u-boot/board/st/stm32mp1
Patrice Chotard 395f12976c Board: stm32mp1: Add supply current boot information
For DK1/DK2 boards, check if power supply provides enough current
to allow the board to boot correctly.
ADC@0 channel 18 and 19 are connected to USB type-C CC1 and CC2
signals. The table below shows the behavior for different range of
CC1 or CC2:

  range       | power supply | red led |          console message
  (Volts)     |   (Amps)     | blinks  |
--------------|--------------|---------|-----------------------------------
[2.10 - 1.23[ |     3        |   NO    |    NO
[1.23 - 0.66[ |     1.5      | 3 times | WARNING 1.5A power supply detected
[0.66 - 0]    |     0.5      | 2 times | WARNING 500mA power supply detected

If detected current is < 3A, red led is kept ON after blinking.

Signed-off-by: Patrice Chotard <patrice.chotard@st.com>
2019-04-12 16:09:13 +02:00
..
board.c stpmic1: update register names 2019-04-12 16:09:13 +02:00
Kconfig board: st: add generic board for STM32MP1 family 2018-03-19 16:14:22 -04:00
MAINTAINERS stm32mp1: add trusted boot with TF-A 2019-04-12 16:09:13 +02:00
Makefile SPDX: Convert all of our multiple license tags to Linux Kernel style 2018-05-07 10:24:31 -04:00
README board: stm32mp1: Update README file 2019-04-12 16:09:13 +02:00
spl.c stpmic1: update register names 2019-04-12 16:09:13 +02:00
stm32mp1.c Board: stm32mp1: Add supply current boot information 2019-04-12 16:09:13 +02:00

SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
#
# Copyright (C) 2018 STMicroelectronics - All Rights Reserved
#

U-Boot on STMicroelectronics STM32MP1
======================================

1. Summary
==========
This is a quick instruction for setup stm32mp1 boards.

2. Supported devices
====================
U-Boot supports one STMP32MP1 SoCs: STM32MP157

The STM32MP157 is a Cortex-A MPU aimed at various applications.
It features:
- Dual core Cortex-A7 application core
- 2D/3D image composition with GPU
- Standard memories interface support
- Standard connectivity, widely inherited from the STM32 MCU family
- Comprehensive security support

Everything is supported in Linux but U-Boot is limited to:
1. UART
2. SDCard/MMC controller (SDMMC)

And the necessary drivers
1. I2C
2. STPMIC1 (PMIC and regulator)
3. Clock, Reset, Sysreset
4. Fuse

Currently the following boards are supported:
+ stm32mp157c-ev1
+ stm32mp157c-ed1
+ stm32mp157a-dk1
+ stm32mp157c-dk2

3. Boot Sequences
=================

BootRom => FSBL in SYSRAM => SSBL in DDR => OS (Linux Kernel)

with FSBL = First Stage Bootloader
     SSBL = Second Stage Bootloader

2 boot configurations are supported:

1) The "Trusted" boot chain (defconfig_file : stm32mp15_trusted_defconfig)
   BootRom => FSBL = Trusted Firmware-A (TF-A) => SSBL = U-Boot
   TF-A performs a full initialization of Secure peripherals and installs a
   secure monitor.
   U-Boot is running in normal world and uses TF-A monitor
   to access to secure resources

2) The "Basic" boot chain (defconfig_file : stm32mp15_basic_defconfig)
   BootRom => FSBL = U-Boot SPL => SSBL = U-Boot
   SPL has limited security initialisation
   U-Boot is running in secure mode and provide a secure monitor to the kernel
   with only PSCI support (Power State Coordination Interface defined by ARM)

All the STM32MP1 boards supported by U-Boot use the same generic board
stm32mp1 which support all the bootable devices.

Each board is configurated only with the associated device tree.

