimationTransitions`, which works in tandem with the
`AnimationGraph`.

## Migration Guide

* `AnimationPlayer`s can no longer play animations by themselves and
need to be paired with a `Handle<AnimationGraph>`. Code that was using
`AnimationPlayer` to play animations will need to create an
`AnimationGraph` asset first, add a node for the clip (or clips) you
want to play, and then supply the index of that node to the
`AnimationPlayer`'s `play` method.

* The `AnimationPlayer::play_with_transition()` method has been removed
and replaced with the `AnimationTransitions` component. If you were
previously using `AnimationPlayer::play_with_transition()`, add all
animations that you were playing to the `AnimationGraph`, and create an
`AnimationTransitions` component to manage the blending between them.

[RFC 51]:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md

---------

Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
Alice Cecile
599e5e4e76
Migrate from LegacyColor to bevy_color::Color ()
# Objective

- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes .

## Solution

I've chosen to use the polymorphic `Color` type as our standard
user-facing API.

- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes

Incidental improvements to ease migration:

- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`

## Migration Guide

Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.

These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.

TODO...

- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.

---------

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
Nicola Papale
f7f7e326e5
Add methods to directly load assets from World ()
# Objective

`FromWorld` is often used to group loading and creation of assets for
resources.

With this setup, users often end up repetitively calling
`.resource::<AssetServer>` and `.resource_mut::<Assets<T>>`, and may
have difficulties handling lifetimes of the returned references.

## Solution

Add extension methods to `World` to add and load assets, through a new
extension trait defined in `bevy_asset`.

### Other considerations

* This might be a bit too "magic", as it makes implicit the resource
access.
* We could also implement `DirectAssetAccessExt` on `App`, but it didn't
feel necessary, as `FromWorld` is the principal use-case here.

---

## Changelog

* Add the `DirectAssetAccessExt` trait, which adds the `add_asset`,
`load_asset` and `load_asset_with_settings` method to the `World` type.
2024-02-27 00:28:26 +00:00
Alice Cecile
de004da8d5
Rename bevy_render::Color to LegacyColor ()
# Objective

The migration process for `bevy_color` () will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.

## Solution

To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.

However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.

As discussed in , by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.

## Migration Guide

THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.

This change should not be shipped to end users: delete this section in
the final migration guide!

---------

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-02-24 21:35:32 +00:00
Kanabenki
8de15ae71a
Use the scroll wheel to control the camera speed in examples ()
# Objective

- Closes .

## Solution

- Make the movement speed of the `CameraController` adjustable with the
scroll wheel as mentioned
[here](https://github.com/bevyengine/bevy/issues/9384#issuecomment-1668957931).
The speed use an exponential progression (10% increase per scroll tick
by default) to allow adapting the speed to different scales.
- For the `scene_viewer` example, make the default speed proportional to
the size of the scene using what's computed for the default camera
placement. This gives a good enough default to fly over the scene from
the outside. I don't think there's a good way to get a default speed
fitting for all scenes since some are meant to be viewed from outside
while other are traversable environments.
2024-02-19 16:57:20 +00:00
Patrick Walton
5f1dd3918b
Rework animation to be done in two phases. ()
# Objective

Bevy's animation system currently does tree traversals based on `Name`
that aren't necessary. Not only do they require in unsafe code because
tree traversals are awkward with parallelism, but they are also somewhat
slow, brittle, and complex, which manifested itself as way too many
queries in .

# Solution

Divide animation into two phases: animation *advancement* and animation
*evaluation*, which run after one another. *Advancement* operates on the
`AnimationPlayer` and sets the current animation time to match the game
time. *Evaluation* operates on all animation bones in the scene in
parallel and sets the transforms and/or morph weights based on the time
and the clip.

To do this, we introduce a new component, `AnimationTarget`, which the
asset loader places on every bone. It contains the ID of the entity
containing the `AnimationPlayer`, as well as a UUID that identifies
which bone in the animation the target corresponds to. In the case of
glTF, the UUID is derived from the full path name to the bone. The rule
that `AnimationTarget`s are descendants of the entity containing
`AnimationPlayer` is now just a convention, not a requirement; this
allows us to eliminate the unsafe code.

# Migration guide

* `AnimationClip` now uses UUIDs instead of hierarchical paths based on
the `Name` component to refer to bones. This has several consequences:
- A new component, `AnimationTarget`, should be placed on each bone that
you wish to animate, in order to specify its UUID and the associated
`AnimationPlayer`. The glTF loader automatically creates these
components as necessary, so most uses of glTF rigs shouldn't need to
change.
- Moving a bone around the tree, or renaming it, no longer prevents an
`AnimationPlayer` from affecting it.
- Dynamically changing the `AnimationPlayer` component will likely
require manual updating of the `AnimationTarget` components.
* Entities with `AnimationPlayer` components may now possess descendants
that also have `AnimationPlayer` components. They may not, however,
animate the same bones.
* As they aren't specific to `TypeId`s,
`bevy_reflect::utility::NoOpTypeIdHash` and
`bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to
`bevy_reflect::utility::NoOpHash` and
`bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
Doonv
dc9b486650
Change light defaults & fix light examples ()
# Objective

Fix https://github.com/bevyengine/bevy/issues/11577.

