Commit graph

33 commits

Author SHA1 Message Date
François
71842c5ac9
Webgpu support (#8336)
# Objective

- Support WebGPU
- alternative to #5027 that doesn't need any async / await
- fixes #8315 
- Surprise fix #7318

## Solution

### For async renderer initialisation 

- Update the plugin lifecycle:
  - app builds the plugin
    - calls `plugin.build`
    - registers the plugin
  - app starts the event loop
- event loop waits for `ready` of all registered plugins in the same
order
    - returns `true` by default
- then call all `finish` then all `cleanup` in the same order as
registered
  - then execute the schedule

In the case of the renderer, to avoid anything async:
- building the renderer plugin creates a detached task that will send
back the initialised renderer through a mutex in a resource
- `ready` will wait for the renderer to be present in the resource
- `finish` will take that renderer and place it in the expected
resources by other plugins
- other plugins (that expect the renderer to be available) `finish` are
called and they are able to set up their pipelines
- `cleanup` is called, only custom one is still for pipeline rendering

### For WebGPU support

- update the `build-wasm-example` script to support passing `--api
webgpu` that will build the example with WebGPU support
- feature for webgl2 was always enabled when building for wasm. it's now
in the default feature list and enabled on all platforms, so check for
this feature must also check that the target_arch is `wasm32`

---

## Migration Guide

- `Plugin::setup` has been renamed `Plugin::cleanup`
- `Plugin::finish` has been added, and plugins adding pipelines should
do it in this function instead of `Plugin::build`
```rust
// Before
impl Plugin for MyPlugin {
    fn build(&self, app: &mut App) {
        app.insert_resource::<MyResource>
            .add_systems(Update, my_system);

        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };

        render_app
            .init_resource::<RenderResourceNeedingDevice>()
            .init_resource::<OtherRenderResource>();
    }
}

// After
impl Plugin for MyPlugin {
    fn build(&self, app: &mut App) {
        app.insert_resource::<MyResource>
            .add_systems(Update, my_system);
    
        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };
    
        render_app
            .init_resource::<OtherRenderResource>();
    }

    fn finish(&self, app: &mut App) {
        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };
    
        render_app
            .init_resource::<RenderResourceNeedingDevice>();
    }
}
```
2023-05-04 22:07:57 +00:00
Carter Anderson
aefe1f0739
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com>
2023-03-18 01:45:34 +00:00
Alice Cecile
206c7ce219 Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.

# Objective

- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45

## Solution

- [x]  Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests

## Changelog

### Added

- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`

### Removed

- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.

### Changed

- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
-  `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. 
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.

## Migration Guide

- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage`  enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
  - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
  - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
  - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with 
  - `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`

## TODO

- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
  - [x] unbreak directional lights
  - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
  - [x] game menu example shows loading screen and menu simultaneously
  - [x] display settings menu is a blank screen
  - [x] `without_winit` example panics
- [x] ensure all tests pass
  - [x] SubApp doc test fails
  - [x] runs_spawn_local tasks fails
  - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)

## Points of Difficulty and Controversy

**Reviewers, please give feedback on these and look closely**

1.  Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.

## Future Work (ideally before 0.10)

- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
Torstein Grindvik
67aa2953d0 Extract component derive (#7399)
# Objective

In simple cases we might want to derive the `ExtractComponent` trait.
This adds symmetry to the existing `ExtractResource` derive.

## Solution

Add an implementation of `#[derive(ExtractComponent)]`.
The implementation is adapted from the existing `ExtractResource` derive macro.

Additionally, there is an attribute called `extract_component_filter`. This allows specifying a query filter type used when extracting.
If not specified, no filter (equal to `()`) is used.