4. Device Tree Selection
========================

You need to select the appropriate device tree for your board,
the supported device trees for stm32mp157 are:

+ ev1: eval board with pmic stpmic1 (ev1 = mother board + daughter ed1)
  dts: stm32mp157c-ev1

+ ed1: daughter board with pmic stpmic1
  dts: stm32mp157c-ed1

+ dk1: Discovery board
  dts: stm32mp157a-dk1

+ dk2: Discovery board = dk1 with a BT/WiFI combo and a DSI panel
  dts: stm32mp157c-dk2

5. Build Procedure
==================

1. Install required tools for U-Boot

   + install package needed in U-Boot makefile
     (libssl-dev, swig, libpython-dev...)
   + install ARMv7 toolchain for 32bit Cortex-A (from Linaro,
     from SDK for STM32MP1, or any crosstoolchains from your distribution)

2. Set the cross compiler:

	# export CROSS_COMPILE=/path/to/toolchain/arm-linux-gnueabi-
	(you can use any gcc cross compiler compatible with U-Boot)

3. Select the output directory (optional)

	# export KBUILD_OUTPUT=/path/to/output

	for example: use one output directory for each configuration
	# export KBUILD_OUTPUT=stm32mp15_trusted
	# export KBUILD_OUTPUT=stm32mp15_basic

4. Configure U-Boot:

	# make <defconfig_file>

	- For trusted boot mode : "stm32mp15_trusted_defconfig"
	- For basic boot mode: "stm32mp15_basic_defconfig"

5. Configure the device-tree and build the U-Boot image:

	# make DEVICE_TREE=<name> all


  example:
  a) trusted boot on ev1
	# export KBUILD_OUTPUT=stm32mp15_trusted
	# make stm32mp15_trusted_defconfig
	# make DEVICE_TREE=stm32mp157c-ev1 all

  b) basic boot on ev1
	# export KBUILD_OUTPUT=stm32mp15_basic
	# make stm32mp15_basic_defconfig
	# make DEVICE_TREE=stm32mp157c-ev1 all

  c) basic boot on ed1
	# export KBUILD_OUTPUT=stm32mp15_basic
	# make stm32mp15_basic_defconfig
	# make DEVICE_TREE=stm32mp157c-ed1 all

  d) basic boot on dk2
	# export KBUILD_OUTPUT=stm32mp15_basic
	# make stm32mp15_basic_defconfig
	# make DEVICE_TREE=stm32mp157c-dk2 all

6. Output files

  BootRom and TF-A expect binaries with STM32 image header
  SPL expects file with U-Boot uImage header

  So in the output directory (selected by KBUILD_OUTPUT),
  you can found the needed files:

  a) For Trusted boot
   + FSBL = tf-a.stm32 (provided by TF-A compilation)
   + SSBL = u-boot.stm32

  b) For Basic boot
   + FSBL = spl/u-boot-spl.stm32
   + SSBL = u-boot.img

6. Switch Setting for Boot Mode
===============================

You can select the boot mode, on the board ed1 with the switch SW1

 -----------------------------------
  Boot Mode   BOOT2   BOOT1   BOOT0
 -----------------------------------
  Reserved	0	0	0
  NOR		0	0	1
  SD-Card	1	0	1
  eMMC		0	1	0
  NAND		0	1	1
  Recovery	1	1	0
  Recovery	0	0	0

- on board DK1/DK2 with the switch SW1 : BOOT0, BOOT2
  (BOOT1 forced to 0, NOR not supported)

 --------------------------
  Boot Mode   BOOT2  BOOT0
 --------------------------
  Reserved	1      0
  SD-Card	1      1
  Recovery	0      0

Recovery is a boot from serial link (UART/USB) and it is used with
STM32CubeProgrammer tool to load executable in RAM and to update the flash
devices available on the board (NOR/NAND/eMMC/SDCARD).
The communication between HOST and board is based on
- for UARTs : the uart protocol used with all MCU STM32
- for USB : based on USB DFU 1.1 (without the ST extensions used on MCU STM32)

7. Prepare an SDCard
===================

The minimal requirements for STMP32MP1 boot up to U-Boot are:
- GPT partitioning (with gdisk or with sgdisk)
- 2 fsbl partitions, named fsbl1 and fsbl2, size at least 256KiB
- one ssbl partition for U-Boot

