Although the board_init_f API initialises the SoC, the API name is
incorrectly specified and misleads the functionality. This file should
only include k3-specific functionality. Change the API's name to something
more K3-specific and separate the function to make it more modular.
Signed-off-by: Sinthu Raja <sinthu.raja@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
The fs_loader device is used to pull in settings via the chosen node.
However, there was no library function for this, so arria10 was doing it
explicitly. This function subsumes that, and uses ofnode_get_chosen_node
instead of navigating the device tree directly. Because fs_loader pulls
its config from the environment by default, it's fine to create a device
with nothing backing it at all. Doing this allows enabling
CONFIG_FS_LOADER without needing to modify the device tree.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Ramon Fried <rfried.dev@gmail.com>
Texas Instruments has begun enabling security settings on the SoCs it
produces to instruct ROM and TIFS to begin protecting the Security
Management Subsystem (SMS) from other binaries we load into the chip by
default.
One way ROM and TIFS do this is by enabling firewalls to protect the
OCSRAM and HSM RAM regions they're using during bootup.
The HSM RAM the wakeup SPL is in is firewalled by TIFS to protect
itself from the main domain applications. This means the 'bootindex'
value in HSM RAM, left by ROM to indicate if we're using the primary
or secondary boot-method, must be moved to OCSRAM (that TIFS has open
for us) before we make the jump to the main domain so the main domain's
bootloaders can keep access to this information.
Signed-off-by: Bryan Brattlof <bb@ti.com>
The boot mode detection assumes that BOOT_DEVICE_MMC2 should always
result in MMCSD_MODE_FS, but MMCSD_MODE_RAW is also a valid option for
this port.
The current logic also avoids looking at the bootmode pin strapping,
which should be the primary means of determining whether a device is
being booted in MMCSD_MODE_EMMCBOOT mode.
Switch around the logic to check the boot mode to determine whether the
eMMC boot mode is expected or MMC/SD boot mode. From there we can look
at the boot mode config if in MMC/SD boot mode to determine whether to
attempt RAW or FS based booting.
This change allows U-Boot to also be successfully booted from RAW
offsets in addition to from a filesystem.
Signed-off-by: Martyn Welch <martyn.welch@collabora.com>
Introduce the auto-generated clock tree and power domain data needed to
attach the am62a into the power-domain and clock frameworks of uboot
Signed-off-by: Bryan Brattlof <bb@ti.com>
The rest of the unmigrated CONFIG symbols in the CONFIG_SYS namespace do
not easily transition to Kconfig. In many cases they likely should come
from the device tree instead. Move these out of CONFIG namespace and in
to CFG namespace.
Signed-off-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
The rest of the unmigrated CONFIG symbols in the CONFIG_SYS_SDRAM
namespace do not easily transition to Kconfig. In many cases they likely
should come from the device tree instead. Move these out of CONFIG
namespace and in to CFG namespace.
Signed-off-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
The current name is inconsistent with SPL which uses CONFIG_SPL_TEXT_BASE
and this makes it imposible to use CONFIG_VAL().
Rename it to resolve this problem.
Signed-off-by: Simon Glass <sjg@chromium.org>
These hardware register definitions are common for all K3, remove
duplicate data them by moving them to hardware.h.
While here do some minor whitespace cleanup + grouping.
Signed-off-by: Andrew Davis <afd@ti.com>
This matches how this would be done in Linux and these functions
do the alignment for us which makes the code look cleaner.
Signed-off-by: Andrew Davis <afd@ti.com>
This matches what we did for pre-K3 devices. This allows us to build
boot commands that can check for our device type at runtime.
Signed-off-by: Andrew Davis <afd@ti.com>
There are a couple users of uclass_next_device return value that get the
first device by other means and use uclass_next_device assuming the
following device in the uclass is related to the first one.
Use uclass_next_device_err because the return value from
uclass_next_device will be removed in a later patch.
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
This is not needed and we should avoid typedefs. Use the struct instead
and rename it to indicate that it really is a legacy struct.
Signed-off-by: Simon Glass <sjg@chromium.org>
If the device is a GP and we detect a signing certificate then remove it.
It would fail to authenticate otherwise as the device is GP and has no
secure authentication services in SYSFW.
This shouldn't happen often as trying to boot signed images on GP devices
doesn't make much sense, but if we run into a signed image we should at
least try to ignore the certificate and boot the image anyway. This could
help with users of GP devices who only have HS images available.
