Commit graph

1566 commits

Author SHA1 Message Date
Vitaliy Sapronenko
088960f597
Example with repeated texture (#13176)
# Objective

Fixes #11136 .
Fixes https://github.com/bevyengine/bevy/pull/11161.

## Solution

- Set image sampler with repeated mode for u and v
- set uv_transform of StandardMaterial to resizing params

## Testing

Got this view on example run

![image](https://github.com/bevyengine/bevy/assets/17225606/a5f7c414-7966-4c31-97e1-320241ddc75b)
2024-05-05 17:29:26 +00:00
Noah Emke
ba33672c43
Fix unfinished sentence in a comment in asset_settings example (#13243)
# Objective

- In PR #12882 I added a new example which contained a comment with an
unfinished and cut off sentence. This wasn't caught until after the PR
was merged.
- This simply finishes that comment.

## Solution

- Finished the incomplete comment.

## Testing

- This is simply a comment change so no testing needed other than
reading it.
2024-05-05 14:13:27 +00:00
Gino Valente
40837501b4
examples: Add Dynamic Types reflection example (#13220)
# Objective

Dynamic types can be tricky to understand and work with in bevy_reflect.
There should be an example that shows what they are and how they're
used.

## Solution

Add a `Dynamic Types` reflection example.

I'm planning to go through the reflection examples, adding new ones and
updating old ones. And I think this walkthrough style tends to work
best. Due to the amount of text and associated explanation, it might fit
better in a dedicated reflection chapter of the WIP Bevy Book. However,
I think it might be valuable to have some public-facing tutorials for
these concepts.

Let me know if there any thoughts or critiques with the example— both in
content and this overall structure!

## Testing

To test these changes, you can run the example locally:

```
cargo run --example dynamic_types
```

---

## Changelog

- Add `Dynamic Types` reflection example
2024-05-03 23:34:53 +00:00
Philpax
99b4fb68cc
Fix custom_loop example to include plugin finalization (#13215)
# Objective

The `custom_loop` example didn't replicate the `app.finish` /
`app.cleanup` calls from the default runner; I discovered this when
trying to troubleshoot why my application with a custom loop wasn't
calling its plugin finalizers, and realised that the upstream example
that I'd referenced didn't have the relevant calls.

## Solution

Added the missing calls, replicating what the default runner does:

d390420093/crates/bevy_app/src/app.rs (L895-L896)

## Testing

I've confirmed that adding these two calls to my application fixed the
issue I was encountering. I haven't tested it within the example itself
as it's relatively straightforward and I didn't want to pollute the
example with a plugin using a finalizer.
2024-05-03 20:12:27 +00:00
Bram Buurlage
d390420093
Implement Auto Exposure plugin (#12792)
# Objective

- Add auto exposure/eye adaptation to the bevy render pipeline.
- Support features that users might expect from other engines:
  - Metering masks
  - Compensation curves
  - Smooth exposure transitions 

This PR is based on an implementation I already built for a personal
project before https://github.com/bevyengine/bevy/pull/8809 was
submitted, so I wasn't able to adopt that PR in the proper way. I've
still drawn inspiration from it, so @fintelia should be credited as
well.

## Solution

An auto exposure compute shader builds a 64 bin histogram of the scene's
luminance, and then adjusts the exposure based on that histogram. Using
a histogram allows the system to ignore outliers like shadows and
specular highlights, and it allows to give more weight to certain areas
based on a mask.

---

## Changelog

- Added: AutoExposure plugin that allows to adjust a camera's exposure
based on it's scene's luminance.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-05-03 17:45:17 +00:00
MiniaczQ
777bb8cfef
Separate unrelated code to submodules in compute/sub-state examples (#13188)
Large part of the code is UI spawning which contributes nothing to the
code example.
2024-05-03 13:04:14 +00:00
rmsthebest
96a6eee031
Make one-shot example more noob friendly (#13201)
# Objective

If the current example is used as is, the `button_pressed` system will
run every update.
Update the example so that it is a more ready to use for people

## Solution
Rewrote most of it.

Another solution would be to just minimally fix the problems
```Rust
 .add_systems(Startup, (count_entities, setup).chain()) 
```
and
```Rust
fn evaluate_callbacks(query: Query<(Entity, &Callback), With<Triggered>>, mut commands: Commands) {
    for (entity, callback) in query.iter() {
        commands.run_system(callback.0);
        commands.entity(entity).remove::<Triggered>();
    }
}
```


## Testing

- Did you test these changes? If so, how?
Ran the example and pressed A / B on the keyboard

---
2024-05-03 13:00:56 +00:00
Patrick Walton
31835ff76d
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). (#12916)
Implement visibility ranges, also known as hierarchical levels of detail
(HLODs).

This commit introduces a new component, `VisibilityRange`, which allows
developers to specify camera distances in which meshes are to be shown
and hidden. Hiding meshes happens early in the rendering pipeline, so
this feature can be used for level of detail optimization. Additionally,
this feature is properly evaluated per-view, so different views can show
different levels of detail.

This feature differs from proper mesh LODs, which can be implemented
later. Engines generally implement true mesh LODs later in the pipeline;
they're typically more efficient than HLODs with GPU-driven rendering.
However, mesh LODs are more limited than HLODs, because they require the
lower levels of detail to be meshes with the same vertex layout and
shader (and perhaps the same material) as the original mesh. Games often
want to use objects other than meshes to replace distant models, such as
*octahedral imposters* or *billboard imposters*.

The reason why the feature is called *hierarchical level of detail* is
that HLODs can replace multiple meshes with a single mesh when the
camera is far away. This can be useful for reducing drawcall count. Note
that `VisibilityRange` doesn't automatically propagate down to children;
it must be placed on every mesh.

Crossfading between different levels of detail is supported, using the
standard 4x4 ordered dithering pattern from [1]. The shader code to
compute the dithering patterns should be well-optimized. The dithering
code is only active when visibility ranges are in use for the mesh in
question, so that we don't lose early Z.

Cascaded shadow maps show the HLOD level of the view they're associated
with. Point light and spot light shadow maps, which have no CSMs,
display all HLOD levels that are visible in any view. To support this
efficiently and avoid doing visibility checks multiple times, we
precalculate all visible HLOD levels for each entity with a
`VisibilityRange` during the `check_visibility_range` system.

A new example, `visibility_range`, has been added to the tree, as well
as a new low-poly version of the flight helmet model to go with it. It
demonstrates use of the visibility range feature to provide levels of
detail.

[1]: https://en.wikipedia.org/wiki/Ordered_dithering#Threshold_map

[^1]: Unreal doesn't have a feature that exactly corresponds to
visibility ranges, but Unreal's HLOD system serves roughly the same
purpose.

## Changelog

### Added

* A new `VisibilityRange` component is available to conditionally enable
entity visibility at camera distances, with optional crossfade support.
This can be used to implement different levels of detail (LODs).