So:

```rust
#[derive(Component, Clone, ExtractComponent)]
#[extract_component_filter(With<Fuel>)]
pub struct Car {
    pub wheels: usize,
}
```

would expand to (a bit cleaned up here):

```rust
impl ExtractComponent for Car
{
    type Query = &'static Self;
    type Filter = With<Fuel>;
    type Out = Self;
    fn extract_component(item: QueryItem<'_, Self::Query>) -> Option<Self::Out> {
        Some(item.clone())
    }
}
```

---

## Changelog

- Added the ability to `#[derive(ExtractComponent)]` with an optional filter.
2023-01-30 18:12:16 +00:00
Sjael
06ada2e93d Changed Msaa to Enum (#7292)
# Objective

Fixes #6931 

Continues #6954 by squashing `Msaa` to a flat enum

Helps out  #7215 

# Solution
```
pub enum Msaa {
    Off = 1,
    #[default]
    Sample4 = 4,
}
```

# Changelog

- Modified
    - `Msaa` is now enum
    - Defaults to 4 samples
    - Uses `.samples()` method to get the sample number as `u32`

# Migration Guide
```
let multi = Msaa { samples: 4 } 
// is now
let multi = Msaa::Sample4

multi.samples
// is now
multi.samples()
```



Co-authored-by: Sjael <jakeobrien44@gmail.com>
2023-01-20 14:25:21 +00:00
Daniel Chia
517deda215 Make PipelineCache internally mutable. (#7205)
# Objective

- Allow rendering queue systems to use a `Res<PipelineCache>` even for queueing up new rendering pipelines. This is part of unblocking parallel execution queue systems.

## Solution

- Make `PipelineCache` internally mutable w.r.t to queueing new pipelines. Pipelines are no longer immediately updated into the cache state, but rather queued into a Vec. The Vec of pending new pipelines is then later processed at the same time we actually create the queued pipelines on the GPU device.

---

## Changelog

`PipelineCache` no longer requires mutable access in order to queue render / compute pipelines.

## Migration Guide

* Most usages of `resource_mut::<PipelineCache>` and `ResMut<PipelineCache>` can be changed to `resource::<PipelineCache>` and `Res<PipelineCache>` as long as they don't use any methods requiring mutability - the only public method requiring it is `process_queue`.
2023-01-16 15:41:14 +00:00
Sludge
908c40dd88 Implement Clone for all pipeline types (#6653)
# Objective

Pipelines can be customized by wrapping an existing pipeline in a newtype and adding custom logic to its implementation of `SpecializedMeshPipeline::specialize`. To make that easier, the wrapped pipeline type needs to implement `Clone`.

For example, the current non-cloneable pipelines require wrapper pipelines to pull apart the wrapped pipeline like this:

```rust
impl FromWorld for Wireframe2dPipeline {
    fn from_world(world: &mut World) -> Self {
        let p = &world.resource::<Material2dPipeline<ColorMaterial>>();
        Self {
            mesh2d_pipeline: p.mesh2d_pipeline.clone(),
            material2d_layout: p.material2d_layout.clone(),
            vertex_shader: p.vertex_shader.clone(),
            fragment_shader: p.fragment_shader.clone(),
        }
    }
}
```

## Solution

Derive or implement `Clone` on all built-in pipeline types. This is easy to do since they mostly just contain cheaply clonable reference-counted types.

---

## Changelog

Implement `Clone` for all pipeline types.
2023-01-14 18:33:38 +00:00
IceSentry
f119d9df8e Add DrawFunctionsInternals::id() (#6745)
# Objective

- Every usage of `DrawFunctionsInternals::get_id()` was followed by a `.unwrap()`. which just adds boilerplate.

## Solution

- Introduce a fallible version of `DrawFunctionsInternals::get_id()` and use it where possible.
- I also took the opportunity to improve the error message a little in the case where it fails.

---

## Changelog

- Added `DrawFunctionsInternals::id()`
2022-11-28 13:54:13 +00:00
Jakob Hellermann
838b318863 separate tonemapping and upscaling passes (#3425)
Attempt to make features like bloom https://github.com/bevyengine/bevy/pull/2876 easier to implement.

