The A72 U-Boot code loads and boots a number of remote processors
including the C71x DSP, both the C66_0 and C66_1 DSPs, and the various
Main R5FSS Cores. In order to view the code loaded by the U-Boot by
remote cores, U-Boot should configure the memory region with right
memory attributes. Right now U-Boot carves out a memory region which
is not sufficient for all the images to be loaded. So, increase this
carve out region by 256MB.
Signed-off-by: Kedar Chitnis <kedarc@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
The A53 U-Boot code can load and boot the MCU domain R5F cores (either a
single core in LockStep mode or 2 cores in Split mode) to achieve various
early system functionalities. Change the memory attributes for the DDR
regions used by the remote processors so that the cores can see and
execute the proper code loaded by U-Boot.
These regions are currently limited to 0xa0000000 to 0xa2100000 as per
the DDR carveouts assigned for these R5F cores in the overall DDR memory
map.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
The A53 U-boot can support early booting of the MCU R5F remote processor(s)
from U-boot prompt to achieve various system usecases before booting the
Linux kernel. Update the default BOOTCOMMAND to provide an automatic and
easier way to start the MCU R5F cores through added environment variables.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Enable the R5F remoteproc driver for the AM65x GP EVM so that the
MCU domain R5F cores can be booted from A53 U-boot.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
The A72 U-boot can support early booting of any of the R5F or C66x
or C71x remote processors from U-boot prompt to achieve various system
usecases before booting the Linux kernel. Update the default BOOTCOMMAND
to provide an automatic and easier way to start various remote processors
through added environment variables.
Signed-off-by: Jean-Jacques Hiblot <jjhiblot@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Add support to boot the MCU domain R5F Core0 remoteproc at U-boot prompt
on the AM65x EVM boards by using the 'boot_rprocs' and other env variables
defined in the common environment file k3_rproc.h, and updating the
'DEFAULT_RPROCS' macro.
The default configuration is to use the MCU R5F in Split mode, so both
the R5F Core0 and Core1 are started before loading and booting the Linux
kernel using the following firmware:
MCU R5FSS0 Core0 (Split) : 0 /lib/firmware/am65x-mcu-r5f0_0-fw
MCU R5FSS0 Core1 (Split) : 1 /lib/firmware/am65x-mcu-r5f0_1-fw
The MCU R5FSS was initially running the R5 SPL in LockStep mode with ATCM
disabled, and is actually shutdown to enable it to be reconfigured and
booted by either A53 U-Boot or Linux kernel in remoteproc mode and using
ATCM.
The MCU R5FSS would need to be reconfigured for Lockstep mode through
DT if a fault-tolerant/safety application were to be run on the cluster
with the DEFAULT_RPROCS macro updated to remove the Core1 firmware.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Add support to boot some remoteprocs at U-boot prompt on the J721E EVM
boards by using the 'boot_rprocs' and other env variables defined in the
common environment file k3_rproc.h, and updating the 'DEFAULT_RPROCS'
macro.
The list of R5F cores to be started before loading and booting the Linux
kernel are as follows, and in this order:
Main R5FSS0 (Split) Core1 : 3 /lib/firmware/j7-main-r5f0_1-fw
Main R5FSS1 (LockStep) : 4 /lib/firmware/j7-main-r5f1_0-fw
The MCU R5FSS0 and Main R5FSS1 are currently in LockStep mode, so the
equivalent Core1 rprocs (rproc #1 and #5) are not included. The Main
R5FSS0 Core0 (rproc #2) is already started by R5 SPL, so is not included
in the list either.
The DSP cores are started in the following order before loading and
booting the Linux kernel:
C66_0: 6 /lib/firmware/j7-c66_0-fw
C66_1: 7 /lib/firmware/j7-c66_1-fw
C71_0: 8 /lib/firmware/j7-c71_0-fw
The order of the rprocs to boot can be changed at runtime if desired by
overwriting the 'rproc_fw_binaries' environment variable at U-boot prompt.
Signed-off-by: Jean-Jacques Hiblot <jjhiblot@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Add a new file include/environment/ti/k3_rproc.h that defines
common environment variables useful for booting various remote
processors from U-Boot. This file is expected to be included in
the board config files with the EXTRA_ENV_RPROC_SETTINGS added
to CONFIG_EXTRA_ENV_SETTINGS and DEFAULT_RPROCS macro overwritten
to include the actual list of processors to be booted.
