u-boot/board/st/stm32mp1/stm32mp1.c
Patrice Chotard 395f12976c Board: stm32mp1: Add supply current boot information
For DK1/DK2 boards, check if power supply provides enough current
to allow the board to boot correctly.
ADC@0 channel 18 and 19 are connected to USB type-C CC1 and CC2
signals. The table below shows the behavior for different range of
CC1 or CC2:

  range       | power supply | red led |          console message
  (Volts)     |   (Amps)     | blinks  |
--------------|--------------|---------|-----------------------------------
[2.10 - 1.23[ |     3        |   NO    |    NO
[1.23 - 0.66[ |     1.5      | 3 times | WARNING 1.5A power supply detected
[0.66 - 0]    |     0.5      | 2 times | WARNING 500mA power supply detected

If detected current is < 3A, red led is kept ON after blinking.

Signed-off-by: Patrice Chotard <patrice.chotard@st.com>
2019-04-12 16:09:13 +02:00

584 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#include <common.h>
#include <adc.h>
#include <config.h>
#include <clk.h>
#include <dm.h>
#include <generic-phy.h>
#include <led.h>
#include <misc.h>
#include <phy.h>
#include <reset.h>
#include <syscon.h>
#include <usb.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/arch/stm32.h>
#include <power/regulator.h>
#include <usb/dwc2_udc.h>
/* SYSCFG registers */
#define SYSCFG_BOOTR 0x00
#define SYSCFG_PMCSETR 0x04
#define SYSCFG_IOCTRLSETR 0x18
#define SYSCFG_ICNR 0x1C
#define SYSCFG_CMPCR 0x20
#define SYSCFG_CMPENSETR 0x24
#define SYSCFG_PMCCLRR 0x44
#define SYSCFG_BOOTR_BOOT_MASK GENMASK(2, 0)
#define SYSCFG_BOOTR_BOOTPD_SHIFT 4
#define SYSCFG_IOCTRLSETR_HSLVEN_TRACE BIT(0)
#define SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI BIT(1)
#define SYSCFG_IOCTRLSETR_HSLVEN_ETH BIT(2)
#define SYSCFG_IOCTRLSETR_HSLVEN_SDMMC BIT(3)
#define SYSCFG_IOCTRLSETR_HSLVEN_SPI BIT(4)
#define SYSCFG_CMPCR_SW_CTRL BIT(1)
#define SYSCFG_CMPCR_READY BIT(8)
#define SYSCFG_CMPENSETR_MPU_EN BIT(0)
#define SYSCFG_PMCSETR_ETH_CLK_SEL BIT(16)
#define SYSCFG_PMCSETR_ETH_REF_CLK_SEL BIT(17)
#define SYSCFG_PMCSETR_ETH_SELMII BIT(20)
#define SYSCFG_PMCSETR_ETH_SEL_MASK GENMASK(23, 21)
#define SYSCFG_PMCSETR_ETH_SEL_GMII_MII (0 << 21)
#define SYSCFG_PMCSETR_ETH_SEL_RGMII (1 << 21)
#define SYSCFG_PMCSETR_ETH_SEL_RMII (4 << 21)
/*
* Get a global data pointer
*/
DECLARE_GLOBAL_DATA_PTR;
#define STM32MP_GUSBCFG 0x40002407
#define STM32MP_GGPIO 0x38
#define STM32MP_GGPIO_VBUS_SENSING BIT(21)
#define USB_WARNING_LOW_THRESHOLD_UV 660000
#define USB_START_LOW_THRESHOLD_UV 1230000
#define USB_START_HIGH_THRESHOLD_UV 2100000
int checkboard(void)
{
int ret;
char *mode;
u32 otp;
struct udevice *dev;
const char *fdt_compat;
int fdt_compat_len;
if (IS_ENABLED(CONFIG_STM32MP1_TRUSTED))
mode = "trusted";
else
mode = "basic";
printf("Board: stm32mp1 in %s mode", mode);
fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible",
&fdt_compat_len);
if (fdt_compat && fdt_compat_len)
printf(" (%s)", fdt_compat);
puts("\n");
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_GET_DRIVER(stm32mp_bsec),
&dev);
if (!ret)
ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_BOARD),
&otp, sizeof(otp));
if (!ret && otp) {
printf("Board: MB%04x Var%d Rev.%c-%02d\n",
otp >> 16,