**This PR:**
- Moves the tonemapping from `pbr.wgsl` into a separate pass
- also add a separate upscaling pass after the tonemapping which writes to the swap chain (enables resolution-independant rendering and post-processing after tonemapping)
- adds a `hdr` bool to the camera which controls whether the pbr and sprite shaders render into a `Rgba16Float` texture

**Open questions:**
- ~should the 2d graph work the same as the 3d one?~ it is the same now
- ~The current solution is a bit inflexible because while you can add a post processing pass that writes to e.g. the `hdr_texture`, you can't write to a separate `user_postprocess_texture` while reading the `hdr_texture` and tell the tone mapping pass to read from the `user_postprocess_texture` instead. If the tonemapping and upscaling render graph nodes were to take in a `TextureView` instead of the view entity this would almost work, but the bind groups for their respective input textures are already created in the `Queue` render stage in the hardcoded order.~ solved by creating bind groups in render node

**New render graph:**

![render_graph](https://user-images.githubusercontent.com/22177966/147767249-57dd4229-cfab-4ec5-9bf3-dc76dccf8e8b.png)
<details>
<summary>Before</summary>

![render_graph_old](https://user-images.githubusercontent.com/22177966/147284579-c895fdbd-4028-41cf-914c-e1ffef60e44e.png)
</details>

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-10-26 20:13:59 +00:00
Sludge
ac364e9e28 Register Wireframe type (#6152)
# Objective

The `Wireframe` type implements `Reflect`, but is never registered, making its reflection inaccessible.

## Solution

Call `App::register_type::<Wireframe>()` in the `Plugin::build` implementation of `WireframePlugin`.

---

## Changelog

Fixed `Wireframe` type reflection not getting registered.
2022-10-03 16:37:03 +00:00
ira
2b80a3f279 Implement IntoIterator for &Extract<P> (#6025)
# Objective

Implement `IntoIterator` for `&Extract<P>` if the system parameter it wraps implements `IntoIterator`.

Enables the use of `IntoIterator` with an extracted query.

Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-09-20 00:29:10 +00:00
ira
992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
Charles
de484c1e41 fix extract_wireframes (#5301)
# Objective

- Wireframes are currently not rendering on main because they aren't being extracted correctly

## Solution

- Extract the wireframes correctly
2022-07-13 04:53:50 +00:00
ira
4847f7e3ad Update codebase to use IntoIterator where possible. (#5269)
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.

```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {

// To
for _ in &list {
for _ in &mut list {
```

We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.

## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :) 


Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-07-11 15:28:50 +00:00
Robin KAY
5b5013d540 Add ViewRangefinder3d to reduce boilerplate when enqueuing standard 3D PhaseItems. (#5014)
# Objective

Reduce the boilerplate code needed to make draw order sorting work correctly when queuing items through new common functionality. Also fix several instances in the bevy code-base (mostly examples) where this boilerplate appears to be incorrect.

## Solution

- Moved the logic for handling back-to-front vs front-to-back draw ordering into the PhaseItems by inverting the sort key ordering of Opaque3d and AlphaMask3d. The means that all the standard 3d rendering phases measure distance in the same way. Clients of these structs no longer need to know to negate the distance.
- Added a new utility struct, ViewRangefinder3d, which encapsulates the maths needed to calculate a "distance" from an ExtractedView and a mesh's transform matrix.
- Converted all the occurrences of the distance calculations in Bevy and its examples to use ViewRangefinder3d. Several of these occurrences appear to be buggy because they don't invert the view matrix or don't negate the distance where appropriate. This leads me to the view that Bevy should expose a facility to correctly perform this calculation.

## Migration Guide

Code which creates Opaque3d, AlphaMask3d, or Transparent3d phase items _should_ use ViewRangefinder3d to calculate the distance value.

Code which manually calculated the distance for Opaque3d or AlphaMask3d phase items and correctly negated the z value will no longer depth sort correctly. However, incorrect depth sorting for these types will not impact the rendered output as sorting is only a performance optimisation when drawing with depth-testing enabled. Code which manually calculated the distance for Transparent3d phase items will continue to work as before.
2022-07-05 06:13:39 +00:00
Hennadii Chernyshchyk
534cad611d Add reflection for resources (#5175)
# Objective

We don't have reflection for resources.

## Solution

Introduce reflection for resources.

Continues #3580 (by @Davier), related to #3576.

---

## Changelog

### Added

* Reflection on a resource type (by adding `ReflectResource`):

```rust
#[derive(Reflect)]
#[reflect(Resource)]
struct MyResourse;
```

### Changed

* Rename `ReflectComponent::add_component` into `ReflectComponent::insert_component` for consistency.

## Migration Guide

* Rename `ReflectComponent::add_component` into `ReflectComponent::insert_component`.
2022-07-04 13:04:20 +00:00
Carter Anderson
f487407e07 Camera Driven Rendering (#4745)
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. 

Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915):
![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png)

Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". 

Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id:
```rust
// main camera (main window)
commands.spawn_bundle(Camera2dBundle::default());

// second camera (other window)
commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Window(window_id),
        ..default()
    },
    ..default()
});
```

Rendering to a texture is as simple as pointing the camera at a texture:

```rust
commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Texture(image_handle),
        ..default()
    },
    ..default()
});
```

Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`).

```rust
// main pass camera with a default priority of 0
commands.spawn_bundle(Camera2dBundle::default());

commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Texture(image_handle.clone()),
        priority: -1,
        ..default()
    },
    ..default()
});

commands.spawn_bundle(SpriteBundle {
    texture: image_handle,
    ..default()
})
```

Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system:

```rust
commands.spawn_bundle(Camera3dBundle::default());

commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        // this will render 2d entities "on top" of the default 3d camera's render
        priority: 1,
        ..default()
    },
    ..default()
});
```

There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active.

Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections.

```rust
// old 3d perspective camera
commands.spawn_bundle(PerspectiveCameraBundle::default())

// new 3d perspective camera
commands.spawn_bundle(Camera3dBundle::default())
```

```rust
// old 2d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_2d())

// new 2d orthographic camera
commands.spawn_bundle(Camera2dBundle::default())
```

```rust
// old 3d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_3d())

// new 3d orthographic camera
commands.spawn_bundle(Camera3dBundle {
    projection: OrthographicProjection {
        scale: 3.0,
        scaling_mode: ScalingMode::FixedVertical,
        ..default()
    }.into(),
    ..default()
})
```

Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors.

If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component:

```rust
commands.spawn_bundle(Camera3dBundle {
    camera_render_graph: CameraRenderGraph::new(some_render_graph_name),
    ..default()
})
```

Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added.

Speaking of using components to configure graphs / passes, there are a number of new configuration options:

```rust
commands.spawn_bundle(Camera3dBundle {
    camera_3d: Camera3d {
        // overrides the default global clear color 
        clear_color: ClearColorConfig::Custom(Color::RED),
        ..default()
    },
    ..default()
})

commands.spawn_bundle(Camera3dBundle {
    camera_3d: Camera3d {
        // disables clearing
        clear_color: ClearColorConfig::None,
        ..default()
    },
    ..default()
})
```

Expect to see more of the "graph configuration Components on Cameras" pattern in the future.

By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component:

```rust
commands
    .spawn_bundle(Camera3dBundle::default())
    .insert(CameraUi {
        is_enabled: false,
        ..default()
    })
```

## Other Changes

* The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr.
* I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization.
* I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. 
* All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr.
* Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic.
* Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals:
    1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs.
    2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense.

## Follow Up Work

* Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen)
* Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor)
* Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system).
* Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable.
* Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
Félix Lescaudey de Maneville
f000c2b951 Clippy improvements (#4665)
# Objective

Follow up to my previous MR #3718 to add new clippy warnings to bevy:

- [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted)
- [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else)
- [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms)
- [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned)
- [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop)
- [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten)

There is one commit per clippy warning, and the matching flags are added to the CI execution.

To test the CI execution you may run `cargo run -p ci -- clippy` at the root.

I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-31 01:38:07 +00:00
Robert Swain
a0a3d8798b ExtractResourcePlugin (#3745)
# Objective

- Add an `ExtractResourcePlugin` for convenience and consistency

## Solution

- Add an `ExtractResourcePlugin` similar to `ExtractComponentPlugin` but for ECS `Resource`s. The system that is executed simply clones the main world resource into a render world resource, if and only if the main world resource was either added or changed since the last execution of the system.
- Add an `ExtractResource` trait with a `fn extract_resource(res: &Self) -> Self` function. This is used by the `ExtractResourcePlugin` to extract the resource
- Add a derive macro for `ExtractResource` on a `Resource` with the `Clone` trait, that simply returns `res.clone()`
- Use `ExtractResourcePlugin` wherever both possible and appropriate
2022-05-30 18:36:03 +00:00
David Taralla
f02bea5bfc Make Wireframe respect visible entities (#4660)
# Objective

- Make meshes with a Wireframe component not render if they are not in the VisibleEntities list of a given camera
- See [discussion](https://discord.com/channels/691052431525675048/742884593551802431/971392761972527144) on the Bevy Engine Discord
- Fixes this kind of issues:
![image](https://user-images.githubusercontent.com/1733200/166746303-39003d57-8b07-4ae2-9ddf-bacdb04e7d84.png)
Camera for the RenderTexture in the bottom left is set to only see layer 1 entities. The three colored lines are on the render layer 1, but not the sphere (which has a Wireframe component).

