For now this code seems to be the same for all FSP platforms. Make it
common until we see what differences are required.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
To avoid casts, find_fsp_header() should return a pointer. Add asmlinkage
to two API functions which use that convention. UPD_TERMINATOR is common
so move it into a common file.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
On some x86 processors (like Intel Quark) the MTRR registers are not
supported. This is reflected by the CPUID (EAX 01H) result EDX[12].
Accessing the MTRR registers on such processors will cause #GP so we
must test the support flag before accessing MTRR MSRs.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
By default U-Boot automatically calibrates TSC running frequency via
MSR and PIT. The calibration may not work on every x86 processor, so
a new Kconfig option CONFIG_TSC_CALIBRATION_BYPASS is introduced to
allow bypassing the calibration and assign a hardcoded TSC frequency
CONFIG_TSC_FREQ_IN_MHZ.
Normally the bypass should be turned on in a simulation environment
like qemu.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
These two are not worth having separate inline functions as they are
really simple, so drop them.
Also changed 'type' parameter of fsp_get_next_hob() from u16 to uint.
Suggested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
It is useful to be able to see the MTRR setup in U-Boot. Add a command
to list the state of the variable MTRR registers and allow them to be
changed.
Update the documentation to list some of the available commands.
This does not support fixed MTRRs as yet.
Signed-off-by: Simon Glass <sjg@chromium.org>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
Once we stop running from ROM we should set up the MTTRs to speed up
execution. This is only needed for platforms that don't have an FSP.
Also in the Coreboot case, the MTRRs are set up for us.
Signed-off-by: Simon Glass <sjg@chromium.org>
There are some bits which should be ignored when displaying the mode number.
Make sure that they are not included in the mode that is displayed.
Signed-off-by: Simon Glass <sjg@chromium.org>
There is no need to run with the cache disabled, and there is no point in
clearing the display frame buffer since U-Boot does it later.
Signed-off-by: Simon Glass <sjg@chromium.org>
Remove the troublesome union hob_pointers so that some annoying casts
are no longer needed in those hob access routines. This also improves
the readability.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
This is the follow-on patch to clean up the FSP support codes:
- Remove the _t suffix on the structures defines
- Use __packed for structure defines
- Use U-Boot's assert()
- Use standard bool true/false
- Remove read_unaligned64()
- Use memcmp() in the compare_guid()
- Remove the cast in the memset() call
- Replace some magic numbers with macros
- Use panic() when no valid FSP image header is found
- Change some FSP utility routines to use an fsp_ prefix
- Add comment blocks for asm_continuation and fsp_init_done
- Remove some casts in find_fsp_header()
- Change HOB access macros to static inline routines
- Add comments to mention find_fsp_header() may be called in a
stackless environment
- Add comments to mention init(¶ms) in fsp_init() cannot
be removed
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Commit 65dd74a674 (x86: ivybridge: Implement SDRAM init) introduced
x86-specific asmlinkage into arch/x86/include/asm/config.h.
Commit ed0a2fbf14 (x86: Add a definition of asmlinkage) added the
same macro define again, this time, into include/common.h.
(Please do not add arch-specific stuff to include/common.h any more;
it is already too cluttered.)
The generic asmlinkage is defined in <linux/linkage.h>. If you want
to override it with an arch-specific one, the best way is to add it
to <asm/linkage.h> like Linux Kernel.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
FSP builds a series of data structures called the Hand-Off-Blocks
(HOBs) as it progresses through initializing the silicon. These data
structures conform to the HOB format as described in the Platform
Initialization (PI) specification Volume 3 Shared Architectual
Elements specification, which is part of the UEFI specification.
Create a simple command to parse the HOB list to display the HOB
address, type and length in bytes.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Per Intel FSP architecture specification, FSP provides 3 routines
for bootloader to call. The first one is the TempRamInit (aka
Cache-As-Ram initialization) and the second one is the FspInit
which does the memory bring up (like MRC for other x86 targets)
and chipset initialization. Those two routines have to be called
before U-Boot jumping to board_init_f in start.S.
The FspInit() will return several memory blocks called Hand Off
Blocks (HOBs) whose format is described in Platform Initialization
(PI) specification (part of the UEFI specication) to the bootloader.