## Solution

Fix the examples, add a few constants to make setting light values
easier, and change the default lighting settings to be more realistic.
(Now designed for an overcast day instead of an indoor environment)

---

I did not include any example-related changes in here.

## Changelogs (not including breaking changes)

### bevy_pbr

- Added `light_consts` module (included in prelude), which contains
common lux and lumen values for lights.
- Added `AmbientLight::NONE` constant, which is an ambient light with a
brightness of 0.
- Added non-EV100 variants for `ExposureSettings`'s EV100 constants,
which allow easier construction of an `ExposureSettings` from a EV100
constant.

## Breaking changes

### bevy_pbr

The several default lighting values were changed:

- `PointLight`'s default `intensity` is now `2000.0`
- `SpotLight`'s default `intensity` is now `2000.0`
- `DirectionalLight`'s default `illuminance` is now
`light_consts::lux::OVERCAST_DAY` (`1000.`)
- `AmbientLight`'s default `brightness` is now `20.0`
2024-02-14 20:43:10 +00:00
Joona Aalto
0166db33f7
Deprecate shapes in bevy_render::mesh::shape ()
# Objective

 and  implemented meshing support for Bevy's new geometric
primitives. The next step is to deprecate the shapes in
`bevy_render::mesh::shape` and to later remove them completely for 0.14.

## Solution

Deprecate the shapes and reduce code duplication by utilizing the
primitive meshing API for the old shapes where possible.

Note that some shapes have behavior that can't be exactly reproduced
with the new primitives yet:

- `Box` is more of an AABB with min/max extents
- `Plane` supports a subdivision count
- `Quad` has a `flipped` property

These types have not been changed to utilize the new primitives yet.

---

## Changelog

- Deprecated all shapes in `bevy_render::mesh::shape`
- Changed all examples to use new primitives for meshing

## Migration Guide

Bevy has previously used rendering-specific types like `UVSphere` and
`Quad` for primitive mesh shapes. These have now been deprecated to use
the geometric primitives newly introduced in version 0.13.

Some examples:

```rust
let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0));
let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0));

let before = meshes.add(shape::Quad::default());
let after = meshes.add(Rectangle::default());

let before = meshes.add(shape::Plane::from_size(5.0));
// The surface normal can now also be specified when using `new`
let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0));

let before = meshes.add(
    Mesh::try_from(shape::Icosphere {
        radius: 0.5,
        subdivisions: 5,
    })
    .unwrap(),
);
let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap());
```
2024-02-08 18:01:34 +00:00
Rob Parrett
2951ddf3d8
Tweak gamepad viewer example style ()
# Objective

Since , the contrast in this example has been very low. While I
was in there, I made a few other tweaks to the style.

Alternative to .

## Solution

- Increase brightness of inactive buttons for higher contrast on the new
clear color
- Combine `DEAD_COLOR` and `EXTENT_COLOR`. These were using the same
value, and combining them might make the intent a little clearer. (This
is the single color for "not the live zone.")
- Make the "stick buttons" slightly smaller, so it's a bit more obvious
that they are sitting inside of the default dead zone.
- Remove explicit text color -- it was the same as the default
- Add top-left margin to the text in the top left, and change the font
size to better match other examples with text in the corner.

## Screenshots

<details>
  <summary>With Bevy's default dead / live zones.</summary>
Before / After


![default](https://github.com/bevyengine/bevy/assets/200550/67bf1f5c-7fc9-4e74-87cf-2a94fcf59a50)
</details>

<details>
<summary>With Bevy's old dead / live zones. (with the upper live zone
boundary != 1.0)</summary>
Before / After


![old](https://github.com/bevyengine/bevy/assets/200550/3aab6a2a-ad57-4749-b2e5-51ed34072b2c)
</details>
2024-01-23 06:27:43 +00:00
jeliag
f6b40a6e43
Multiple Configurations for Gizmos ()
# Objective

This PR aims to implement multiple configs for gizmos as discussed in
.

## Solution

Configs for the new `GizmoConfigGroup`s are stored in a
`GizmoConfigStore` resource and can be accesses using a type based key
or iterated over. This type based key doubles as a standardized location
where plugin authors can put their own configuration not covered by the
standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a
default color and toggle to show all AABBs. New configs can be
registered using `app.init_gizmo_group::<T>()` during startup.

When requesting the `Gizmos<T>` system parameter the generic type
determines which config is used. The config structs are available
through the `Gizmos` system parameter allowing for easy access while
drawing your gizmos.

Internally, resources and systems used for rendering (up to an including
the extract system) are generic over the type based key and inserted on
registering a new config.