(otp >> 12) & 0xF,
((otp >> 8) & 0xF) - 1 + 'A',
otp & 0xF);
}
return 0;
}
static void board_key_check(void)
{
#if defined(CONFIG_FASTBOOT) || defined(CONFIG_CMD_STM32PROG)
ofnode node;
struct gpio_desc gpio;
enum forced_boot_mode boot_mode = BOOT_NORMAL;
node = ofnode_path("/config");
if (!ofnode_valid(node)) {
debug("%s: no /config node?\n", __func__);
return;
}
#ifdef CONFIG_FASTBOOT
if (gpio_request_by_name_nodev(node, "st,fastboot-gpios", 0,
&gpio, GPIOD_IS_IN)) {
debug("%s: could not find a /config/st,fastboot-gpios\n",
__func__);
} else {
if (dm_gpio_get_value(&gpio)) {
puts("Fastboot key pressed, ");
boot_mode = BOOT_FASTBOOT;
}
dm_gpio_free(NULL, &gpio);
}
#endif
#ifdef CONFIG_CMD_STM32PROG
if (gpio_request_by_name_nodev(node, "st,stm32prog-gpios", 0,
&gpio, GPIOD_IS_IN)) {
debug("%s: could not find a /config/st,stm32prog-gpios\n",
__func__);
} else {
if (dm_gpio_get_value(&gpio)) {
puts("STM32Programmer key pressed, ");
boot_mode = BOOT_STM32PROG;
}
dm_gpio_free(NULL, &gpio);
}
#endif
if (boot_mode != BOOT_NORMAL) {
puts("entering download mode...\n");
clrsetbits_le32(TAMP_BOOT_CONTEXT,
TAMP_BOOT_FORCED_MASK,
boot_mode);
}
#endif
}
static struct dwc2_plat_otg_data stm32mp_otg_data = {
.usb_gusbcfg = STM32MP_GUSBCFG,
};
static struct reset_ctl usbotg_reset;
int board_usb_init(int index, enum usb_init_type init)
{
struct fdtdec_phandle_args args;
struct udevice *dev;
const void *blob = gd->fdt_blob;
struct clk clk;
struct phy phy;
int node;
int phy_provider;
int ret;
/* find the usb otg node */
node = fdt_node_offset_by_compatible(blob, -1, "snps,dwc2");
if (node < 0) {
debug("Not found usb_otg device\n");
return -ENODEV;
}
if (!fdtdec_get_is_enabled(blob, node)) {
debug("stm32 usbotg is disabled in the device tree\n");
return -ENODEV;
}
/* Enable clock */
ret = fdtdec_parse_phandle_with_args(blob, node, "clocks",
"#clock-cells", 0, 0, &args);
if (ret) {
debug("usbotg has no clocks defined in the device tree\n");
return ret;
}
ret = uclass_get_device_by_of_offset(UCLASS_CLK, args.node, &dev);
if (ret)
return ret;
if (args.args_count != 1) {
debug("Can't find clock ID in the device tree\n");
return -ENODATA;
}
clk.dev = dev;
clk.id = args.args[0];
ret = clk_enable(&clk);
if (ret) {
debug("Failed to enable usbotg clock\n");
return ret;
}
/* Reset */
ret = fdtdec_parse_phandle_with_args(blob, node, "resets",
"#reset-cells", 0, 0, &args);
if (ret) {
debug("usbotg has no resets defined in the device tree\n");
goto clk_err;
}
ret = uclass_get_device_by_of_offset(UCLASS_RESET, args.node, &dev);
if (ret || args.args_count != 1)
goto clk_err;
usbotg_reset.dev = dev;
usbotg_reset.id = args.args[0];
reset_assert(&usbotg_reset);
udelay(2);
reset_deassert(&usbotg_reset);
/* Get USB PHY */
ret = fdtdec_parse_phandle_with_args(blob, node, "phys",
"#phy-cells", 0, 0, &args);
if (!ret) {
phy_provider = fdt_parent_offset(blob, args.node);
ret = uclass_get_device_by_of_offset(UCLASS_PHY,
phy_provider, &dev);
if (ret)
goto clk_err;
phy.dev = dev;
phy.id = fdtdec_get_uint(blob, args.node, "reg", -1);
ret = generic_phy_power_on(&phy);
if (ret) {
debug("unable to power on the phy\n");
goto clk_err;
}
ret = generic_phy_init(&phy);
if (ret) {
debug("failed to init usb phy\n");
goto phy_power_err;