## Solution

- Mimick what is done in [bevy_pbr/src/material.rs#L307](479f43bbf3/crates/bevy_pbr/src/material.rs (L307)) for [bevy_pbr/src/wireframe.rs#L106](2b6e67f4cb/crates/bevy_pbr/src/wireframe.rs (L106))
- Credits to beep for finding this out!
2022-05-04 22:28:16 +00:00
Jakob Hellermann
2b6e67f4cb add #[reflect(Default)] to create default value for reflected types (#3733)
### Problem
It currently isn't possible to construct the default value of a reflected type. Because of that, it isn't possible to use `add_component` of `ReflectComponent` to add a new component to an entity because you can't know what the initial value should be.

### Solution

1. add `ReflectDefault` type
```rust
#[derive(Clone)]
pub struct ReflectDefault {
    default: fn() -> Box<dyn Reflect>,
}

impl ReflectDefault {
    pub fn default(&self) -> Box<dyn Reflect> {
        (self.default)()
    }
}

impl<T: Reflect + Default> FromType<T> for ReflectDefault {
    fn from_type() -> Self {
        ReflectDefault {
            default: || Box::new(T::default()),
        }
    }
}
```

2. add `#[reflect(Default)]` to all component types that implement `Default` and are user facing (so not `ComputedSize`, `CubemapVisibleEntities` etc.)



This makes it possible to add the default value of a component to an entity without any compile-time information:

```rust
fn main() {
    let mut app = App::new();
    app.register_type::<Camera>();

    let type_registry = app.world.get_resource::<TypeRegistry>().unwrap();
    let type_registry = type_registry.read();

    let camera_registration = type_registry.get(std::any::TypeId::of::<Camera>()).unwrap();
    let reflect_default = camera_registration.data::<ReflectDefault>().unwrap();
    let reflect_component = camera_registration
        .data::<ReflectComponent>()
        .unwrap()
        .clone();

    let default = reflect_default.default();

    drop(type_registry);

    let entity = app.world.spawn().id();
    reflect_component.add_component(&mut app.world, entity, &*default);

    let camera = app.world.entity(entity).get::<Camera>().unwrap();
    dbg!(&camera);
}
```

### Open questions
- should we have `ReflectDefault` or `ReflectFromWorld` or both?
2022-05-03 19:20:13 +00:00
研究社交
e49542b026 Rename transparent_phase to opaque_phase in wireframe.rs (#4639)
# Objective

- Meshes are queued in opaque phase instead of transparent phase when drawing wireframes.
- There is a name mismatch.

## Solution

- Rename `transparent_phase` to `opaque_phase` in `wireframe.rs`.
2022-05-02 04:11:55 +00:00
bilsen
63fee2572b ParamSet for conflicting SystemParam:s (#2765)
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.

## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.


Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
2022-03-29 23:39:38 +00:00
Kurt Kühnert
9e450f2827 Compute Pipeline Specialization (#3979)
# Objective

- Fixes #3970
- To support Bevy's shader abstraction(shader defs, shader imports and hot shader reloading) for compute shaders, I have followed carts advice and change the `PipelinenCache` to accommodate both compute and render pipelines.

## Solution

- renamed `RenderPipelineCache` to `PipelineCache`
- Cached Pipelines are now represented by an enum (render, compute)
- split the `SpecializedPipelines` into `SpecializedRenderPipelines` and `SpecializedComputePipelines`
- updated the game of life example

## Open Questions

- should `SpecializedRenderPipelines` and `SpecializedComputePipelines` be merged and how would we do that?
- should the `get_render_pipeline` and `get_compute_pipeline` methods be merged?
- is pipeline specialization for different entry points a good pattern




Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-23 00:27:26 +00:00
Alice Cecile
557ab9897a Make get_resource (and friends) infallible (#4047)
# Objective

- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).