## Alternatives

The configs could be stored as components on entities with markers which
would make better use of the ECS. I also implemented this approach
([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and
believe that the ergonomic benefits of a central config store outweigh
the decreased use of the ECS.

## Unsafe Code

Implementing system parameter by hand is unsafe but seems to be required
to access the config store once and not on every gizmo draw function
call. This is critical for performance. ~Is there a better way to do
this?~

## Future Work

New gizmos (such as , and ideas from ) will require custom
configuration structs. Should there be a new custom config for every
gizmo type, or should we group them together in a common configuration?
(for example `EditorGizmoConfig`, or something more fine-grained)

## Changelog

- Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait
- Added `init_gizmo_group` to `App`
- Added early returns to gizmo drawing increasing performance when
gizmos are disabled
- Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore`
- Changed `Gizmos` system parameter to use type based key to retrieve
config
- Changed resources and systems used for gizmo rendering to be generic
over type based key
- Changed examples (3d_gizmos, 2d_gizmos) to showcase new API

## Migration Guide

- `GizmoConfig` is no longer a resource and has to be accessed through
`GizmoConfigStore` resource. The default config group is
`DefaultGizmoGroup`, but consider using your own custom config group if
applicable.

---------

Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2024-01-18 15:52:50 +00:00
JMS55
fcd7c0fc3d
Exposure settings (adopted) ()
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)

Fixes https://github.com/bevyengine/bevy/issues/8369

---

## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.

## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-01-16 14:53:21 +00:00
MiniaczQ
ec5b9eeba7
Extract examples CameraController into a module ()
# Objective

Unify flycam-style camera controller from the examples.

`parallax_mapping` controller was kept as is.

## Solution

Fixed some mouse movement & cursor grabbing related issues too.
2024-01-14 13:50:33 +00:00
Joona Aalto
a795de30b4
Use impl Into<A> for Assets::add ()
# Motivation

When spawning entities into a scene, it is very common to create assets
like meshes and materials and to add them via asset handles. A common
setup might look like this:

```rust
fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    commands.spawn(PbrBundle {
        mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
        material: materials.add(StandardMaterial::from(Color::RED)),
        ..default()
    });
}
```

Let's take a closer look at the part that adds the assets using `add`.

```rust
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(StandardMaterial::from(Color::RED)),
```

Here, "mesh" and "material" are both repeated three times. It's very
explicit, but I find it to be a bit verbose. In addition to being more
code to read and write, the extra characters can sometimes also lead to
the code being formatted to span multiple lines even though the core
task, adding e.g. a primitive mesh, is extremely simple.

A way to address this is by using `.into()`:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }.into()),
material: materials.add(Color::RED.into()),
```

This is fine, but from the names and the type of `meshes`, we already
know what the type should be. It's very clear that `Cube` should be
turned into a `Mesh` because of the context it's used in. `.into()` is
just seven characters, but it's so common that it quickly adds up and
gets annoying.

It would be nice if you could skip all of the conversion and let Bevy
handle it for you:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }),
material: materials.add(Color::RED),
```

# Objective

Make adding assets more ergonomic by making `Assets::add` take an `impl
Into<A>` instead of `A`.

## Solution

`Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this
works:

```rust
    commands.spawn(PbrBundle {
        mesh: meshes.add(shape::Cube { size: 1.0 }),
        material: materials.add(Color::RED),
        ..default()
    });
```

I also changed all examples to use this API, which increases consistency
as well because `Mesh::from` and `into` were being used arbitrarily even
in the same file. This also gets rid of some lines of code because
formatting is nicer.

---

## Changelog

- `Assets::add` now takes an `impl Into<A>` instead of `A`
- Examples don't use `T::from(K)` or `K.into()` when adding assets

## Migration Guide

Some `into` calls that worked previously might now be broken because of
the new trait bounds. You need to either remove `into` or perform the
conversion explicitly with `from`:

```rust
// Doesn't compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()),

// These compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }),
let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
```

## Concerns

I believe the primary concerns might be:

1. Is this too implicit?
2. Does this increase codegen bloat?

Previously, the two APIs were using `into` or `from`, and now it's
"nothing" or `from`. You could argue that `into` is slightly more
explicit than "nothing" in cases like the earlier examples where a
`Color` gets converted to e.g. a `StandardMaterial`, but I personally
don't think `into` adds much value even in this case, and you could
still see the actual type from the asset type.

As for codegen bloat, I doubt it adds that much, but I'm not very
familiar with the details of codegen. I personally value the user-facing
code reduction and ergonomics improvements that these changes would
provide, but it might be worth checking the other effects in more
detail.

Another slight concern is migration pain; apps might have a ton of
`into` calls that would need to be removed, and it did take me a while
to do so for Bevy itself (maybe around 20-40 minutes). However, I think
the fact that there *are* so many `into` calls just highlights that the
API could be made nicer, and I'd gladly migrate my own projects for it.
2024-01-08 22:14:43 +00:00
Thierry Berger
ced216f59a
Update winit dependency to 0.29 ()
# Objective

- Update winit dependency to 0.29

## Changelog

### KeyCode changes

- Removed `ScanCode`, as it was [replaced by
KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292).
- `ReceivedCharacter.char` is now a `SmolStr`, [relevant
doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text).
- Changed most `KeyCode` values, and added more.