If this does happen, print a nice big warning.
Signed-off-by: Andrew Davis <afd@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
We can skip the image authentication check at runtime if the device is GP.
This reduces the delta between GP and HS U-Boot builds. End goal is
to re-unify the two build types into one build that can run on all
device types.
Signed-off-by: Andrew Davis <afd@ti.com>
On HS-FS devices signing boot images is optional. To ease use
we check if we are HS-FS and if no certificate is attached
to the image we skip the authentication step with a warning
that this will fail when the device is set to security enforcing.
Signed-off-by: Andrew Davis <afd@ti.com>
K3 SoCs are available in a number of device types such as
GP, HS-FS, EMU, etc. Like OMAP SoCs we can detect this at runtime
and should print this out as part of the SoC information line.
We add this as part of the common.c file as it will be used
to also modify our security state early in the device boot.
Signed-off-by: Andrew Davis <afd@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Read the swrv.txt file from the TI Security Development Tools when
TI_SECURE_DEVICE is enabled. This allows us to set our software
revision in one place and have it used by all the tools that create
TI x509 boot certificates.
Signed-off-by: Andrew Davis <afd@ti.com>
The x509 certificate SWRV is currently hard-coded to 0. This need to be
updated to 1 for j721e 1.1, j7200 and am64x. It is don't care for other
k3 devices.
Added new config K3_X509_SWRV to k3. Default is set to 1.
Signed-off-by: Yogesh Siraswar <yogeshs@ti.com>
Reviewed-by: Dave Gerlach <d-gerlach@ti.com>
This isn't strictly needed as these firewalls should all be disabled on
GP, but it also doesn't hurt, so do this unconditionally to remove this
use of CONFIG_TI_SECURE_DEVICE.
Signed-off-by: Andrew Davis <afd@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
The first AM6x device was the AM654x, but being the first we named it
just AM6, since more devices have come out with this same prefix we
should switch it to the normal convention of using the full name of the
first compatibility device the series. This makes what device we are
talking about more clear and matches all the K3 devices added since.
Signed-off-by: Andrew Davis <afd@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
The content of these files are only used in SPL builds. The contents are
already ifdef for the same, remove that and only include the whole file
in the build when building for SPL.
Signed-off-by: Andrew Davis <afd@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Using CONFIG_IS_ENABLED breaks accessing memory map structure when
doing a A53 SPL build for AM625 and AM642 platforms. This is due to
'abc if CONFIG_SPL_BUILD is defined and CONFIG_SPL_FOO is set to 'y''
in which there is no CONFIG_SPL_SOC_K3_AM625/CONFIG_SPL_SOC_K3_AM642
defined in the configuration.
For the A53 SPL builds on these platform to access the memory mapping
which it will need for enabling the mmu/cache it must use #if defined(X)
checks and not CONFIG_IS_ENABLED.
Cc: Suman Anna <s-anna@ti.com>
Cc: Neha Francis <n-francis@ti.com>
Signed-off-by: Matt Ranostay <mranostay@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
On AM62x devices, main ESM error event outputs can be routed to
MCU ESM as inputs. So, two ESM device nodes are expected in the
device tree : one for main ESM and another one for MCU ESM.
MCU ESM error output can trigger the reset logic to reset
the device when CTRLMMR_MCU_RST_CTRL:MCU_ESM_ERROR_RESET_EN_Z is
set to '0'.
Signed-off-by: Julien Panis <jpanis@baylibre.com>
The spl_enable_dcache() function calls dram_init_banksize()
to get the total memory size. Normally the dram_init_banksize()
setups the memory banks, while the total size is reported
by ddr_init(). This worked so far for K3 since we set the
gd->ram_size in dram_init_banksize() as well.
Signed-off-by: Georgi Vlaev <g-vlaev@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
implement overrides for spl_spi_boot_bus() and spl_spi_boot_cs()
lookup functions according to bootmode selection, so as to support
both QSPI and OSPI boot using the same build.
Signed-off-by: Vaishnav Achath <vaishnav.a@ti.com>
Reviewed-by: Pratyush Yadav <p.yadav@ti.com>
Without this register unlock it is not possible to configure the
pinmux used for mcu spi0.
Fixes: 92e46092f2 ("arch: arm: mach-k3: am642_init: Probe ESM nodes")
Signed-off-by: Christian Gmeiner <christian.gmeiner@gmail.com>
Reviewed-by: Nishanth Menon <nm@ti.com>
Add basic support for AM62 SK. This has 2GB DDR.