## Screenshots

High-poly model:
![Screenshot 2024-04-09
185541](https://github.com/bevyengine/bevy/assets/157897/7e8be017-7187-4471-8866-974e2d8f2623)

Low-poly model up close:
![Screenshot 2024-04-09
185546](https://github.com/bevyengine/bevy/assets/157897/429603fe-6bb7-4246-8b4e-b4888fd1d3a0)

Crossfading between the two:
![Screenshot 2024-04-09
185604](https://github.com/bevyengine/bevy/assets/157897/86d0d543-f8f3-49ec-8fe5-caa4d0784fd4)

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-05-03 00:11:35 +00:00
mgi388
78bf48b874
Use BindGroupLayoutEntryBuilder in texture_binding_array example (#13169)
# Objective

- I've been using the `texture_binding_array` example as a base to use
multiple textures in meshes in my program
- I only realised once I was deep in render code that these helpers
existed to create layouts
- I wish I knew the existed earlier because the alternative (filling in
every struct field) is so much more verbose

## Solution

- Use `BindGroupLayoutEntries::with_indices` to teach users that the
helper exists
- Also fix typo which should be `texture_2d`.

## Alternatives considered

- Just leave it as is to teach users about every single struct field
- However, leaving as is leaves users writing roughly 29 lines versus
roughly 2 lines for 2 entries and I'd prefer the 2 line approach

## Testing

Ran the example locally and compared before and after.

Before: 

<img width="1280" alt="image"
src="https://github.com/bevyengine/bevy/assets/135186256/f5897210-2560-4110-b92b-85497be9023c">

After:

<img width="1279" alt="image"
src="https://github.com/bevyengine/bevy/assets/135186256/8d13a939-b1ce-4a49-a9da-0b1779c8cb6a">

Co-authored-by: mgi388 <>
2024-05-02 20:10:32 +00:00
François Mockers
1c15ac647a
Example setup for tooling (#13088)
# Objective

- #12755 introduced the need to download a file to run an example
- This means the example fails to run in CI without downloading that
file

## Solution

- Add a new metadata to examples "setup" that provides setup
instructions
- Replace the URL in the meshlet example to one that can actually be
downloaded
- example-showcase execute the setup before running an example
2024-05-02 20:10:09 +00:00
Pietro
5ee1b40298
fix: rewrite winit loop (#12669)
# Objective

- Simplifies/clarifies the winit loop.
- Fixes #12612.

## Solution

The Winit loop runs following this flow:
* NewEvents
* Any number of other events, that can be 0, including RequestRedraw
* AboutToWait

Bevy also uses the UpdateMode, to define how the next loop has to run.
It can be essentially:
* Continuous, using ControlFlow::Wait for windowed apps, and
ControlFlow::Poll for windowless apps
* Reactive/ReactiveLowPower, using ControlFlow::WaitUntil with a
specific wait delay

The changes are made to follow this pattern, so that 
* NewEvents define if the WaitUntil has been canceled because we
received a Winit event.
* AboutToWait:
  * checks if the window has to be redrawn
  * otherwise calls app.update() if the WaitUntil timeout has elapsed
  * updates the ControlFlow accordingly

To make the code more logical:
* AboutToWait checks if any Bevy's RequestRedraw event has been emitted
* create_windows is run every cycle, at the beginning of the loop
* the ActiveState (that could be renamed ActivityState) is updated in
AboutToWait, symmetrically for WillSuspend/WillResume
* the AppExit events are checked every loop cycle, to exit the app early

## Platform-specific testing

- [x] Windows
- [x] MacOs
- [x] Linux (x11)
- [x] Linux (Wayland)
- [x] Android
- [x] iOS
- [x] WASM/WebGL2 (Chrome)
- [x] WASM/WebGL2 (Firefox)
- [x] WASM/WebGL2 (Safari)
- [x] WASM/WebGpu (Chrome)

---------

Co-authored-by: François <francois.mockers@vleue.com>
2024-05-02 19:57:19 +00:00
Lee-Orr
b8832dc862
Computed State & Sub States (#11426)
## Summary/Description
This PR extends states to allow support for a wider variety of state
types and patterns, by providing 3 distinct types of state:
- Standard [`States`] can only be changed by manually setting the
[`NextState<S>`] resource. These states are the baseline on which the
other state types are built, and can be used on their own for many
simple patterns. See the [state
example](https://github.com/bevyengine/bevy/blob/latest/examples/ecs/state.rs)
for a simple use case - these are the states that existed so far in
Bevy.
- [`SubStates`] are children of other states - they can be changed
manually using [`NextState<S>`], but are removed from the [`World`] if
the source states aren't in the right state. See the [sub_states
example](https://github.com/lee-orr/bevy/blob/derived_state/examples/ecs/sub_states.rs)
for a simple use case based on the derive macro, or read the trait docs
for more complex scenarios.
- [`ComputedStates`] are fully derived from other states - they provide
a [`compute`](ComputedStates::compute) method that takes in the source
states and returns their derived value. They are particularly useful for
situations where a simplified view of the source states is necessary -
such as having an `InAMenu` computed state derived from a source state
that defines multiple distinct menus. See the [computed state
example](https://github.com/lee-orr/bevy/blob/derived_state/examples/ecs/computed_states.rscomputed_states.rs)
to see a sampling of uses for these states.

# Objective

This PR is another attempt at allowing Bevy to better handle complex
state objects in a manner that doesn't rely on strict equality. While my
previous attempts (https://github.com/bevyengine/bevy/pull/10088 and
https://github.com/bevyengine/bevy/pull/9957) relied on complex matching
capacities at the point of adding a system to application, this one
instead relies on deterministically deriving simple states from more
complex ones.

As a result, it does not require any special macros, nor does it change
any other interactions with the state system once you define and add
your derived state. It also maintains a degree of distinction between
`State` and just normal application state - your derivations have to end
up being discreet pre-determined values, meaning there is less of a
risk/temptation to place a significant amount of logic and data within a
given state.

### Addition - Sub States
closes #9942 
After some conversation with Maintainers & SMEs, a significant concern
was that people might attempt to use this feature as if it were
sub-states, and find themselves unable to use it appropriately. Since
`ComputedState` is mainly a state matching feature, while `SubStates`
are more of a state mutation related feature - but one that is easy to
add with the help of the machinery introduced by `ComputedState`, it was
added here as well. The relevant discussion is here:
https://discord.com/channels/691052431525675048/1200556329803186316

## Solution
closes #11358 

The solution is to create a new type of state - one implementing
`ComputedStates` - which is deterministically tied to one or more other
states. Implementors write a function to transform the source states
into the computed state, and it gets triggered whenever one of the
source states changes.

In addition, we added the `FreelyMutableState` trait , which is
implemented as part of the derive macro for `States`. This allows us to
limit use of `NextState<S>` to states that are actually mutable,
preventing mis-use of `ComputedStates`.

---

## Changelog

- Added `ComputedStates` trait
- Added `FreelyMutableState` trait
- Converted `NextState` resource to an Enum, with `Unchanged` and
`Pending`
- Added `App::add_computed_state::<S: ComputedStates>()`, to allow for
easily adding derived states to an App.
- Moved the `StateTransition` schedule label from `bevy_app` to
`bevy_ecs` - but maintained the export in `bevy_app` for continuity.
- Modified the process for updating states. Instead of just having an
`apply_state_transition` system that can be added anywhere, we now have
a multi-stage process that has to run within the `StateTransition`
label. First, all the state changes are calculated - manual transitions
rely on `apply_state_transition`, while computed transitions run their
computation process before both call `internal_apply_state_transition`
to apply the transition, send out the transition event, trigger
dependent states, and record which exit/transition/enter schedules need
to occur. Once all the states have been updated, the transition
schedules are called - first the exit schedules, then transition
schedules and finally enter schedules.
- Added `SubStates` trait
- Adjusted `apply_state_transition` to be a no-op if the `State<S>`
resource doesn't exist

## Migration Guide

If the user accessed the NextState resource's value directly or created
them from scratch they will need to adjust to use the new enum variants:
- if they created a `NextState(Some(S))` - they should now use
`NextState::Pending(S)`
- if they created a `NextState(None)` -they should now use
`NextState::Unchanged`
- if they matched on the `NextState` value, they would need to make the
adjustments above

If the user manually utilized `apply_state_transition`, they should
instead use systems that trigger the `StateTransition` schedule.