KeyCode has changed meaning. With this PR, it refers to physical
position on keyboard rather than the printed letter on keyboard keys.

In practice this means:
- On QWERTY keyboard layouts, nothing changes
- On any other keyboard layout, `KeyCode` no longer reflects the label
on key.
- This is "good". In bevy 0.12, when you used WASD for movement, users
with non-QWERTY keyboards couldn't play your game! This was especially
bad for non-latin keyboards. Now, WASD represents the physical keys. A
French player will press the ZQSD keys, which are near each other,
Kyrgyz players will use "Цфыв".
- This is "bad" as well. You can't know in advance what the label of the
key for input is. Your UI says "press WASD to move", even if in reality,
they should be pressing "ZQSD" or "Цфыв". You also no longer can use
`KeyCode` for text inputs. In any case, it was a pretty bad API for text
input. You should use `ReceivedCharacter` now instead.

### Other changes
- Use `web-time` rather than `instant` crate.
(https://github.com/rust-windowing/winit/pull/2836)
- winit did split `run_return` in `run_onDemand` and `pump_events`, I
did the same change in bevy_winit and used `pump_events`.
- Removed `return_from_run` from `WinitSettings` as `winit::run` now
returns on supported platforms.
- I left the example "return_after_run" as I think it's still useful.
- This winit change is done partly to allow to create a new window after
quitting all windows: https://github.com/emilk/egui/issues/1918 ; this
PR doesn't address.
- added `width` and `height` properties in the `canvas` from wasm
example
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168)

## Known regressions (important follow ups?)
- Provide an API for reacting when a specific key from current layout
was released.
- possible solutions: use winit::Key from winit::KeyEvent ; mapping
between KeyCode and Key ; or .
- We don't receive characters through alt+numpad (e.g. alt + 151 = "ù")
anymore ; reproduced on winit example "ime". maybe related to
https://github.com/rust-windowing/winit/issues/2945
- (windows) Window content doesn't refresh at all when resizing. By
reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect
we should just fire a `window.request_redraw();` from `AboutToWait`, and
handle actual redrawing within `RedrawRequested`. I'm not sure how to
move all that code so I'd appreciate it to be a follow up.
- (windows) unreleased winit fix for using set_control_flow in
AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm
not sure what the implications are, but that feels bad 🤔

## Follow up 

I'd like to avoid bloating this PR, here are a few follow up tasks
worthy of a separate PR, or new issue to track them once this PR is
closed, as they would either complicate reviews, or at risk of being
controversial:
- remove CanvasParentResizePlugin
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856)
- avoid mentionning explicitly winit in docs from bevy_window ?
- NamedKey integration on bevy_input:
https://github.com/rust-windowing/winit/pull/3143 introduced a new
NamedKey variant. I implemented it only on the converters but we'd
benefit making the same changes to bevy_input.
- Add more info in KeyboardInput
https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313
- https://github.com/bevyengine/bevy/pull/9905 added a workaround on a
bug allegedly fixed by winit 0.29. We should check if it's still
necessary.
- update to raw_window_handle 0.6
  - blocked by wgpu
- Rename `KeyCode` to `PhysicalKeyCode`
https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015
- remove `instant` dependency, [replaced
by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd
need to update to :
  - fastrand >= 2.0
- [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7
    - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0
- Verify license, see
[discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800)
  - we might be missing a short notice or description of changes made
- Consider using https://github.com/rust-windowing/cursor-icon directly
rather than vendoring it in bevy.
- investigate [this
unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986)
(`winit_window.canvas().unwrap();`)
- Use more good things about winit's update
- https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428
## Migration Guide

This PR should have one.
2023-12-21 07:40:47 +00:00
Mateusz Wachowiak
1f97717a3d
Rename Input to ButtonInput ()
# Objective

- Resolves  

## Solution

- ~~Changed the name of `Input` struct to `PressableInput`.~~
- Changed the name of `Input` struct to `ButtonInput`.

## Migration Guide

- Breaking Change: Users need to rename `Input` to `ButtonInput` in
their projects.
2023-12-06 20:32:34 +00:00
Ame
951c9bb1a2
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere ()
# Objective

- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like 

## Solution

- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```

## Changelog

- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```

---------

Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2023-11-18 20:58:48 +00:00
Aevyrie
1918608b02
Update default ClearColor to better match Bevy's branding ()
# Objective

- Changes the default clear color to match the code block color on
Bevy's website.

## Solution

- Changed the clear color, updated text in examples to ensure adequate
contrast. Inconsistent usage of white text color set to use the default
color instead, which is already white.
- Additionally, updated the `3d_scene` example to make it look a bit
better, and use bevy's branding colors.