Save this HOB address to the U-Boot global data for later use.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Move GD_BIST from lib/asm-offsets.c to arch/x86/lib/asm-offsets.c
as it is x86 arch specific stuff. Also remove GENERATED_GD_RELOC_OFF
which is not referenced anymore.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
On x86 machines we can use an emulator to run option ROMS as with other
architectures. But with some additional effort (mostly due to the 16-bit
nature of option ROMs) we can run them natively. Add support for this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Rename interrupt_init() in arch/x86/lib/pcat_interrupts.c to
i8259_init() and create a new interrupt_init() in
arch/x86/cpu/interrupt.c to call i8259_init() followed by a
call to cpu_init_interrupts().
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Currently cpu_init_interrupts() is called from cpu_init_r() to
setup the interrupt and exception of the cpu core, but at that
time the i8259 has not been initialized to mask all the irqs
and remap the master i8259 interrupt vector base, so the whole
system is at risk of being interrupted, and if interrupted,
wrong interrupt/exception message is shown.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
This normally indicates a problem which will prevent relocation from
functioning, resulting in a hang. Panic in this case to make it easier
to debug.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Implement SDRAM init using the Memory Reference Code (mrc.bin) provided in
the board directory and the SDRAM SPD information in the device tree. This
also needs the Intel Management Engine (me.bin) to work. Binary blobs
everywhere: so far we have MRC, ME and microcode.
SDRAM init works by setting up various parameters and calling the MRC. This
in turn does some sort of magic to work out how much memory there is and
the timing parameters to use. It also sets up the DRAM controllers. When
the MRC returns, we use the information it provides to map out the
available memory in U-Boot.
U-Boot normally moves itself to the top of RAM. On x86 the RAM is not
generally contiguous, and anyway some RAM may be above 4GB which doesn't
work in 32-bit mode. So we relocate to the top of the largest block of
RAM we can find below 4GB. Memory above 4GB is accessible with special
functions (see physmem).
It would be possible to build U-Boot in 64-bit mode but this wouldn't
necessarily provide any more memory, since the largest block is often below
4GB. Anyway U-Boot doesn't need huge amounts of memory - even a very large
ramdisk seldom exceeds 100-200MB. U-Boot has support for booting 64-bit
kernels directly so this does not pose a limitation in that area. Also there
are probably parts of U-Boot that will not work correctly in 64-bit mode.
The MRC is one.
There is some work remaining in this area. Since memory init is very slow
(over 500ms) it is possible to save the parameters in SPI flash to speed it
up next time. Suspend/resume support is not fully implemented, or at least
it is not efficient.
With this patch, link boots to a prompt.
Signed-off-by: Simon Glass <sjg@chromium.org>
Unfortunately MSR_FSB_FREQ is not available on this CPU, and the PIT method
seems to take up to 50ms which is much too long.
For this CPU we know the frequency, so add another special case for now.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Return the saved TSC frequency in get_tbclk_mhz().
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Use the same way that Linux does for quick TSC calibration via PIT
when calibration via MSR fails.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Using MSR_PLATFORM_INFO (0xCE) to calibrate TSR will cause #GP on
processors which do not have this MSR. Instead only doing the MSR
calibration for known/supported CPUs.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
The boot_zimage() function is badly named it can also boot a raw kernel.
Rename it, and try to avoid pointers for memory addresses as it involves
lots of casting.
Signed-off-by: Simon Glass <sjg@chromium.org>
This code generates warnings with recent gcc versions. We really don't need
the clobber specification, so just drop it.
Signed-off-by: Simon Glass <sjg@chromium.org>
The motivation of this commit is to change CONFIG_USE_PRIVATE_LIBGCC
to a boolean macro so we can move it to Kconfig.
In the current implementation, there are two forms of syntax
for this macro:
- CONFIG_USE_PRIVATE_LIBGCC=y
- CONFIG_USE_PRIVATE_LIBGCC=path/to/private/libgcc
The latter is only used by x86 architecture.
With a little bit refactoring, it can be converted to the former.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Tested-by: Simon Glass <sjg@chromium.org>
Acked-by: Simon Glass <sjg@chromium.org>
The x86 bootm code is quite special, and geared to zimage. Adjust it
to support device tree and make it more like the ARM code, with
separate bootm stages and functions for each stage.
Create a function announce_and_cleanup() to handle printing the
"Starting kernel ..." message and put it in bootm so it is in one
place and can be used by any loading code. Also move the
board_final_cleanup() function into bootm.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present stdio device functions do not get any clue as to which stdio
device is being acted on. Some implementations go to great lengths to work
around this, such as defining a whole separate set of functions for each
possible device.