---
## Future Work
There is still some future potential work in the area, but I wanted to
keep these potential features and changes separate to keep the scope
here contained, and keep the core of it easy to understand and use.
However, I do want to note some of these things, both as inspiration to
others and an illustration of what this PR could unlock.

- `NextState::Remove` - Now that the `State` related mechanisms all
utilize options (#11417), it's fairly easy to add support for explicit
state removal. And while `ComputedStates` can add and remove themselves,
right now `FreelyMutableState`s can't be removed from within the state
system. While it existed originally in this PR, it is a different
question with a separate scope and usability concerns - so having it as
it's own future PR seems like the best approach. This feature currently
lives in a separate branch in my fork, and the differences between it
and this PR can be seen here: https://github.com/lee-orr/bevy/pull/5

- `NextState::ReEnter` - this would allow you to trigger exit & entry
systems for the current state type. We can potentially also add a
`NextState::ReEnterRecirsive` to also re-trigger any states that depend
on the current one.

- More mechanisms for `State` updates - This PR would finally make
states that aren't a set of exclusive Enums useful, and with that comes
the question of setting state more effectively. Right now, to update a
state you either need to fully create the new state, or include the
`Res<Option<State<S>>>` resource in your system, clone the state, mutate
it, and then use `NextState.set(my_mutated_state)` to make it the
pending next state. There are a few other potential methods that could
be implemented in future PRs:
- Inverse Compute States - these would essentially be compute states
that have an additional (manually defined) function that can be used to
nudge the source states so that they result in the computed states
having a given value. For example, you could use set the `IsPaused`
state, and it would attempt to pause or unpause the game by modifying
the `AppState` as needed.
- Closure-based state modification - this would involve adding a
`NextState.modify(f: impl Fn(Option<S> -> Option<S>)` method, and then
you can pass in closures or function pointers to adjust the state as
needed.
- Message-based state modification - this would involve either creating
states that can respond to specific messages, similar to Elm or Redux.
These could either use the `NextState` mechanism or the Event mechanism.

- ~`SubStates` - which are essentially a hybrid of computed and manual
states. In the simplest (and most likely) version, they would work by
having a computed element that determines whether the state should
exist, and if it should has the capacity to add a new version in, but
then any changes to it's content would be freely mutated.~ this feature
is now part of this PR. See above.

- Lastly, since states are getting more complex there might be value in
moving them out of `bevy_ecs` and into their own crate, or at least out
of the `schedule` module into a `states` module. #11087

As mentioned, all these future work elements are TBD and are explicitly
not part of this PR - I just wanted to provide them as potential
explorations for the future.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Marcel Champagne <voiceofmarcel@gmail.com>
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
2024-05-02 19:36:23 +00:00
Alice Cecile
b2123ffa41
Fix CI error on new color grading example (#13180)
# Objective

Fixes https://github.com/bevyengine/bevy/issues/13179

## Solution

Obey clippy.

## Commentary

I'm really confused why CI didn't fail on the initial PR merge here.

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-05-02 13:40:45 +00:00
Patrick Walton
961b24deaf
Implement filmic color grading. (#13121)
This commit expands Bevy's existing tonemapping feature to a complete
set of filmic color grading tools, matching those of engines like Unity,
Unreal, and Godot. The following features are supported:

* White point adjustment. This is inspired by Unity's implementation of
the feature, but simplified and optimized. *Temperature* and *tint*
control the adjustments to the *x* and *y* chromaticity values of [CIE
1931]. Following Unity, the adjustments are made relative to the [D65
standard illuminant] in the [LMS color space].

* Hue rotation. This simply converts the RGB value to [HSV], alters the
hue, and converts back.

* Color correction. This allows the *gamma*, *gain*, and *lift* values
to be adjusted according to the standard [ASC CDL combined function].

* Separate color correction for shadows, midtones, and highlights.
Blender's source code was used as a reference for the implementation of
this. The midtone ranges can be adjusted by the user. To avoid abrupt
color changes, a small crossfade is used between the different sections
of the image, again following Blender's formulas.

A new example, `color_grading`, has been added, offering a GUI to change
all the color grading settings. It uses the same test scene as the
existing `tonemapping` example, which has been factored out into a
shared glTF scene.

[CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space

[D65 standard illuminant]:
https://en.wikipedia.org/wiki/Standard_illuminant#Illuminant_series_D

[LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space

[HSV]: https://en.wikipedia.org/wiki/HSL_and_HSV

[ASC CDL combined function]:
https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function

## Changelog

### Added

* Many new filmic color grading options have been added to the
`ColorGrading` component.

## Migration Guide

* `ColorGrading::gamma` and `ColorGrading::pre_saturation` are now set
separately for the `shadows`, `midtones`, and `highlights` sections. You
can migrate code with the `ColorGrading::all_sections` and
`ColorGrading::all_sections_mut` functions, which access and/or update
all sections at once.
* `ColorGrading::post_saturation` and `ColorGrading::exposure` are now
fields of `ColorGrading::global`.

## Screenshots

![Screenshot 2024-04-27
143144](https://github.com/bevyengine/bevy/assets/157897/c1de5894-917d-4101-b5c9-e644d141a941)

![Screenshot 2024-04-27
143216](https://github.com/bevyengine/bevy/assets/157897/da393c8a-d747-42f5-b47c-6465044c788d)
2024-05-02 12:18:59 +00:00
Nico Burns
96b9d0a7e2
Upgrade to Taffy 0.4 (#10690)
# Objective

- Enables support for `Display::Block`
- Enables support for `Overflow::Hidden`
- Allows for cleaner integration with text, image and other content
layout.
- Unblocks https://github.com/bevyengine/bevy/pull/8104
- Unlocks the possibility of Bevy creating a custom layout tree over
which Taffy operates.
- Enables #8808 / #10193 to remove a Mutex around the font system.

## Todo

- [x] ~Fix rendering of text/images to account for padding/border on
nodes (should size/position to content box rather than border box)~ In
order get this into a mergeable state this PR instead zeroes out
padding/border when syncing leaf node styles into Taffy to preserve the
existing behaviour. https://github.com/bevyengine/bevy/issues/6879 can
be fixed in a followup PR.

## Solution

- Update the version of Taffy
- Update code to work with the new version

Note: Taffy 0.4 has not yet been released. This PR is being created in
advance of the release to ensure that there are no blockers to upgrading
once the release occurs.

---

## Changelog

- Bevy now supports the `Display::Block` and `Overflow::Hidden` styles.
2024-04-30 14:13:17 +00:00
Antony
7b4b5966d9
Deprecate ReceivedCharacter (#12868)
# Objective

- Partially resolves #12639.

## Solution

- Deprecate `ReceivedCharacter`.
- Replace `ReceivedCharacter` with `KeyboardInput` in the relevant
examples.