![image](https://github.com/bevyengine/bevy/assets/2632925/540a22c0-826c-4c33-89aa-34905e3e313a)
2023-11-03 12:57:38 +00:00
Carter Anderson
35073cf7aa
Multiple Asset Sources ()
This adds support for **Multiple Asset Sources**. You can now register a
named `AssetSource`, which you can load assets from like you normally
would:

```rust
let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl");
```

Notice that `AssetPath` now supports `some_source://` syntax. This can
now be accessed through the `asset_path.source()` accessor.

Asset source names _are not required_. If one is not specified, the
default asset source will be used:

```rust
let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl");
```

The behavior of the default asset source has not changed. Ex: the
`assets` folder is still the default.

As referenced in 

## Why?

**Multiple Asset Sources** enables a number of often-asked-for
scenarios:

* **Loading some assets from other locations on disk**: you could create
a `config` asset source that reads from the OS-default config folder
(not implemented in this PR)
* **Loading some assets from a remote server**: you could register a new
`remote` asset source that reads some assets from a remote http server
(not implemented in this PR)
* **Improved "Binary Embedded" Assets**: we can use this system for
"embedded-in-binary assets", which allows us to replace the old
`load_internal_asset!` approach, which couldn't support asset
processing, didn't support hot-reloading _well_, and didn't make
embedded assets accessible to the `AssetServer` (implemented in this pr)

## Adding New Asset Sources

An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`,
and `AssetWatcher` entries. You can configure new asset sources like
this:

```rust
app.register_asset_source(
    "other",
    AssetSource::build()
        .with_reader(|| Box::new(FileAssetReader::new("other")))
    )
)
```

Note that `AssetSource` construction _must_ be repeatable, which is why
a closure is accepted.
`AssetSourceBuilder` supports `with_reader`, `with_writer`,
`with_watcher`, `with_processed_reader`, `with_processed_writer`, and
`with_processed_watcher`.

Note that the "asset source" system replaces the old "asset providers"
system.

## Processing Multiple Sources

The `AssetProcessor` now supports multiple asset sources! Processed
assets can refer to assets in other sources and everything "just works".
Each `AssetSource` defines an unprocessed and processed `AssetReader` /
`AssetWriter`.

Currently this is all or nothing for a given `AssetSource`. A given
source is either processed or it is not. Later we might want to add
support for "lazy asset processing", where an `AssetSource` (such as a
remote server) can be configured to only process assets that are
directly referenced by local assets (in order to save local disk space
and avoid doing extra work).

## A new `AssetSource`: `embedded`

One of the big features motivating **Multiple Asset Sources** was
improving our "embedded-in-binary" asset loading. To prove out the
**Multiple Asset Sources** implementation, I chose to build a new
`embedded` `AssetSource`, which replaces the old `load_interal_asset!`
system.

The old `load_internal_asset!` approach had a number of issues:

* The `AssetServer` was not aware of (or capable of loading) internal
assets.
* Because internal assets weren't visible to the `AssetServer`, they
could not be processed (or used by assets that are processed). This
would prevent things "preprocessing shaders that depend on built in Bevy
shaders", which is something we desperately need to start doing.
* Each "internal asset" needed a UUID to be defined in-code to reference
it. This was very manual and toilsome.

The new `embedded` `AssetSource` enables the following pattern:

```rust
// Called in `crates/bevy_pbr/src/render/mesh.rs`
embedded_asset!(app, "mesh.wgsl");

// later in the app
let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl");
```

Notice that this always treats the crate name as the "root path", and it
trims out the `src` path for brevity. This is generally predictable, but
if you need to debug you can use the new `embedded_path!` macro to get a
`PathBuf` that matches the one used by `embedded_asset`.

You can also reference embedded assets in arbitrary assets, such as WGSL
shaders:

```rust
#import "embedded://bevy_pbr/render/mesh.wgsl"
```

This also makes `embedded` assets go through the "normal" asset
lifecycle. They are only loaded when they are actually used!

We are also discussing implicitly converting asset paths to/from shader
modules, so in the future (not in this PR) you might be able to load it
like this:

```rust
#import bevy_pbr::render::mesh::Vertex
```

Compare that to the old system!

```rust
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);

load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);

// The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer.
```

## Hot Reloading `embedded`

You can enable `embedded` hot reloading by enabling the
`embedded_watcher` cargo feature:

```
cargo run --features=embedded_watcher
```

## Improved Hot Reloading Workflow

First: the `filesystem_watcher` cargo feature has been renamed to
`file_watcher` for brevity (and to match the `FileAssetReader` naming
convention).

More importantly, hot asset reloading is no longer configured in-code by
default. If you enable any asset watcher feature (such as `file_watcher`
or `rust_source_watcher`), asset watching will be automatically enabled.