For driver model we need to associate a stdio_dev with a device. It doesn't
seem possible to continue with this work-around approach.
Instead, add a stdio_dev pointer to each of the stdio member functions.
Note: The serial drivers have the same problem, but it is not strictly
necessary to fix that to get driver model running. Also, if we convert
serial over to driver model the problem will go away.
Code size increases by 244 bytes for Thumb2 and 428 for PowerPC.
22: stdio: Pass device pointer to stdio methods
arm: (for 2/2 boards) all +244.0 bss -4.0 text +248.0
powerpc: (for 1/1 boards) all +428.0 text +428.0
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Marek Vasut <marex@denx.de>
Reviewed-by: Marek Vasut <marex@denx.de>
There is no point in setting a structure's memory to NULL when it has
already been zeroed with memset().
Also, there is no need to create a stub function for stdio to call - if the
function is NULL it will not be called.
This is a clean-up, with no change in functionality.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Marek Vasut <marex@denx.de>
U-Boot has supported two kinds of asm-offsets.h.
One is generic for all architectures and its source is located at
./lib/asm-offsets.c.
The other is SoC specific and its source is under SoC directory.
The problem here is that only boards with SoC directory can use
the asm-offsets infrastructure.
Putting asm-offsets.c right under CPU directory does not work.
Now a new demand is coming. PowerPC folks want to use asm-offsets.
But no PowerPC boards have SoC directory.
It seems inconsistent that some boards add asm-offsets.c to SoC
directoreis and some to CPU directories.
It looks more reasonable to put asm-offsets.c under arch/$(ARCH)/lib.
This commit merges asm-offsets.c under SoC directories into
arch/$(ARCH)/lib/asm-offsets.c.
By the way, I doubt the necessity of some entries in asm-offsets.c.
I am leaving refactoring to the board maintainers.
Please check "TODO" in the comment blocks in
arch/{arm,nds32}/lib/asm-offsets.c.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Yuantian Tang <Yuantian.Tang@freescale.com>
Useful rules in scripts/Makefile.lib allows us to easily
generate a device tree blob and wrap it in assembly code.
We do not need to parse a linker script to get output format and arch.
This commit deletes ./u-boot.dtb since it is a copy of dts/dt.dtb.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
This commit changes the working directory
where the build process occurs.
Before this commit, build process occurred under the source
tree for both in-tree and out-of-tree build.
That's why we needed to add $(obj) prefix to all generated
files in makefiles like follows:
$(obj)u-boot.bin: $(obj)u-boot
Here, $(obj) is empty for in-tree build, whereas it points
to the output directory for out-of-tree build.
And our old build system changes the current working directory
with "make -C <sub-dir>" syntax when descending into the
sub-directories.
On the other hand, Kbuild uses a different idea
to handle out-of-tree build and directory descending.
The build process of Kbuild always occurs under the output tree.
When "O=dir/to/store/output/files" is given, the build system
changes the current working directory to that directory and
restarts the make.
Kbuild uses "make -f $(srctree)/scripts/Makefile.build obj=<sub-dir>"
syntax for descending into sub-directories.
(We can write it like "make $(obj)=<sub-dir>" with a shorthand.)
This means the current working directory is always the top
of the output directory.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Tested-by: Gerhard Sittig <gsi@denx.de>
MAKEALL is fine for ppc4xx and mpc85xx.
Run checks were done on our controlcenterd hardware.
Signed-off-by: Dirk Eibach <dirk.eibach@gdsys.cc>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The OS function is now always called with the PREP stage. Adjust the
remaining bootm OS functions to deal with this correctly.
Signed-off-by: Simon Glass <sjg@chromium.org>
Some changes are needed to x86 timer functions to support tracing. Add
these so that the feature works correctly.
Signed-off-by: Simon Glass <sjg@chromium.org>
While we don't want PCAT timers for timing, we want timer 2 so that we can
still make a beep. Re-purpose the PCAT driver for this, and enable it in
coreboot.
Signed-off-by: Simon Glass <sjg@chromium.org>
This is no longer used since we prefer the more accurate TSC timer, so
remove the dead code.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
This timer runs at a rate that can be calculated, well over 100MHz. It is
ideal for accurate timing and does not need interrupt servicing.
Tidy up some old broken and unneeded implementations at the same time.
To provide a consistent view of boot time, we use the same time
base as coreboot. Use the base timestamp supplied by coreboot
as U-Boot's base time.