## Migration Guide

- `ReceivedCharacter` is now deprecated, use `KeyboardInput` instead.

- Before:
  ```rust
  fn listen_characters(events: EventReader<ReceivedCharacter>) {
    for event in events.read() {
      info!("{}", event.char);
    }
  }
  ```
  
  After:
  ```rust
  fn listen_characters(events: EventReader<KeyboardInput>) {
    for event in events.read() {
      // Only check for characters when the key is pressed.
      if event.state == ButtonState::Released {
        continue;
      }
// Note that some keys such as `Space` and `Tab` won't be detected as
before.
      // Instead, check for them with `Key::Space` and `Key::Tab`.
      if let Key::Character(character) = &event.logical_key {
        info!("{}", character);
      }
    }
  }
  ```

---------

Co-authored-by: Mike <mike.hsu@gmail.com>
2024-04-30 00:49:41 +00:00
Patrick Walton
16531fb3e3
Implement GPU frustum culling. (#12889)
This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.

Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.

A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.

This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.

## Changelog

### Added

* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
2024-04-28 12:50:00 +00:00
JMS55
e1a0da0fa6
Meshlet LOD-compatible two-pass occlusion culling (#12898)
Keeping track of explicit visibility per cluster between frames does not
work with LODs, and leads to worse culling (using the final depth buffer
from the previous frame is more accurate).

Instead, we need to generate a second depth pyramid after the second
raster pass, and then use that in the first culling pass in the next
frame to test if a cluster would have been visible last frame or not.

As part of these changes, the write_index_buffer pass has been folded
into the culling pass for a large performance gain, and to avoid
tracking a lot of extra state that would be needed between passes.

Prepass previous model/view stuff was adapted to work with meshlets as
well.

Also fixed a bug with materials, and other misc improvements.

---------

Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
2024-04-28 05:30:20 +00:00
BD103
9ee02e87d3
Remove version field for non-publish crates and update descriptions (#13100)
# Objective

- The [`version`] field in `Cargo.toml` is optional for crates not
published on <https://crates.io>.
- We have several `publish = false` tools in this repository that still
have a version field, even when it's not useful.

[`version`]:
https://doc.rust-lang.org/cargo/reference/manifest.html#the-version-field

## Solution

- Remove the [`version`] field for all crates where `publish = false`.
- Update the description on a few crates and remove extra newlines as
well.
2024-04-26 11:55:03 +00:00
findmyhappy
36a3e53e10
chore: fix some comments (#13083)
# Objective

remove repetitive words

Signed-off-by: findmyhappy <findhappy@sohu.com>
2024-04-25 19:09:16 +00:00
Rob Parrett
a1adba19a9
Fix custom pipeline in mesh2d_manual rendering other meshes (#11477)
# Objective

Fixes #11476

## Solution

Give the pipeline its own "mesh2d instances hashmap."

Pretty sure this is a good fix, but I am not super familiar with this
code so a rendering expert should take a look.

> your fix in the pull request works brilliantly for me too.
> -- _Discord user who pointed out bug_
2024-04-25 17:19:18 +00:00
Aevyrie
ade70b3925
Per-Object Motion Blur (#9924)
https://github.com/bevyengine/bevy/assets/2632925/e046205e-3317-47c3-9959-fc94c529f7e0

# Objective

- Adds per-object motion blur to the core 3d pipeline. This is a common
effect used in games and other simulations.
- Partially resolves #4710

## Solution

- This is a post-process effect that uses the depth and motion vector
buffers to estimate per-object motion blur. The implementation is
combined from knowledge from multiple papers and articles. The approach
itself, and the shader are quite simple. Most of the effort was in
wiring up the bevy rendering plumbing, and properly specializing for HDR
and MSAA.
- To work with MSAA, the MULTISAMPLED_SHADING wgpu capability is
required. I've extracted this code from #9000. This is because the
prepass buffers are multisampled, and require accessing with
`textureLoad` as opposed to the widely compatible `textureSample`.
- Added an example to demonstrate the effect of motion blur parameters.

## Future Improvements

- While this approach does have limitations, it's one of the most
commonly used, and is much better than camera motion blur, which does
not consider object velocity. For example, this implementation allows a
dolly to track an object, and that object will remain unblurred while
the background is blurred. The biggest issue with this implementation is
that blur is constrained to the boundaries of objects which results in
hard edges. There are solutions to this by either dilating the object or
the motion vector buffer, or by taking a different approach such as
https://casual-effects.com/research/McGuire2012Blur/index.html
- I'm using a noise PRNG function to jitter samples. This could be
replaced with a blue noise texture lookup or similar, however after
playing with the parameters, it gives quite nice results with 4 samples,
and is significantly better than the artifacts generated when not
jittering.

---

## Changelog

- Added: per-object motion blur. This can be enabled and configured by
adding the `MotionBlurBundle` to a camera entity.

---------

Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
2024-04-25 01:16:02 +00:00
Andrew
d59c859a35
new example: sprite animation in response to an event (#12996)
# Objective

- animating a sprite in response to an event is a [common beginner
problem](https://www.reddit.com/r/bevy/comments/13xx4v7/sprite_animation_in_bevy/)

## Solution

- provide a simple example to show how to animate a sprite in response
to an event

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-23 21:44:03 +00:00
JMS55
6d6810c90d
Meshlet continuous LOD (#12755)
Adds a basic level of detail system to meshlets. An extremely brief
summary is as follows:
* In `from_mesh.rs`, once we've built the first level of clusters, we
group clusters, simplify the new mega-clusters, and then split the
simplified groups back into regular sized clusters. Repeat several times
(ideally until you can't anymore). This forms a directed acyclic graph
(DAG), where the children are the meshlets from the previous level, and
the parents are the more simplified versions of their children. The leaf
nodes are meshlets formed from the original mesh.
* In `cull_meshlets.wgsl`, each cluster selects whether to render or not
based on the LOD bounding sphere (different than the culling bounding
sphere) of the current meshlet, the LOD bounding sphere of its parent
(the meshlet group from simplification), and the simplification error
relative to its children of both the current meshlet and its parent
meshlet. This kind of breaks two pass occlusion culling, which will be
fixed in a future PR by using an HZB from the previous frame to get the
initial list of occluders.

Many, _many_ improvements to be done in the future
https://github.com/bevyengine/bevy/issues/11518, not least of which is
code quality and speed. I don't even expect this to work on many types
of input meshes. This is just a basic implementation/draft for
collaboration.

Arguable how much we want to do in this PR, I'll leave that up to
maintainers. I've erred on the side of "as basic as possible".