The 'boot_rprocs' variable just needs to be added to the board's
bootcmd to automatically boot the processors, and runtime control
can be achieved through the 'dorprocboot' variable.
The variables are currently defined to use MMC as the boot media,
and can be expanded in the future to include other boot media.
The immediate usage is intended for K3 J721E SoCs.
Signed-off-by: Jean-Jacques Hiblot <jjhiblot@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
The AM65x SoCs has a single dual-core Arm Cortex-R5F processor
subsystem/cluster (MCU_R5FSS0) within the MCU domain. This cluster
can be configured at boot time to be either run in a LockStep mode
or in an Asymmetric Multi Processing (AMP) fashion in Split-mode.
This subsystem has 64 KB each Tightly-Coupled Memory (TCM) internal
memories for each core split between two banks - ATCM and BTCM
(further interleaved into two banks). There are some IP integration
differences from standard Arm R5 clusters such as the absence of
an ACP port, presence of an additional TI-specific Region Address
Translater (RAT) module for translating 32-bit CPU addresses into
larger system bus addresses etc.
Add the DT node for the MCU domain R5F cluster/subsystem, the two
R5 cores are added as child nodes to the main cluster/subsystem node.
The cluster is configured to run in Split-mode by default, with the
ATCMs enabled to allow the R5 cores to execute code from DDR with
boot-strapping code from ATCM. The inter-processor communication
between the main A72 cores and these processors is achieved through
shared memory and Mailboxes.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
The J721E SoCs have a single TMS320C71x DSP Subsystem in the MAIN
voltage domain containing the next-generation C711 CPU core. The
subsystem has 32 KB of L1D configurable SRAM/Cache and 512 KB of
L2 configurable SRAM/Cache. This subsystem has a CMMU but is not
used currently. The inter-processor communication between the main
A72 cores and the C711 processor is achieved through shared memory
and a Mailbox. Add the DT node for this DSP processor sub-system
in the common k3-j721e-main.dtsi file.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
The J721E SoCs have two TMS320C66x DSP Core Subsystems (C66x CorePacs)
in the MAIN voltage domain, each with a C66x Fixed/Floating-Point DSP
Core, and 32 KB of L1P & L1D configurable SRAMs/Cache and an additional
288 KB of L2 configurable SRAM/Cache. These subsystems do not have
an MMU but contain a Region Address Translator (RAT) sub-module for
translating 32-bit processor addresses into larger bus addresses.
The inter-processor communication between the main A72 cores and
these processors is achieved through shared memory and Mailboxes.
Add the DT nodes for these DSP processor sub-systems in the common
k3-j721e-main.dtsi file.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
The J721E SoCs have 3 dual-core Arm Cortex-R5F processor (R5FSS)
subsystems/clusters. One R5F cluster (MCU_R5FSS0) is present within
the MCU domain, and the remaining two clusters are present in the
MAIN domain (MAIN_R5FSS0 & MAIN_R5FSS1). Each of these can be
configured at boot time to be either run in a LockStep mode or in
an Asymmetric Multi Processing (AMP) fashion in Split-mode. These
subsystems have 64 KB each Tightly-Coupled Memory (TCM) internal
memories for each core split between two banks - ATCM and BTCM
(further interleaved into two banks). There are some IP integration
differences from standard Arm R5 clusters such as the absence of
an ACP port, presence of an additional TI-specific Region Address
Translater (RAT) module for translating 32-bit CPU addresses into
larger system bus addresses etc.
Add the DT nodes for these two MAIN domain R5F cluster/subsystems,
the two R5 cores are each added as child nodes to the corresponding
main cluster node. Configure SS0 in split mode an SS1 in lockstep mode,
with the ATCMs enabled to allow the R5 cores to execute code from DDR
with boot-strapping code from ATCM.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
The J721E SoCs have 3 dual-core Arm Cortex-R5F processor (R5FSS)
subsystems/clusters. One R5F cluster (MCU_R5FSS0) is present within
the MCU domain, and the remaining two clusters are present in the
MAIN domain (MAIN_R5FSS0 & MAIN_R5FSS1). Each of these can be
configured at boot time to be either run in a LockStep mode or in
an Asymmetric Multi Processing (AMP) fashion in Split-mode. These
subsystems have 64 KB each Tightly-Coupled Memory (TCM) internal
memories for each core split between two banks - ATCM and BTCM
(further interleaved into two banks). There are some IP integration
differences from standard Arm R5 clusters such as the absence of
an ACP port, presence of an additional TI-specific Region Address
Translater (RAT) module for translating 32-bit CPU addresses into
larger system bus addresses etc.