This removes the need to _also_ enable hot reloading in your app code.
That means you can replace this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes()))
```

with this:

```rust
app.add_plugins(DefaultPlugins)
```

If you want to hot reload assets in your app during development, just
run your app like this:

```
cargo run --features=file_watcher
```

This means you can use the same code for development and deployment! To
deploy an app, just don't include the watcher feature

```
cargo build --release
```

My intent is to move to this approach for pretty much all dev workflows.
In a future PR I would like to replace `AssetMode::ProcessedDev` with a
`runtime-processor` cargo feature. We could then group all common "dev"
cargo features under a single `dev` feature:

```sh
# this would enable file_watcher, embedded_watcher, runtime-processor, and more
cargo run --features=dev
```

## AssetMode

`AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and
`AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field
on `AssetPlugin`.

```rust
// before 
app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ })

// after 
app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() })
```

This aligns `AssetPlugin` with our other struct-like plugins. The old
"source" and "destination" `AssetProvider` fields in the enum variants
have been replaced by the "asset source" system. You no longer need to
configure the AssetPlugin to "point" to custom asset providers.

## AssetServerMode

To improve the implementation of **Multiple Asset Sources**,
`AssetServer` was made aware of whether or not it is using "processed"
or "unprocessed" assets. You can check that like this:

```rust
if asset_server.mode() == AssetServerMode::Processed {
    /* do something */
}
```

Note that this refactor should also prepare the way for building "one to
many processed output files", as it makes the server aware of whether it
is loading from processed or unprocessed sources. Meaning we can store
and read processed and unprocessed assets differently!

## AssetPath can now refer to folders

The "file only" restriction has been removed from `AssetPath`. The
`AssetServer::load_folder` API now accepts an `AssetPath` instead of a
`Path`, meaning you can load folders from other asset sources!

## Improved AssetPath Parsing

AssetPath parsing was reworked to support sources, improve error
messages, and to enable parsing with a single pass over the string.
`AssetPath::new` was replaced by `AssetPath::parse` and
`AssetPath::try_parse`.

## AssetWatcher broken out from AssetReader

`AssetReader` is no longer responsible for constructing `AssetWatcher`.
This has been moved to `AssetSourceBuilder`.


## Duplicate Event Debouncing

Asset V2 already debounced duplicate filesystem events, but this was
_input_ events. Multiple input event types can produce the same _output_
`AssetSourceEvent`. Now that we have `embedded_watcher`, which does
expensive file io on events, it made sense to debounce output events
too, so I added that! This will also benefit the AssetProcessor by
preventing integrity checks for duplicate events (and helps keep the
noise down in trace logs).

## Next Steps

* **Port Built-in Shaders**: Currently the primary (and essentially
only) user of `load_interal_asset` in Bevy's source code is "built-in
shaders". I chose not to do that in this PR for a few reasons:
1. We need to add the ability to pass shader defs in to shaders via meta
files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def
values in that are defined in code.
2. We need to revisit the current shader module naming system. I think
we _probably_ want to imply modules from source structure (at least by
default). Ideally in a way that can losslessly convert asset paths
to/from shader modules (to enable the asset system to resolve modules
using the asset server).
  3. I want to keep this change set minimal / get this merged first.
* **Deprecate `load_internal_asset`**: we can't do that until we do (1)
and (2)
* **Relative Asset Paths**: This PR significantly increases the need for
relative asset paths (which was already pretty high). Currently when
loading dependencies, it is assumed to be an absolute path, which means
if in an `AssetLoader` you call `context.load("some/path/image.png")` it
will assume that is the "default" asset source, _even if the current
asset is in a different asset source_. This will cause breakage for
AssetLoaders that are not designed to add the current source to whatever
paths are being used. AssetLoaders should generally not need to be aware
of the name of their current asset source, or need to think about the
"current asset source" generally. We should build apis that support
relative asset paths and then encourage using relative paths as much as
possible (both via api design and docs). Relative paths are also
important because they will allow developers to move folders around
(even across providers) without reprocessing, provided there is no path
breakage.
2023-10-13 23:17:32 +00:00
Bruce Mitchener
9a798aa100
Allow clippy::type_complexity in more places. ()
# Objective

- See fewer warnings when running `cargo clippy` locally.

## Solution

- allow `clippy::type_complexity` in more places, which also signals to
users they should do the same.
2023-10-02 21:55:16 +00:00
Carter Anderson
17edf4f7c7
Copy on Write AssetPaths ()
# Objective

The `AssetServer` and `AssetProcessor` do a lot of `AssetPath` cloning
(across many threads). To store the path on the handle, to store paths
in dependency lists, to pass an owned path to the offloaded thread, to
pass a path to the LoadContext, etc , etc. Cloning multiple string
allocations multiple times like this will add up. It is worth optimizing
this.

Referenced in  

## Solution

Added a new `CowArc<T>` type to `bevy_util`, which behaves a lot like
`Cow<T>`, but the Owned variant is an `Arc<T>`. Use this in place of
`Cow<str>` and `Cow<Path>` on `AssetPath`.

---

## Changelog

- `AssetPath` now internally uses `CowArc`, making clone operations much
cheaper
- `AssetPath` now serializes as `AssetPath("some_path.extension#Label")`
instead of as `AssetPath { path: "some_path.extension", label:
Some("Label) }`


## Migration Guide