References:
* Slides 27-77 (video available on youtube)
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
*
https://blog.traverseresearch.nl/creating-a-directed-acyclic-graph-from-a-mesh-1329e57286e5
*
https://jglrxavpok.github.io/2024/01/19/recreating-nanite-lod-generation.html,
https://jglrxavpok.github.io/2024/03/12/recreating-nanite-faster-lod-generation.html,
https://jglrxavpok.github.io/2024/04/02/recreating-nanite-runtime-lod-selection.html,
and https://github.com/jglrxavpok/Carrot
*
https://github.com/gents83/INOX/tree/master/crates/plugins/binarizer/src
* https://cs418.cs.illinois.edu/website/text/nanite.html


![image](https://github.com/bevyengine/bevy/assets/47158642/e40bff9b-7d0c-4a19-a3cc-2aad24965977)

![image](https://github.com/bevyengine/bevy/assets/47158642/442c7da3-7761-4da7-9acd-37f15dd13e26)

---------

Co-authored-by: Ricky Taylor <rickytaylor26@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
2024-04-23 21:43:53 +00:00
JMS55
17633c1f75
Remove unused push constants (#13076)
The shader code was removed in #11280, but we never cleaned up the rust
code.
2024-04-23 21:43:46 +00:00
Grey
c593ee1055
Clarify comment about camera coordinate system (#13056)
# Objective

Clarify the comment about the camera's coordinate system in
`examples/3d/generate_custom_mesh.rs` by explicitly stating which axes
point where.
Fixes #13018

## Solution

Copy the wording from #13012 into the example.
2024-04-23 14:58:28 +00:00
Brezak
de875fdc4c
Make AppExit more specific about exit reason. (#13022)
# Objective

Closes #13017.

## Solution

- Make `AppExit` a enum with a `Success` and `Error` variant.
- Make `App::run()` return a `AppExit` if it ever returns.
- Make app runners return a `AppExit` to signal if they encountered a
error.

---

## Changelog

### Added

- [`App::should_exit`](https://example.org/)
- [`AppExit`](https://docs.rs/bevy/latest/bevy/app/struct.AppExit.html)
to the `bevy` and `bevy_app` preludes,

### Changed

- [`AppExit`](https://docs.rs/bevy/latest/bevy/app/struct.AppExit.html)
is now a enum with 2 variants (`Success` and `Error`).
- The app's [runner
function](https://docs.rs/bevy/latest/bevy/app/struct.App.html#method.set_runner)
now has to return a `AppExit`.
-
[`App::run()`](https://docs.rs/bevy/latest/bevy/app/struct.App.html#method.run)
now also returns the `AppExit` produced by the runner function.


## Migration Guide

- Replace all usages of
[`AppExit`](https://docs.rs/bevy/latest/bevy/app/struct.AppExit.html)
with `AppExit::Success` or `AppExit::Failure`.
- Any custom app runners now need to return a `AppExit`. We suggest you
return a `AppExit::Error` if any `AppExit` raised was a Error. You can
use the new [`App::should_exit`](https://example.org/) method.
- If not exiting from `main` any other way. You should return the
`AppExit` from `App::run()` so the app correctly returns a error code if
anything fails e.g.
```rust
fn main() -> AppExit {
    App::new()
        //Your setup here...
        .run()
}
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-04-22 16:48:18 +00:00
Jonathan
e9be54b0ea
Parallel event reader (#12554)
# Objective

Allow parallel iteration over events, resolve #10766

## Solution

- Add `EventParIter` which works similarly to `QueryParIter`,
implementing a `for_each{_with_id}` operator.
I chose to not mirror `EventIteratorWithId` and instead implement both
operations on a single struct.
- Reuse `BatchingStrategy` from `QueryParIter`

## Changelog

- `EventReader` now supports parallel event iteration using
`par_read().for_each(|event| ...)`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-04-22 16:37:42 +00:00
IceSentry
8403c41c67
Use WireframeColor to override global color (#13034)
# Objective

- The docs says the WireframeColor is supposed to override the default
global color but it doesn't.

## Solution

- Use WireframeColor to override global color like docs said it was
supposed to do.
- Updated the example to document this feature
- I also took the opportunity to clean up the code a bit

Fixes #13032
2024-04-20 13:59:12 +00:00
andristarr
70d9dfdc48
Adding explanation for loading additonal audio formats to example (#12998)
# Objective

Fixes #12900

## Solution

Added comment to example indicating that additional audio formats are
supported when the feature is added.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-04-20 02:15:06 +00:00
andristarr
2b3e3341d6
separating finite and infinite 3d planes (#12426)
# Objective

Fixes #12388

## Solution

- Removing the plane3d and adding rect3d primitive mesh
2024-04-18 14:13:22 +00:00
Luke Van Der Male
cae07ef56a
grammar fix (#12999)
Changed incorrect "it's" to "its" in a code comment.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-16 20:49:58 +00:00
Emily Selwood
da2ba8a43c
Add comment to example about coordinate system (#12991)
# Objective

When learning about creating meshes in bevy using this example I
couldn't tell which coordinate system bevy uses, which caused confusion
and having to look it up else where.

## Solution

Add a comment that says what coordinate system bevy uses.
2024-04-16 12:01:48 +00:00
BD103
7b8d502083
Fix beta lints (#12980)
# Objective

- Fixes #12976

## Solution

This one is a doozy.

- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
  - Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
  - Use `Clone::clone_from` when possible
  - Remove redundant `ron` import
  - Add backticks to **so many** identifiers and items
    - I'm sorry whoever has to review this

---

## Changelog

- Added links to more identifiers in documentation.
2024-04-16 02:46:46 +00:00
Pablo Reinhardt
6b0e3fa572
Add double end arrow to gizmos (#11890)
# Objective

- Implement double ended arrows, suggestion of #9400

## Solution

- Creation of new field and method to the `ArrowBuilder`

---

## Changelog

### Added
- New field `ArrowBuilder::double_ended`
- New method `ArrowBuilder::with_double_end` to redefine the
double_ended field

## Additional

I added this in the 3d_gizmos example, that's the result:


![image](https://github.com/bevyengine/bevy/assets/126117294/2f8a93eb-4952-401a-b600-b1454cf898a9)

I added this arrow in the 2d_gizmos example too:


![image](https://github.com/bevyengine/bevy/assets/126117294/c46b4871-8acf-4711-9ca8-c2df36c0464b)

---------

Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Pablo Reinhardt <pabloreinhardt@gmail.com>
2024-04-16 01:34:22 +00:00
Patrick Walton
1141e731ff
Implement alpha to coverage (A2C) support. (#12970)
[Alpha to coverage] (A2C) replaces alpha blending with a
hardware-specific multisample coverage mask when multisample
antialiasing is in use. It's a simple form of [order-independent
transparency] that relies on MSAA. ["Anti-aliased Alpha Test: The
Esoteric Alpha To Coverage"] is a good summary of the motivation for and
best practices relating to A2C.

This commit implements alpha to coverage support as a new variant for
`AlphaMode`. You can supply `AlphaMode::AlphaToCoverage` as the
`alpha_mode` field in `StandardMaterial` to use it. When in use, the
standard material shader automatically applies the texture filtering
method from ["Anti-aliased Alpha Test: The Esoteric Alpha To Coverage"].
Objects with alpha-to-coverage materials are binned in the opaque pass,
as they're fully order-independent.

The `transparency_3d` example has been updated to feature an object with
alpha to coverage. Happily, the example was already using MSAA.

This is part of #2223, as far as I can tell.

[Alpha to coverage]: https://en.wikipedia.org/wiki/Alpha_to_coverage

[order-independent transparency]:
https://en.wikipedia.org/wiki/Order-independent_transparency

["Anti-aliased Alpha Test: The Esoteric Alpha To Coverage"]:
https://bgolus.medium.com/anti-aliased-alpha-test-the-esoteric-alpha-to-coverage-8b177335ae4f

---

## Changelog

### Added

* The `AlphaMode` enum now supports `AlphaToCoverage`, to provide
limited order-independent transparency when multisample antialiasing is
in use.
2024-04-15 20:37:52 +00:00
Ame
0256dacba4
Fix some doc warnings (#12961)
# Objective

- Fix some doc warnings 
- Add doc-scrape-examples to all examples

Moved from #12692 

I run `cargo +nightly doc --workspace --all-features --no-deps
-Zunstable-options -Zrustdoc-scrape-examples`

<details>