Signed-off-by: Simon Glass <sjg@chromium.org>base
Signed-off-by: Simon Glass <sjg@chromium.org>
The 'Starting linux' message appears twice in the code, but both call
through the same place. Unify these and add calls to bootstage to
mark the occasion.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Michael Spang <spang@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
Several files use the global_data pointer without declaring it. This works
because the declaration is currently a NOP. But still it is better to
fix this so that x86 lines up with other archs.
Signed-off-by: Simon Glass <sjg@chromium.org>
Since we use CONFIG_SYS_GENERIC_BOARD on x86, we don't need this anymore.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
Graeme Russ pointed out that this code is no longer used. Remove it.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
Delete all occurrences of hang() and provide a generic function.
Signed-off-by: Andreas Bießmann <andreas.devel@googlemail.com>
Acked-by: Albert ARIBAUD <albert.u.boot@aribaud.net>
[trini: Modify check around puts() in hang.c slightly]
Signed-off-by: Tom Rini <trini@ti.com>
It is possible that our PCI bus will provide the SPI controller, so change
the init order to make this work.
Signed-off-by: Simon Glass <sjg@chromium.org>
This file handles common pre-relocation init for boards which use
the generic framework.
It starts up the console, DRAM, performs relocation and then jumps
to post-relocation init.
Signed-off-by: Simon Glass <sjg@chromium.org>
Tested-by: Wolfgang Denk <wd@denx.de>
Acked-by: Wolfgang Denk <wd@denx.de>
This does not actually change normal behaviour, but adds a check that
should detect corruption of relocation data (e.g. by using BSS data
prior to relocation).
Also add additional debugging output when enabled.
During this investigation, two situations have been seen:
1. calculate_relocation_address():
uintptr_t size = (uintptr_t)&__bss_end - (uintptr_t)&__text_start;
turns into
111166f: b8 83 c4 17 01 mov $0x117c483,%eax
whih is beyond the end of bss:
0117b484 g .bss 00000000 __bss_end
Somehow the __bss_end here is 255 bytes ahead.
2. do_elf_reloc_fixups():
uintptr_t size = (uintptr_t)&__bss_end - (uintptr_t)&__text_start;
Here the __text_start is 0 in the file:
1111d9f: bb a0 e0 13 01 mov $0x113e0a0,%ebx
1111da4: 81 ef 00 00 00 00 sub $0x0,%edi
As it happens, both of these are in pre-relocation code.
For these reasons we silent check and ignore bad relocations.
Signed-off-by: Simon Glass <sjg@chromium.org>
With CONFIG_OF_CONTROL we may have an FDT in the BSS region. Relocate
it up with the rest of U-Boot to keep the rest of memory free.
Signed-off-by: Simon Glass <sjg@chromium.org>
With this symbol we can easy append something (e.g. an FDT) to the U-Boot
binary and access it from within U-Boot.
Signed-off-by: Simon Glass <sjg@chromium.org>
It is useful to be able to access the timer before U-Boot has relocated
so that we can fully support bootstage.
Add new global_data members to support this.
Signed-off-by: Simon Glass <sjg@chromium.org>
The memory layout calculations are done in calculate_relocation_address(),
and coreboot has its own version of this function. But in fact all we
really need is to set the top of usable RAM, and then the base version
will work as is.
So instead of allowing the whole calculate_relocation_address() function
to be replaced, create board_get_usable_ram_top() which can be used by
a board to specify the top of the area where U-Boot relocations to.
Signed-off-by: Simon Glass <sjg@chromium.org>
This code is pretty old and we want to support only 32-bit systems now.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
Allow a device tree to be provided through the standard mechanisms.
Signed-off-by: Gabe Black <gabeblack@google.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
This option delays loading of the environment until later, so that only the
default environment will be available to U-Boot.
This can address the security risk of untrusted data being used during boot.
When CONFIG_DELAY_ENVIRONMENT is defined, it is convenient to have a
run-time way of enabling loadinlg of the environment. Add this to the
fdt as /config/delay-environment.
Note: This patch depends on http://patchwork.ozlabs.org/patch/194342/
Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Different systems may have different mechanisms for picking a suitable place
to relocate U-Boot to.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This changes the layout in decreasing addresses from:
1. Stack
2. Sections in the image
3. Heap
to
1. Sections in the image
2. Heap
3. Stack
This allows the stack to grow significantly more since it isn't constrained by
the other u-boot areas. More importantly, the generic memory wipe code assumes
that the stack is the lowest addressed area used by the main part of u-boot.