```rust
// Old
AssetPath::new("logo.png", None);

// New
AssetPath::new("logo.png");

// Old
AssetPath::new("scene.gltf", Some("Mesh0");

// New
AssetPath::new("scene.gltf").with_label("Mesh0");
```

`AssetPath` now serializes as `AssetPath("some_path.extension#Label")`
instead of as `AssetPath { path: "some_path.extension", label:
Some("Label) }`

---------

Co-authored-by: Pascal Hertleif <killercup@gmail.com>
2023-09-09 23:15:10 +00:00
Carter Anderson
5eb292dc10
Bevy Asset V2 ()
# Bevy Asset V2 Proposal

## Why Does Bevy Need A New Asset System?

Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:

* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.

These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.

## Bevy Asset V2

Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types

## Using The New Asset System

### Normal Unprocessed Asset Loading

By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.

If you are defining a custom asset, first derive `Asset`:

```rust
#[derive(Asset)]
struct Thing {
    value: String,
}
```

Initialize the asset:
```rust
app.init_asset:<Thing>()
```

Implement a new `AssetLoader` for it:

```rust
#[derive(Default)]
struct ThingLoader;

#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
    some_setting: bool,
}

impl AssetLoader for ThingLoader {
    type Asset = Thing;
    type Settings = ThingSettings;

    fn load<'a>(
        &'a self,
        reader: &'a mut Reader,
        settings: &'a ThingSettings,
        load_context: &'a mut LoadContext,
    ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
        Box::pin(async move {
            let mut bytes = Vec::new();
            reader.read_to_end(&mut bytes).await?;
            // convert bytes to value somehow
            Ok(Thing {
                value 
            })
        })
    }

    fn extensions(&self) -> &[&str] {
        &["thing"]
    }
}
```

Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.

Then just register the loader in your Bevy app:

```rust
app.init_asset_loader::<ThingLoader>()
```

Now just add your `Thing` asset files into the `assets` folder and load
them like this:

```rust
fn system(asset_server: Res<AssetServer>) {
    let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```

You can check load states directly via the asset server:

```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```

You can also listen for events:

```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
    for event in events.iter() {
        if event.is_loaded_with_dependencies(&handle) {
        }
    }
}
```

Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.

Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:

```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```

### Processed Assets

Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```

This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.

When deploying processed Bevy apps, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```

This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.

When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:

```rust
(
    meta_format_version: "1.0",
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.

In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 12415480888597742505,
        full_hash: 14344495437905856884,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.

When the processor is enabled, you can use the `Process` metadata
config:

```rust
(
    meta_format_version: "1.0",
    asset: Process(
        processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
        settings: (
            loader_settings: (
                format: FromExtension,
            ),
            saver_settings: (
                generate_mipmaps: true,
            ),
        ),
    ),
)
```

This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths]() lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.

`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 905599590923828066,
        full_hash: 9948823010183819117,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: Format(Basis),
        ),
    ),
)
```

To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.

To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.

You can configure default processors for file extensions like this:

```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```

There is one more metadata type to be aware of:

```rust
(
    meta_format_version: "1.0",
    asset: Ignore,
)
```

This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.

The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!

`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.

## Open Questions

There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:

### Implied Dependencies vs Dependency Enumeration

There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).

This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.

However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)

### Eager ProcessorDev Asset Loading

I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.

Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.

### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?

In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.

Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.

The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.

I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.

### Folder / File Naming Conventions

All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?

### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?

Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.

### Discuss on_loaded High Level Interface:

This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern

```rust
fn main() {
    App::new()
        .init_asset::<MyAssets>()
        .add_systems(Update, on_loaded(create_array_texture))
        .run();
}

#[derive(Asset, Clone)]
struct MyAssets {
    #[dependency]
    picture_of_my_cat: Handle<Image>,
    #[dependency]
    picture_of_my_other_cat: Handle<Image>,
}

impl FromWorld for ArrayTexture {
    fn from_world(world: &mut World) -> Self {
        picture_of_my_cat: server.load("meow.png"),
        picture_of_my_other_cat: server.load("meeeeeeeow.png"),
    }
}

fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_cat.clone(),  
        ..default()
    });
    