```
warning: public documentation for `GzAssetLoaderError` links to private item `GzAssetLoader`
  --> examples/asset/asset_decompression.rs:24:47
   |
24 | /// Possible errors that can be produced by [`GzAssetLoader`]
   |                                               ^^^^^^^^^^^^^ this item is private
   |
   = note: this link will resolve properly if you pass `--document-private-items`
   = note: `#[warn(rustdoc::private_intra_doc_links)]` on by default

warning: `bevy` (example "asset_decompression") generated 1 warning
warning: unresolved link to `shape::Quad`
 --> examples/2d/mesh2d.rs:3:15
  |
3 | //! [`Quad`]: shape::Quad
  |               ^^^^^^^^^^^ no item named `shape` in scope
  |
  = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default

warning: `bevy` (example "mesh2d") generated 1 warning
warning: unresolved link to `WorldQuery`
 --> examples/ecs/custom_query_param.rs:1:49
  |
1 | //! This example illustrates the usage of the [`WorldQuery`] derive macro, which allows
  |                                                 ^^^^^^^^^^ no item named `WorldQuery` in scope
  |
  = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]`
  = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default

warning: `bevy` (example "custom_query_param") generated 1 warning
warning: unresolved link to `shape::Quad`
 --> examples/2d/mesh2d_vertex_color_texture.rs:4:15
  |
4 | //! [`Quad`]: shape::Quad
  |               ^^^^^^^^^^^ no item named `shape` in scope
  |
  = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default

warning: `bevy` (example "mesh2d_vertex_color_texture") generated 1 warning
warning: public documentation for `TextPlugin` links to private item `CoolText`
  --> examples/asset/processing/asset_processing.rs:48:9
   |
48 | /// * [`CoolText`]: a custom RON text format that supports dependencies and embedded dependencies
   |         ^^^^^^^^ this item is private
   |
   = note: this link will resolve properly if you pass `--document-private-items`
   = note: `#[warn(rustdoc::private_intra_doc_links)]` on by default

warning: public documentation for `TextPlugin` links to private item `Text`
  --> examples/asset/processing/asset_processing.rs:49:9
   |
49 | /// * [`Text`]: a "normal" plain text file
   |         ^^^^ this item is private
   |
   = note: this link will resolve properly if you pass `--document-private-items`

warning: public documentation for `TextPlugin` links to private item `CoolText`
  --> examples/asset/processing/asset_processing.rs:51:57
   |
51 | /// It also defines an asset processor that will load [`CoolText`], resolve embedded dependenc...
   |                                                         ^^^^^^^^ this item is private
   |
   = note: this link will resolve properly if you pass `--document-private-items`

warning: `bevy` (example "asset_processing") generated 3 warnings
warning: public documentation for `CustomAssetLoaderError` links to private item `CustomAssetLoader`
  --> examples/asset/custom_asset.rs:20:47
   |
20 | /// Possible errors that can be produced by [`CustomAssetLoader`]
   |                                               ^^^^^^^^^^^^^^^^^ this item is private
   |
   = note: this link will resolve properly if you pass `--document-private-items`
   = note: `#[warn(rustdoc::private_intra_doc_links)]` on by default

warning: public documentation for `BlobAssetLoaderError` links to private item `CustomAssetLoader`
  --> examples/asset/custom_asset.rs:61:47
   |
61 | /// Possible errors that can be produced by [`CustomAssetLoader`]
   |                                               ^^^^^^^^^^^^^^^^^ this item is private
   |
   = note: this link will resolve properly if you pass `--document-private-items`
```

```
warning: `bevy` (example "mesh2d") generated 1 warning
warning: public documentation for `log_layers_ecs` links to private item `update_subscriber`
 --> examples/app/log_layers_ecs.rs:6:18
  |
6 | //! Inside the [`update_subscriber`] function we will create a [`mpsc::Sender`] and a [`mpsc::R...
  |                  ^^^^^^^^^^^^^^^^^ this item is private
  |
  = note: this link will resolve properly if you pass `--document-private-items`
  = note: `#[warn(rustdoc::private_intra_doc_links)]` on by default

warning: unresolved link to `AdvancedLayer`
 --> examples/app/log_layers_ecs.rs:7:72
  |
7 | ... will go into the [`AdvancedLayer`] and the [`Receiver`](mpsc::Receiver) will
  |                        ^^^^^^^^^^^^^ no item named `AdvancedLayer` in scope
  |
  = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]`
  = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default

warning: unresolved link to `LogEvents`
 --> examples/app/log_layers_ecs.rs:8:42
  |
8 | //! go into a non-send resource called [`LogEvents`] (It has to be non-send because [`Receiver`...
  |                                          ^^^^^^^^^ no item named `LogEvents` in scope
  |
  = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]`

warning: public documentation for `log_layers_ecs` links to private item `transfer_log_events`
 --> examples/app/log_layers_ecs.rs:9:30
  |
9 | //! From there we will use [`transfer_log_events`] to transfer log events from [`LogEvents`] to...
  |                              ^^^^^^^^^^^^^^^^^^^ this item is private
  |
  = note: this link will resolve properly if you pass `--document-private-items`

warning: unresolved link to `LogEvents`
 --> examples/app/log_layers_ecs.rs:9:82
  |
9 | ...nsfer log events from [`LogEvents`] to an ECS event called [`LogEvent`].
  |                            ^^^^^^^^^ no item named `LogEvents` in scope
  |
  = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]`

warning: public documentation for `log_layers_ecs` links to private item `LogEvent`
 --> examples/app/log_layers_ecs.rs:9:119
  |
9 | ...nts`] to an ECS event called [`LogEvent`].
  |                                   ^^^^^^^^ this item is private
  |
  = note: this link will resolve properly if you pass `--document-private-items`