}
}
/* Parse and store data needed for gadget */
stm32mp_otg_data.regs_otg = fdtdec_get_addr(blob, node, "reg");
if (stm32mp_otg_data.regs_otg == FDT_ADDR_T_NONE) {
debug("usbotg: can't get base address\n");
ret = -ENODATA;
goto phy_init_err;
}
stm32mp_otg_data.rx_fifo_sz = fdtdec_get_int(blob, node,
"g-rx-fifo-size", 0);
stm32mp_otg_data.np_tx_fifo_sz = fdtdec_get_int(blob, node,
"g-np-tx-fifo-size", 0);
stm32mp_otg_data.tx_fifo_sz = fdtdec_get_int(blob, node,
"g-tx-fifo-size", 0);
/* Enable voltage level detector */
if (!(fdtdec_parse_phandle_with_args(blob, node, "usb33d-supply",
NULL, 0, 0, &args))) {
if (!uclass_get_device_by_of_offset(UCLASS_REGULATOR,
args.node, &dev)) {
ret = regulator_set_enable(dev, true);
if (ret) {
debug("Failed to enable usb33d\n");
goto phy_init_err;
}
}
}
/* Enable vbus sensing */
setbits_le32(stm32mp_otg_data.regs_otg + STM32MP_GGPIO,
STM32MP_GGPIO_VBUS_SENSING);
return dwc2_udc_probe(&stm32mp_otg_data);
phy_init_err:
generic_phy_exit(&phy);
phy_power_err:
generic_phy_power_off(&phy);
clk_err:
clk_disable(&clk);
return ret;
}
static int get_led(struct udevice **dev, char *led_string)
{
char *led_name;
int ret;
led_name = fdtdec_get_config_string(gd->fdt_blob, led_string);
if (!led_name) {
pr_debug("%s: could not find %s config string\n",
__func__, led_string);
return -ENOENT;
}
ret = led_get_by_label(led_name, dev);
if (ret) {
debug("%s: get=%d\n", __func__, ret);
return ret;
}
return 0;
}
static int setup_led(enum led_state_t cmd)
{
struct udevice *dev;
int ret;
ret = get_led(&dev, "u-boot,boot-led");
if (ret)
return ret;
ret = led_set_state(dev, cmd);
return ret;
}
static int board_check_usb_power(void)
{
struct ofnode_phandle_args adc_args;
struct udevice *adc;
struct udevice *led;
ofnode node;
unsigned int raw;
int max_uV = 0;
int ret, uV, adc_count;
u8 i, nb_blink;
node = ofnode_path("/config");
if (!ofnode_valid(node)) {
debug("%s: no /config node?\n", __func__);
return -ENOENT;
}
/*
* Retrieve the ADC channels devices and get measurement
* for each of them
*/
adc_count = ofnode_count_phandle_with_args(node, "st,adc_usb_pd",
"#io-channel-cells");
if (adc_count < 0) {
if (adc_count == -ENOENT)
return 0;
pr_err("%s: can't find adc channel (%d)\n", __func__,
adc_count);
return adc_count;
}
for (i = 0; i < adc_count; i++) {
if (ofnode_parse_phandle_with_args(node, "st,adc_usb_pd",
"#io-channel-cells", 0, i,
&adc_args)) {
pr_debug("%s: can't find /config/st,adc_usb_pd\n",
__func__);
return 0;
}
ret = uclass_get_device_by_ofnode(UCLASS_ADC, adc_args.node,
&adc);
if (ret) {
pr_err("%s: Can't get adc device(%d)\n", __func__,
ret);
return ret;
}
ret = adc_channel_single_shot(adc->name, adc_args.args[0],
&raw);
if (ret) {
pr_err("%s: single shot failed for %s[%d]!\n",
__func__, adc->name, adc_args.args[0]);
return ret;
}
/* Convert to uV */
if (!adc_raw_to_uV(adc, raw, &uV)) {
if (uV > max_uV)
max_uV = uV;
pr_debug("%s: %s[%02d] = %u, %d uV\n", __func__,
adc->name, adc_args.args[0], raw, uV);
} else {
pr_err("%s: Can't get uV value for %s[%d]\n",
__func__, adc->name, adc_args.args[0]);
}
}
/*
* If highest value is inside 1.23 Volts and 2.10 Volts, that means
* board is plugged on an USB-C 3A power supply and boot process can
* continue.