## Solution

- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.

## Notes

I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.

## Migration Guide

Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.

Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.

## Impact

- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
2022-02-27 22:37:18 +00:00
Carter Anderson
e369a8ad51 Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
  * `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
  *  `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"  
  * Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently. 
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).    
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key.  For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!

To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:

```rust
impl SpecializedMeshPipeline for MeshPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> RenderPipelineDescriptor {
        let mut vertex_attributes = vec![
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
            Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
        ];

        let mut shader_defs = Vec::new();
        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push(String::from("VERTEX_TANGENTS"));
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
        }

        let vertex_buffer_layout = layout
            .get_layout(&vertex_attributes)
            .expect("Mesh is missing a vertex attribute");
```

Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.

This is still a draft because I still need to:

* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly

Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.

Alternative to #3120
Fixes #3030


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
Carter Anderson
98938a8555 Internal Asset Hot Reloading (#3966)
Adds "hot reloading" of internal assets, which is normally not possible because they are loaded using `include_str` / direct Asset collection access.

This is accomplished via the following:
* Add a new `debug_asset_server` feature flag
* When that feature flag is enabled, create a second App with a second AssetServer that points to a configured location (by default the `crates` folder). Plugins that want to add hot reloading support for their assets can call the new `app.add_debug_asset::<T>()` and `app.init_debug_asset_loader::<T>()` functions.
* Load "internal" assets using the new `load_internal_asset` macro. By default this is identical to the current "include_str + register in asset collection" approach. But if the `debug_asset_server` feature flag is enabled, it will also load the asset dynamically in the debug asset server using the file path. It will then set up a correlation between the "debug asset" and the "actual asset" by listening for asset change events.

This is an alternative to #3673. The goal was to keep the boilerplate and features flags to a minimum for bevy plugin authors, and allow them to home their shaders near relevant code. 

This is a draft because I haven't done _any_ quality control on this yet. I'll probably rename things and remove a bunch of unwraps. I just got it working and wanted to use it to start a conversation.

Fixes #3660
2022-02-18 22:56:57 +00:00
Hennadii Chernyshchyk
458cb7a9e9 Add headless mode (#3439)
# Objective

In this PR I added the ability to opt-out graphical backends. Closes #3155.

## Solution

I turned backends into `Option` ~~and removed panicking sub app API to force users handle the error (was suggested by `@cart`)~~.
2022-01-08 10:39:43 +00:00
Michael Dorst
fd743ec57f Fix doc_markdown lints in bevy_pbr (#3477)
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.

This PR fixes lints in the `bevy_pbr` crate.
2021-12-29 19:04:18 +00:00
Carter Anderson
963e2f08a2 Materials and MaterialPlugin (#3428)
This adds "high level" `Material` and `SpecializedMaterial` traits, which can be used with a `MaterialPlugin<T: SpecializedMaterial>`. `MaterialPlugin` automatically registers the appropriate resources, draw functions, and queue systems. The `Material` trait is simpler, and should cover most use cases. `SpecializedMaterial` is like `Material`, but it also requires defining a "specialization key" (see #3031). `Material` has a trivial blanket impl of `SpecializedMaterial`, which allows us to use the same types + functions for both.

This makes defining custom 3d materials much simpler (see the `shader_material` example diff) and ensures consistent behavior across all 3d materials (both built in and custom). I ported the built in `StandardMaterial` to `MaterialPlugin`. There is also a new `MaterialMeshBundle<T: SpecializedMaterial>`, which `PbrBundle` aliases to.
2021-12-25 21:45:43 +00:00
Jakob Hellermann
adb3ad399c make sub_app return an &App and add sub_app_mut() -> &mut App (#3309)
It's sometimes useful to have a reference to an app a sub app at the same time, which is only possible with an immutable reference.
2021-12-24 06:57:30 +00:00
davier
c79ec9cad6 Fix custom mesh pipelines (#3381)
# Objective

Fixes #3379 

## Solution

The custom mesh pipelines needed to be specialized on each mesh's primitive topology, as done in `queue_meshes()`

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-20 20:33:39 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
Renamed from pipelined/bevy_pbr2/src/wireframe.rs (Browse further)