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_other_cat.clone(),  
        ..default()
    });
}

```

The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).

We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.

## Clarifying Questions

### What about Assets as Entities?

This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.

However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)

In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.

### Why not Distill?

[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".

It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).

However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)

Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".

### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?

"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).

Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).

## Draft TODO

- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x]  Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog

## Followup TODO

- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix 
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See 

## Next Steps

* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.

---------

Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
lelo
42e6dc8987
Refactor EventReader::iter to read ()
# Objective

- The current `EventReader::iter` has been determined to cause confusion
among new Bevy users. It was suggested by @JoJoJet to rename the method
to better clarify its usage.
- Solves  

## Solution

- Rename `EventReader::iter` to `EventReader::read`.
- Rename `EventReader::iter_with_id` to `EventReader::read_with_id`.
- Rename `ManualEventReader::iter` to `ManualEventReader::read`.
- Rename `ManualEventReader::iter_with_id` to
`ManualEventReader::read_with_id`.

---

## Changelog

- `EventReader::iter` has been renamed to `EventReader::read`.
- `EventReader::iter_with_id` has been renamed to
`EventReader::read_with_id`.
- `ManualEventReader::iter` has been renamed to
`ManualEventReader::read`.
- `ManualEventReader::iter_with_id` has been renamed to
`ManualEventReader::read_with_id`.
- Deprecated `EventReader::iter`
- Deprecated `EventReader::iter_with_id`
- Deprecated `ManualEventReader::iter`
- Deprecated `ManualEventReader::iter_with_id`

## Migration Guide

- Existing usages of `EventReader::iter` and `EventReader::iter_with_id`
will have to be changed to `EventReader::read` and
`EventReader::read_with_id` respectively.
- Existing usages of `ManualEventReader::iter` and
`ManualEventReader::iter_with_id` will have to be changed to
`ManualEventReader::read` and `ManualEventReader::read_with_id`
respectively.
2023-08-30 14:20:03 +00:00
DevinLeamy
db5f80b2be
API updates to the AnimationPlayer ()
# Objective

Added `AnimationPlayer` API UX improvements. 

- Succestor to https://github.com/bevyengine/bevy/pull/5912
- Fixes https://github.com/bevyengine/bevy/issues/5848

_(Credits to @asafigan for filing , creating the initial pull
request, and the discussion in )_
## Solution

- Created `RepeatAnimation` enum to describe an animation repetition
behavior.
- Added `is_finished()`, `set_repeat()`, and `is_playback_reversed()`
methods to the animation player.
- ~~Made the animation clip optional as per the comment from #5912~~
> ~~My problem is that the default handle [used the initialize a
`PlayingAnimation`] could actually refer to an actual animation if an
AnimationClip is set for the default handle, which leads me to ask,
"Should animation_clip should be an Option?"~~
- Added an accessor for the animation clip `animation_clip()` to the
animation player.

To determine if an animation is finished, we use the number of times the
animation has completed and the repetition behavior. If the animation is
playing in reverse then `elapsed < 0.0` counts as a completion.
Otherwise, `elapsed > animation.duration` counts as a completion. This
is what I would expect, personally. If there's any ambiguity, perhaps we
could add some `AnimationCompletionBehavior`, to specify that kind of
completion behavior to use.

Update: Previously `PlayingAnimation::elapsed` was being used as the
seek time into the animation clip. This was misleading because if you
increased the speed of the animation it would also increase (or
decrease) the elapsed time. In other words, the elapsed time was not
actually the elapsed time. To solve this, we introduce
`PlayingAnimation::seek_time` to serve as the value we manipulate the
move between keyframes. Consequently, `elapsed()` now returns the actual
elapsed time, and is not effected by the animation speed. Because
`set_elapsed` was being used to manipulate the displayed keyframe, we
introduce `AnimationPlayer::seek_to` and `AnimationPlayer::replay` to
provide this functionality.

## Migration Guide

- Removed `set_elapsed`.
- Removed `stop_repeating` in favour of
`AnimationPlayer::set_repeat(RepeatAnimation::Never)`.
- Introduced `seek_to` to seek to a given timestamp inside of the
animation.
- Introduced `seek_time` accessor for the `PlayingAnimation::seek_to`.
- Introduced `AnimationPlayer::replay` to reset the `PlayingAnimation`
to a state where no time has elapsed.

---------

Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
2023-08-28 16:43:04 +00:00
Rob Parrett
a788e31ad5
Fix CI for Rust 1.72 ()
# Objective

[Rust 1.72.0](https://blog.rust-lang.org/2023/08/24/Rust-1.72.0.html) is
now stable.

# Notes

- `let-else` formatting has arrived!
- I chose to allow `explicit_iter_loop` due to
https://github.com/rust-lang/rust-clippy/issues/11074.
  
We didn't hit any of the false positives that prevent compilation, but
fixing this did produce a lot of the "symbol soup" mentioned, e.g. `for
image in &mut *image_events {`.
  
  Happy to undo this if there's consensus the other way.

---------

Co-authored-by: François <mockersf@gmail.com>
2023-08-25 12:34:24 +00:00
ClayenKitten
ffc572728f
Fix typos throughout the project ()
# Objective

Fix typos throughout the project.

## Solution

[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.

Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).

## Unsolved

`bevy_reflect_derive` has
[typo](1b51053f19/crates/bevy_reflect/bevy_reflect_derive/src/type_path.rs (L76))
in enum variant name that I didn't fix. Enum is `pub(crate)`, so there
shouldn't be any trouble if fixed. However, code is tightly coupled with
macro usage, so I decided to leave it for more experienced contributor
just in case.
2023-07-10 00:11:51 +00:00