Note that stack for R5 SPL is in OCRAM @ 0x7000ffff so that is away from
BSS and does not step on BSS section
Add only the bare minimum required to support UART and SD.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Introduce autogenerated SoC data support clk and device data for the
AM62. Hook it upto to power-domain and clk frameworks of U-Boot.
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
The node name of the bus in the device tree has changed. Also, the length
argument to be passed should be the length of new value. Therefore, fix the
path to usb device tree node as well as the length argument passed.
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
On AM64x devices, it is possible to route Main ESM0 error events to MCU
ESM. MCU ESM high error output can trigger the reset logic to reset the
device. So, for these devices we expect two ESM device nodes in the
device tree, one for Main ESM and the another MCU ESM in the device tree.
When these ESM device nodes are properly configired it is possible to
route the Main RTI0 WWDT output to the MCU ESM high output through Main
ESM and trigger a device reset when
CTRLMMR_MCU_RST_CTRL:MCU_ESM_ERROR_RESET_EN_Z is set to '0'.
On K3 AM64x devices, the R5 SPL u-boot handles the ESM device node
configurations.
Signed-off-by: Hari Nagalla <hnagalla@ti.com>
Reviewed-by: Christian Gmeiner <christian.gmeiner@gmail.com>
Platforms can overwrite the weak definition of spl_mmc_boot_mode() to
determine where to load U-Boot proper from.
For most of them this is a trivial decision based on Kconfig variables,
but it might be desirable the probe the actual device to answer this
question.
Pass the pointer to the mmc struct to that function, so implementations
can make use of that.
Compile-tested for all users changed.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Stefano Babic <sbabic@denx.de>
Reviewed-by: Ley Foon Tan <ley.foon.tan@inte.com> (for SoCFPGA)
Acked-by: Lokesh Vutla <lokeshvutla@ti.com> (for OMAP and K3)
Reviewed-by: Simon Glass <sjg@chromium.org>
We only want to call do_board_detect() if CONFIG_TI_I2C_BOARD_DETECT
is set. Same as done for am64.
This makes it possible to add a custom am65 based board design to
U-Boot that does not use this board detection mechanism.
Signed-off-by: Christian Gmeiner <christian.gmeiner@gmail.com>
Enable support for selecting DTB from FIT within SPL based on the
board name read from EEPROM. This will help to use single defconfig
for both EVM and SK.
Signed-off-by: Sinthu Raja <sinthu.raja@ti.com>
Probe toplevel AM65 CPSW NUSS driver from misc_init_r() when driver
is enabled. Since driver is modeled as UCLASS_MISC, we need to
explicitly probe the driver. Use common misc_init_r() that entire
K3 family of SoCs.
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
In case of xSPI bootmode OSPI flash is in DDR mode and needs to be accessed
in multiple of 16bit accesses Hence we cannot parse sysfw.itb FIT image
directly on OSPI flash via MMIO window. So, copy the image to internal
on-chip RAM before parsing the image.
Moreover, board cfg data maybe modified by ROM/TIFS in case of HS platform
and thus cannot reside in OSPI/xSPI and needs to be copied over to
internal OCRAM.
This unblocks OSPI/xSPI boot on HS platforms
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Dave Gerlach <d-gerlach@ti.com>
Tested-by: Keerthy <j-keerthy@ti.com>
Acked-by: Pratyush Yadav <p.yadav@ti.com>
Currently only the PADCFG registers of the main domain are unlocked.
Also unlock PADCFG registers of MCU domain, so MCU pin muxing can be configured by u-boot or Linux.
Signed-off-by: Michael Liebert <liebert@ibv-augsburg.de>
Tested-by: Christian Gmeiner <christian.gmeiner@gmail.com>
Acked-by: Nishanth Menon <nm@ti.com>
This adds support for the IOT2050 Basic and Advanced devices. The Basic
used the dual-core AM6528 GP processor, the Advanced one the AM6548 HS
quad-core version.
Both variants are booted via a Siemens-provided FSBL that runs on the R5
cores. Consequently, U-Boot support is targeting the A53 cores. U-Boot
SPL, ATF and TEE have to reside in SPI flash.
Full integration into a bootable image can be found on
https://github.com/siemens/meta-iot2050
Based on original board support by Le Jin, Gao Nian and Chao Zeng.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>