Then the minimal GPT partition is:
   ----- ------- --------- --------------
  | Num | Name  | Size    |  Content     |
   ----- ------- -------- ---------------
  |  1  | fsbl1 | 256 KiB |  TF-A or SPL |
  |  2  | fsbl2 | 256 KiB |  TF-A or SPL |
  |  3  | ssbl  | enought |  U-Boot      |
  |  *  |  -    |  -      |  Boot/Rootfs |
   ----- ------- --------- --------------

(*) add bootable partition for extlinux.conf
    following Generic Distribution
    (doc/README.distro for use)

  according the used card reader select the block device
  (/dev/sdx or /dev/mmcblk0)
  in the next example I use /dev/mmcblk0

for example: with gpt table with 128 entries

  a) remove previous formatting
	# sgdisk -o /dev/<SDCard dev>

  b) create minimal image
	# sgdisk --resize-table=128 -a 1 \
		-n 1:34:545		-c 1:fsbl1 \
		-n 2:546:1057		-c 2:fsbl2 \
		-n 3:1058:5153		-c 3:ssbl \
		-p /dev/<SDCard dev>

	you can add other partitions for kernel
	one partition rootfs for example:
		-n 4:5154:		-c 4:rootfs \

  c) copy the FSBL (2 times) and SSBL file on the correct partition.
     in this example in partition 1 to 3

     for basic boot mode : <SDCard dev> = /dev/mmcblk0
	# dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
	# dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
	# dd if=u-boot.img of=/dev/mmcblk0p3

     for trusted boot mode :
	# dd if=tf-a.stm32 of=/dev/mmcblk0p1
	# dd if=tf-a.stm32 of=/dev/mmcblk0p2
	# dd if=u-boot.stm32 of=/dev/mmcblk0p3

To boot from SDCard, select BootPinMode = 1 1 1 and reset.

8. Prepare eMMC
===============
You can use U-Boot to copy binary in eMMC.

In the next example, you need to boot from SDCARD and the images (u-boot-spl.stm32, u-boot.img)
are presents on SDCARD (mmc 0) in ext4 partition 4 (bootfs).

To boot from SDCard, select BootPinMode = 1 0 1 and reset.

Then you update the eMMC with the next U-Boot command :

a) prepare GPT on eMMC,
	example with 2 partitions, bootfs and roots:

	# setenv emmc_part "name=ssbl,size=2MiB;name=bootfs,type=linux,bootable,size=64MiB;name=rootfs,type=linux,size=512"
	# gpt write mmc 1 ${emmc_part}

b) copy SPL on eMMC on firts boot partition
	(SPL max size is 256kB, with LBA 512, 0x200)

	# ext4load mmc 0:4 0xC0000000 u-boot-spl.stm32
	# mmc dev 1
	# mmc partconf 1 1 1 1
	# mmc write ${fileaddr} 0 200
	# mmc partconf 1 1 1 0

c) copy U-Boot in first GPT partition of eMMC

	# ext4load mmc 0:4 0xC0000000 u-boot.img
	# mmc dev 1
	# part start mmc 1 1 partstart
	# part size mmc 1 1 partsize
	# mmc write ${fileaddr} ${partstart} ${partsize}

To boot from eMMC, select BootPinMode = 0 1 0 and reset.

9. MAC Address
==============

Please read doc/README.enetaddr for the implementation guidelines for mac id
usage. Basically, environment has precedence over board specific storage.

Mac id storage and retrieval in stm32mp otp :
- OTP_57[31:0] = MAC_ADDR[31:0]
- OTP_58[15:0] = MAC_ADDR[47:32]

To program a MAC address on virgin OTP words above, you can use the fuse command
on bank 0 to access to internal OTP:

    example to set mac address "12:34:56:78:9a:bc"

    1- Write OTP
       STM32MP> fuse prog -y 0 57 0x78563412 0x0000bc9a

    2- Read OTP
       STM32MP> fuse sense 0 57 2
       Sensing bank 0:
       Word 0x00000039: 78563412 0000bc9a

    3- next REBOOT :
       ### Setting environment from OTP MAC address = "12:34:56:78:9a:bc"

    4 check env update
       STM32MP> print ethaddr
       ethaddr=12:34:56:78:9a:bc