*/
if (max_uV > USB_START_LOW_THRESHOLD_UV &&
max_uV < USB_START_HIGH_THRESHOLD_UV)
return 0;
/* Display warning message and make u-boot,error-led blinking */
pr_err("\n*******************************************\n");
if (max_uV < USB_WARNING_LOW_THRESHOLD_UV) {
pr_err("* WARNING 500mA power supply detected *\n");
nb_blink = 2;
} else {
pr_err("* WARNING 1.5A power supply detected *\n");
nb_blink = 3;
}
pr_err("* Current too low, use a 3A power supply! *\n");
pr_err("*******************************************\n\n");
ret = get_led(&led, "u-boot,error-led");
if (ret)
return ret;
for (i = 0; i < nb_blink * 2; i++) {
led_set_state(led, LEDST_TOGGLE);
mdelay(125);
}
led_set_state(led, LEDST_ON);
return 0;
}
int board_usb_cleanup(int index, enum usb_init_type init)
{
/* Reset usbotg */
reset_assert(&usbotg_reset);
udelay(2);
reset_deassert(&usbotg_reset);
return 0;
}
static void sysconf_init(void)
{
#ifndef CONFIG_STM32MP1_TRUSTED
u8 *syscfg;
#ifdef CONFIG_DM_REGULATOR
struct udevice *pwr_dev;
struct udevice *pwr_reg;
struct udevice *dev;
int ret;
u32 otp = 0;
#endif
u32 bootr;
syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG);
/* interconnect update : select master using the port 1 */
/* LTDC = AXI_M9 */
/* GPU = AXI_M8 */
/* today information is hardcoded in U-Boot */
writel(BIT(9), syscfg + SYSCFG_ICNR);
/* disable Pull-Down for boot pin connected to VDD */
bootr = readl(syscfg + SYSCFG_BOOTR);
bootr &= ~(SYSCFG_BOOTR_BOOT_MASK << SYSCFG_BOOTR_BOOTPD_SHIFT);
bootr |= (bootr & SYSCFG_BOOTR_BOOT_MASK) << SYSCFG_BOOTR_BOOTPD_SHIFT;
writel(bootr, syscfg + SYSCFG_BOOTR);
#ifdef CONFIG_DM_REGULATOR
/* High Speed Low Voltage Pad mode Enable for SPI, SDMMC, ETH, QSPI
* and TRACE. Needed above ~50MHz and conditioned by AFMUX selection.
* The customer will have to disable this for low frequencies
* or if AFMUX is selected but the function not used, typically for
* TRACE. Otherwise, impact on power consumption.
*
* WARNING:
* enabling High Speed mode while VDD>2.7V
* with the OTP product_below_2v5 (OTP 18, BIT 13)
* erroneously set to 1 can damage the IC!
* => U-Boot set the register only if VDD < 2.7V (in DT)
* but this value need to be consistent with board design
*/
ret = syscon_get_by_driver_data(STM32MP_SYSCON_PWR, &pwr_dev);
if (!ret) {
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_GET_DRIVER(stm32mp_bsec),
&dev);
if (ret) {
pr_err("Can't find stm32mp_bsec driver\n");
return;
}
ret = misc_read(dev, STM32_BSEC_SHADOW(18), &otp, 4);
if (!ret)
otp = otp & BIT(13);
/* get VDD = pwr-supply */
ret = device_get_supply_regulator(pwr_dev, "pwr-supply",
&pwr_reg);
/* check if VDD is Low Voltage */
if (!ret) {
if (regulator_get_value(pwr_reg) < 2700000) {
writel(SYSCFG_IOCTRLSETR_HSLVEN_TRACE |
SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI |
SYSCFG_IOCTRLSETR_HSLVEN_ETH |
SYSCFG_IOCTRLSETR_HSLVEN_SDMMC |
SYSCFG_IOCTRLSETR_HSLVEN_SPI,
syscfg + SYSCFG_IOCTRLSETR);
if (!otp)
pr_err("product_below_2v5=0: HSLVEN protected by HW\n");
} else {
if (otp)
pr_err("product_below_2v5=1: HSLVEN update is destructive, no update as VDD>2.7V\n");
}
} else {
debug("VDD unknown");
}
}
#endif
/* activate automatic I/O compensation
* warning: need to ensure CSI enabled and ready in clock driver
*/
writel(SYSCFG_CMPENSETR_MPU_EN, syscfg + SYSCFG_CMPENSETR);
while (!(readl(syscfg + SYSCFG_CMPCR) & SYSCFG_CMPCR_READY))
;
clrbits_le32(syscfg + SYSCFG_CMPCR, SYSCFG_CMPCR_SW_CTRL);
#endif
}
/* board dependent setup after realloc */
int board_init(void)
{
/* address of boot parameters */
gd->bd->bi_boot_params = STM32_DDR_BASE + 0x100;
board_key_check();
sysconf_init();
if (IS_ENABLED(CONFIG_LED))
led_default_state();
return 0;
}
int board_late_init(void)
{
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
const void *fdt_compat;
int fdt_compat_len;
fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible",
&fdt_compat_len);
if (fdt_compat && fdt_compat_len) {
if (strncmp(fdt_compat, "st,", 3) != 0)
env_set("board_name", fdt_compat);
else
env_set("board_name", fdt_compat + 3);
}
#endif
/* for DK1/DK2 boards */
board_check_usb_power();
return 0;
}
void board_quiesce_devices(void)
{
setup_led(LEDST_OFF);
}