In the original layout, that means that u-boot tramples all over itself. In
the new layout, it works.
Signed-off-by: Gabe Black <gabeblack@google.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
If we have SPI support, make sure that we init it.
Signed-off-by: Gabe Black <gabeblack@google.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Vic Yang <victoryang@chromium.org>
Implement arch_phys_memset so that it can set memory at physical addresses
above 4GB using PAE paging. Because there are only 5 page tables in PAE mode,
1 PDPT and 4 PDTs, those tables are statically allocated in the BSS. The
tables must be 4K page aligned and are declared that way, and because U-Boot
starts as 4K aligned and the relocation code relocates it to a 4K aligned
address, the tables work as intended.
While paging is turned on, all 4GB are identity mapped except for one 2MB
page which is used as the window into high memory. This way, U-Boot will
continue to work as expected when running code that expects to access memory
freely, but the code can still get at high memory through its window.
The window is put at 2MB so that it's 2MB page aligned, low in memory to be
out of the way of things U-Boot is likely to care about, and above the lowest
1MB where lots of random things live.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
The use of post-increment with a do-while loop results in
the loop going one step too far when handling relocation fixups.
In about 1/100 cases this would cause it to hang.
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This fixes the following warning:
zimage.c:312: Warning: indirect jmp without `*'
Also fixed these warnings to keep checkpatch quiet:
warning: arch/x86/lib/zimage.c,311: unnecessary whitespace before a quoted newline
warning: arch/x86/lib/zimage.c,312: unnecessary whitespace before a quoted newline
warning: arch/x86/lib/zimage.c,313: unnecessary whitespace before a quoted newline
Signed-off-by: Simon Glass <sjg@chromium.org>
This function can be used by boards which want to do some clean-up
before booting a zImage.
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
To maintain the initialization state of the timestamp facility, thesq
pointer to the CBMEM section containing the timestamp table should be
kept in the .data section (so that it is maintained across u-boot
relocation).
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
Put this function in the u-boot-x86.h header file. We could instead create
timer.h perhaps.
We support setting a base time, and reading the time relative to this base.
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
We don't want this for coreboot, so provide a way of compiling it out.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
Putting global data on the stack simplifies the init process (and makes it
slightly quicker). During the 'flash' stage of the init sequence, global
data is in the CAR stack. After SDRAM is initialised, global data is copied
from CAR to the SDRAM stack
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
So it can be used as a type in struct global_data and remove an ugly typecast
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Marek Vasut <marex@denx.de>
Remove the parts depending either on disabled CONFIG_SERIAL_MULTI
or ifdefs around CONFIG_SERIAL_MULTI parts since CONFIG_SERIAL_MULTI
is now enabled by default.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Marek Vasut <marek.vasut@gmail.com>
Cc: Tom Rini <trini@ti.com>
Cc: Anatolij Gustschin <agust@denx.de>
Cc: Stefan Roese <sr@denx.de>
All arches init this the same way, so move the logic into the core
net code to avoid duplicating it everywhere else.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Reviewed-by: Joe Hershberger <joe.hershberger@ni.com>
This field gets read in one place (by "bdinfo"), and we can replace
that with getenv("ipaddr"). After all, the bi_ip_addr field is kept
up-to-date implicitly with the value of the ipaddr env var.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Reviewed-by: Joe Hershberger <joe.hershberger@ni.com>
Create an init function array for board_init_f_r - This finalises the
migration to a purely array based initialisation mechanism
Also tweak a few comments while we are at it so everything is 'correct'
--
Changes for v2:
- Renamed to a more apt name
- Fix bug in set_reloc_flag_r
- Re-instate gd->flags = boot_flags; in board_init_f
- Added commit message
This patch moves towards reducing board.c to simply a set of init cores for
the three initialisation phases (Flash, Flash/RAM, and RAM), a set of three
init function arrays and a init function array processing function
Use the base address of the 'F' segment as a pointer to the global data
structure. By adding the linear address (i.e. the 'D' segment address) as
the first word of the global data structure, the address of the global data
relative to the 'D' segment can be found simply, for example, by:
fs movl 0, %eax
This makes the gd 'pointer' writable prior to relocation (by reloading the
Global Desctriptor Table) which brings x86 into line with all other arches
NOTE: Writing to the gd 'pointer' is expensive (but we only do it
twice) but using it to access global data members (read and write) is
still fairly cheap
--
Changes for v2:
- Rebased against changes made to patch #3
- Removed extra indent
- Tweaked commit message