warning: public documentation for `log_layers_ecs` links to private item `LogEvent`
  --> examples/app/log_layers_ecs.rs:11:49
   |
11 | //! Finally, after all that we can access the [`LogEvent`] event from our systems and use it.
   |                                                 ^^^^^^^^ this item is private
   |
   = note: this link will resolve properly if you pass `--document-private-items`
```

<details/>
2024-04-14 15:23:44 +00:00
Patrick Walton
5caf085dac
Divide the single VisibleEntities list into separate lists for 2D meshes, 3D meshes, lights, and UI elements, for performance. (#12582)
This commit splits `VisibleEntities::entities` into four separate lists:
one for lights, one for 2D meshes, one for 3D meshes, and one for UI
elements. This allows `queue_material_meshes` and similar methods to
avoid examining entities that are obviously irrelevant. In particular,
this separation helps scenes with many skinned meshes, as the individual
bones are considered visible entities but have no rendered appearance.

Internally, `VisibleEntities::entities` is a `HashMap` from the `TypeId`
representing a `QueryFilter` to the appropriate `Entity` list. I had to
do this because `VisibleEntities` is located within an upstream crate
from the crates that provide lights (`bevy_pbr`) and 2D meshes
(`bevy_sprite`). As an added benefit, this setup allows apps to provide
their own types of renderable components, by simply adding a specialized
`check_visibility` to the schedule.

This provides a 16.23% end-to-end speedup on `many_foxes` with 10,000
foxes (24.06 ms/frame to 20.70 ms/frame).

## Migration guide

* `check_visibility` and `VisibleEntities` now store the four types of
renderable entities--2D meshes, 3D meshes, lights, and UI
elements--separately. If your custom rendering code examines
`VisibleEntities`, it will now need to specify which type of entity it's
interested in using the `WithMesh2d`, `WithMesh`, `WithLight`, and
`WithNode` types respectively. If your app introduces a new type of
renderable entity, you'll need to add an explicit call to
`check_visibility` to the schedule to accommodate your new component or
components.

## Analysis

`many_foxes`, 10,000 foxes: `main`:
![Screenshot 2024-03-31
114444](https://github.com/bevyengine/bevy/assets/157897/16ecb2ff-6e04-46c0-a4b0-b2fde2084bad)

`many_foxes`, 10,000 foxes, this branch:
![Screenshot 2024-03-31
114256](https://github.com/bevyengine/bevy/assets/157897/94dedae4-bd00-45b2-9aaf-dfc237004ddb)

`queue_material_meshes` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114637](https://github.com/bevyengine/bevy/assets/157897/f90912bd-45bd-42c4-bd74-57d98a0f036e)

`queue_shadows` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114607](https://github.com/bevyengine/bevy/assets/157897/6ce693e3-20c0-4234-8ec9-a6f191299e2d)
2024-04-11 20:33:20 +00:00
Patrick Walton
d59b1e71ef
Implement percentage-closer filtering (PCF) for point lights. (#12910)
I ported the two existing PCF techniques to the cubemap domain as best I
could. Generally, the technique is to create a 2D orthonormal basis
using Gram-Schmidt normalization, then apply the technique over that
basis. The results look fine, though the shadow bias often needs
adjusting.

For comparison, Unity uses a 4-tap pattern for PCF on point lights of
(1, 1, 1), (-1, -1, 1), (-1, 1, -1), (1, -1, -1). I tried this but
didn't like the look, so I went with the design above, which ports the
2D techniques to the 3D domain. There's surprisingly little material on
point light PCF.

I've gone through every example using point lights and verified that the
shadow maps look fine, adjusting biases as necessary.

Fixes #3628.

---

## Changelog

### Added
* Shadows from point lights now support percentage-closer filtering
(PCF), and as a result look less aliased.

### Changed
* `ShadowFilteringMethod::Castano13` and
`ShadowFilteringMethod::Jimenez14` have been renamed to
`ShadowFilteringMethod::Gaussian` and `ShadowFilteringMethod::Temporal`
respectively.

## Migration Guide

* `ShadowFilteringMethod::Castano13` and
`ShadowFilteringMethod::Jimenez14` have been renamed to
`ShadowFilteringMethod::Gaussian` and `ShadowFilteringMethod::Temporal`
respectively.
2024-04-10 20:16:08 +00:00
Patrick Walton
11817f4ba4
Generate MeshUniforms on the GPU via compute shader where available. (#12773)
Currently, `MeshUniform`s are rather large: 160 bytes. They're also
somewhat expensive to compute, because they involve taking the inverse
of a 3x4 matrix. Finally, if a mesh is present in multiple views, that
mesh will have a separate `MeshUniform` for each and every view, which
is wasteful.

This commit fixes these issues by introducing the concept of a *mesh
input uniform* and adding a *mesh uniform building* compute shader pass.
The `MeshInputUniform` is simply the minimum amount of data needed for
the GPU to compute the full `MeshUniform`. Most of this data is just the
transform and is therefore only 64 bytes. `MeshInputUniform`s are
computed during the *extraction* phase, much like skins are today, in
order to avoid needlessly copying transforms around on CPU. (In fact,
the render app has been changed to only store the translation of each
mesh; it no longer cares about any other part of the transform, which is
stored only on the GPU and the main world.) Before rendering, the
`build_mesh_uniforms` pass runs to expand the `MeshInputUniform`s to the
full `MeshUniform`.

The mesh uniform building pass does the following, all on GPU:

1. Copy the appropriate fields of the `MeshInputUniform` to the
`MeshUniform` slot. If a single mesh is present in multiple views, this
effectively duplicates it into each view.

2. Compute the inverse transpose of the model transform, used for
transforming normals.

3. If applicable, copy the mesh's transform from the previous frame for
TAA. To support this, we double-buffer the `MeshInputUniform`s over two
frames and swap the buffers each frame. The `MeshInputUniform`s for the
current frame contain the index of that mesh's `MeshInputUniform` for
the previous frame.

This commit produces wins in virtually every CPU part of the pipeline:
`extract_meshes`, `queue_material_meshes`,
`batch_and_prepare_render_phase`, and especially
`write_batched_instance_buffer` are all faster. Shrinking the amount of
CPU data that has to be shuffled around speeds up the entire rendering
process.

| Benchmark              | This branch | `main`  | Speedup |
|------------------------|-------------|---------|---------|
| `many_cubes -nfc`      |      17.259 |  24.529 |  42.12% |
| `many_cubes -nfc -vpi` |     302.116 | 312.123 |   3.31% |
| `many_foxes`           |       3.227 |   3.515 |   8.92% |

Because mesh uniform building requires compute shader, and WebGL 2 has
no compute shader, the existing CPU mesh uniform building code has been
left as-is. Many types now have both CPU mesh uniform building and GPU
mesh uniform building modes. Developers can opt into the old CPU mesh
uniform building by setting the `use_gpu_uniform_builder` option on
`PbrPlugin` to `false`.

Below are graphs of the CPU portions of `many-cubes
--no-frustum-culling`. Yellow is this branch, red is `main`.

`extract_meshes`:
![Screenshot 2024-04-02
124842](https://github.com/bevyengine/bevy/assets/157897/a6748ea4-dd05-47b6-9254-45d07d33cb10)
It's notable that we get a small win even though we're now writing to a
GPU buffer.

`queue_material_meshes`:
![Screenshot 2024-04-02
124911](https://github.com/bevyengine/bevy/assets/157897/ecb44d78-65dc-448d-ba85-2de91aa2ad94)
There's a bit of a regression here; not sure what's causing it. In any
case it's very outweighed by the other gains.

`batch_and_prepare_render_phase`:
![Screenshot 2024-04-02
125123](https://github.com/bevyengine/bevy/assets/157897/4e20fc86-f9dd-4e5c-8623-837e4258f435)
There's a huge win here, enough to make batching basically drop off the
profile.

`write_batched_instance_buffer`:
![Screenshot 2024-04-02
125237](https://github.com/bevyengine/bevy/assets/157897/401a5c32-9dc1-4991-996d-eb1cac6014b2)
There's a massive improvement here, as expected. Note that a lot of it
simply comes from the fact that `MeshInputUniform` is `Pod`. (This isn't
a maintainability problem in my view because `MeshInputUniform` is so
simple: just 16 tightly-packed words.)

## Changelog

### Added

* Per-mesh instance data is now generated on GPU with a compute shader
instead of CPU, resulting in rendering performance improvements on
platforms where compute shaders are supported.

## Migration guide

* Custom render phases now need multiple systems beyond just
`batch_and_prepare_render_phase`. Code that was previously creating
custom render phases should now add a `BinnedRenderPhasePlugin` or
`SortedRenderPhasePlugin` as appropriate instead of directly adding
`batch_and_prepare_render_phase`.
2024-04-10 05:33:32 +00:00
Robert Swain
ab7cbfa8fc
Consolidate Render(Ui)Materials(2d) into RenderAssets (#12827)
# Objective

- Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials`
with `RenderAssets` to enable implementing changes to one thing,
`RenderAssets`, that applies to all use cases rather than duplicating
changes everywhere for multiple things that should be one thing.
- Adopts #8149 

## Solution

- Make RenderAsset generic over the destination type rather than the
source type as in #8149
- Use `RenderAssets<PreparedMaterial<M>>` etc for render materials

---

## Changelog

- Changed:
- The `RenderAsset` trait is now implemented on the destination type.
Its `SourceAsset` associated type refers to the type of the source
asset.
- `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have
been replaced by `RenderAssets<PreparedMaterial<M>>` and similar.

## Migration Guide

- `RenderAsset` is now implemented for the destination type rather that
the source asset type. The source asset type is now the `RenderAsset`
trait's `SourceAsset` associated type.
2024-04-09 13:26:34 +00:00
Remi Godin
10af274d4e
Created loading screen example (#12863)
Allows the user to select a scene to load, then a loading screen is
shown until all assets are loaded, and pipelines compiled.

# Objective
- Fixes #12654 

## Solution
- Add desired assets to be monitored to a list.
- While there are assets that are not fully loaded, show a loading
screen.
- Once all assets are loaded, and pipelines compiled, show the scene
that was loaded.
2024-04-09 12:50:19 +00:00
François Mockers
de3ec47f3f
Fix example game of life (#12897)
# Objective

- Example `compute_shader_game_of_life` is random and not following the
rules of the game of life: at each steps, it randomly reads some pixel
of the current step and some of the previous step instead of only from
the previous step
- Fixes #9353 

## Solution

- Adopted from #9678 
- Added a switch of the texture displayed every frame otherwise the game
of life looks wrong
- Added a way to display the texture bigger so that I could manually
check everything was right

---------

Co-authored-by: Sludge <96552222+SludgePhD@users.noreply.github.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2024-04-08 17:19:07 +00:00
Noah Emke
c0aa5170bc
Add example for using .meta files (#12882)
# Objective

- Fixes #12411 
- Add an example demonstrating the usage of asset meta files.

## Solution

- Add a new example displaying a basic scene of three pixelated images
- Apply a .meta file to one of the assets setting Nearest filtering
- Use AssetServer::load_with_settings on the last one as another way to
achieve the same effect
- The result is one blurry image and two crisp images demonstrating a
common scenario in which changing settings are useful.
2024-04-08 17:10:56 +00:00
IceSentry
08b41878d7
Add gpu readback example (#12877)
# Objective

- It's pretty common for users to want to read data back from the gpu
and into the main world

## Solution

- Add a simple example that shows how to read data back from the gpu and
send it to the main world using a channel.
- The example is largely based on this wgpu example but adapted to bevy
-
fb305b85f6/examples/src/repeated_compute/mod.rs

---------

Co-authored-by: stormy <120167078+stowmyy@users.noreply.github.com>
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
2024-04-08 17:08:20 +00:00
Mohammed El Batya
fae2200b1a
fixing line comment in 2d_shapes.rs example (#12865)
# Objective

- There is a little mistake in a line comment.

## Solution

- Fixed the comment to correctly describe what happens in the documented
calculation.
2024-04-03 21:35:15 +00:00
Jonathan
eb82ec047e
Remove stepping from default features (#12847)
# Objective

Fix #11931 

## Solution

- Make stepping a non-default feature
- Adjust documentation and examples
- In particular, make the breakout example not show the stepping prompt
if compiled without the feature (shows a log message instead)

---

## Changelog

- Removed `bevy_debug_stepping` from default features

## Migration Guide

The system-by-system stepping feature is now disabled by default; to use
it, enable the `bevy_debug_stepping` feature explicitly:

```toml
[dependencies]
bevy = { version = "0.14", features = ["bevy_debug_stepping"] }
```

Code using
[`Stepping`](https://docs.rs/bevy/latest/bevy/ecs/schedule/struct.Stepping.html)
will still compile with the feature disabled, but will print a runtime
error message to the console if the application attempts to enable
stepping.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-03 19:16:02 +00:00
BD103
97131e1909
Move close_on_esc to bevy_dev_tools (#12855)
# Objective

- As @james7132 said [on
Discord](https://discord.com/channels/691052431525675048/692572690833473578/1224626740773523536),
the `close_on_esc` system is forcing `bevy_window` to depend on
`bevy_input`.
- `close_on_esc` is not likely to be used in production, so it arguably
does not have a place in `bevy_window`.

## Solution

- As suggested by @afonsolage, move `close_on_esc` into
`bevy_dev_tools`.
  - Add an example to the documentation too.
- Remove `bevy_window`'s dependency on `bevy_input`.
- Add `bevy_reflect`'s `smol_str` feature to `bevy_window` because it
was implicitly depended upon with `bevy_input` before it was removed.
- Remove any usage of `close_on_esc` from the examples.
- `bevy_dev_tools` is not enabled by default. I personally find it
frustrating to run examples with additional features, so I opted to
remove it entirely.
  - This is up for discussion if you have an alternate solution.

---

## Changelog

- Moved `bevy_window::close_on_esc` to `bevy_dev_tools::close_on_esc`.
- Removed usage of `bevy_dev_tools::close_on_esc` from all examples.

## Migration Guide

`bevy_window::close_on_esc` has been moved to
`bevy_dev_tools::close_on_esc`. You will first need to enable
`bevy_dev_tools` as a feature in your `Cargo.toml`:

```toml
[dependencies]
bevy = { version = "0.14", features = ["bevy_dev_tools"] }
```

Finally, modify any imports to use `bevy_dev_tools` instead:

```rust
// Old:
// use bevy:🪟:close_on_esc;

// New:
use bevy::dev_tools::close_on_esc;

App::new()
    .add_systems(Update, close_on_esc)
    // ...
    .run();
```
2024-04-03 01:29:06 +00:00
Jakub Marcowski
017ffc5a7b
Add the annulus shape to the 2d_shapes example (#12742)
# Objective

- Depends on #12734.

Since adding the `Annulus` primitive shape (#12706, #12734), the
`2d_shapes` example has become outdated.

## Solution

This PR adds the annulus shape to the `2d_shapes` example:


![image](https://github.com/bevyengine/bevy/assets/37378746/e620362d-bec6-4660-bf6e-d70babff8179)

---

## Changelog

### Added

- `Annulus` shape to the `2d_shapes` example

(~~as an added bonus, the example now features Newton's
[ROYGBIV](https://en.wikipedia.org/wiki/ROYGBIV) rainbow palette ^^~~ no
it doesn't, but one can shoehorn..)
2024-04-02 07:18:09 +00:00
Robert Swain
d0a5ddacd9
many_cubes: Add no automatic batching and generation of different meshes (#12363)
# Objective

- Enable stressing of more of the material mesh entity draw code paths

## Solution

- Support generation of a number of different mesh assets from the
built-in primitives, and select randomly from them. This breaks batches
based on different meshes.
- Support disabling automatic batching. This skips the batching cost at
the expense of stressing render pass draw command encoding.
- Support enabling directional light cascaded shadow mapping - this is
commonly a big source of slow down in normal scenes.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-01 22:05:52 +00:00