Add the DT node for the MCU domain R5F cluster/subsystem, the two
R5 cores are added as child nodes to the main cluster/subsystem node.
The cluster is configured to run in LockStep mode by default, with the
ATCMs enabled to allow the R5 cores to execute code from DDR with
boot-strapping code from ATCM. The inter-processor communication
between the main A72 cores and these processors is achieved through
shared memory and Mailboxes.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Certain SoCs with K3 architecture have integrated a C66 Corepac DSP
subsystem and an advanced C71 DSPs. Introduce a remoteproc driver
that that does take care of loading an elf to any of the specified
DSPs and start it.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Some Texas Instruments K3 family of SoCs have one of more Digital Signal
Processor (DSP) subsystems that are comprised of either a TMS320C66x
CorePac and/or a next-generation TMS320C71x CorePac processor subsystem.
Add the device tree bindings document for the C66x DSP devices on these
SoCs. The added example illustrates the DT nodes for the first C66x DSP
device present on the K3 J721E family of SoCs.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
SoCs with K3 architecture have an integrated Arm Cortex-R5F subsystem
that is comprised of dual-core Arm Cortex-R5F processor cores. This R5
subsytem can be configured at boot time to be either run in a LockStep
mode or in an Asymmetric Multi Processing (AMP) fashion in Split-mode.
This subsystem has each Tightly-Coupled Memory (TCM) internal memories
for each core split between two banks - TCMA and TCMB.
Add a remoteproc driver to support this subsystem to be able to load
and boot the R5 cores primarily in LockStep mode or split mode.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
The Texas Instruments K3 family of SoCs have one of more dual-core
Arm Cortex R5F processor subsystems/clusters (R5FSS). Add the device
tree bindings document for these R5F subsystem devices. These R5F
processors do not have an MMU, and so require fixed memory carveout
regions matching the firmware image addresses. The nodes require more
than one memory region, with the first memory region used for DMA
allocations at runtime. The remaining memory regions are reserved
and are used for the loading and running of the R5F remote processors.
The added example illustrates the DT nodes for the single R5FSS device
present on K3 AM65x family of SoCs.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Power domain for the remote cores needs to be handled in a right
sequence as mandated by the spec. Introduce tisci helper apis
that can control power-domains of remote cores. TISCI clients
can use this api and control the remote cores power domain instead
of hooking it to power-domain layer.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Introduce rproc_elf_get_boot_addr() that returns the entry point of
the elf file. This api auto detects the 64/32 bit elf file and returns
the boot addr accordingly.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Introduce a common remoteproc elf loader and checker functions that
automatically detects the 64 bit elf file or 32 bit elf file and
loads/checks the sections accordingly.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Fabien Dessenne <fabien.dessenne@st.com>
The current rproc-elf-loader supports loading of only 32 bit elf files.
Introduce support for loading of 64 bit elf files in rproc-elf-loader.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Fabien Dessenne <fabien.dessenne@st.com>
rproc_elf32_load_image() rely on user to send a valid address for elf loading.
Instead do a sanity check on the address passed by user. This will help
all rproc elf users to not call sanity_check explicitly before calling
elf_loading.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Fabien Dessenne <fabien.dessenne@st.com>
Introduce a new parameter "size" that accepts size of the region to
remoteproc ops callback device_to_virt(). This can enforce more checks
on the region that device_to_virt() is dealing with.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Tested-by: Fabien Dessenne <fabien.dessenne@st.com>
Reviewed-by: Fabien Dessenne <fabien.dessenne@st.com>
am65x ROM support booting over UART. And U-Boot built for am65x EVM
supports UART boot as well. Add the UART boot procedure into the README
also providing a corresponding example command sequence for execution
on a host PC.
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
Activate early console functionality on AM654x devices to allow for an
alternate serial port to be used to support UART-based boot. This is so
that System Firmware (SYSFW) can get loaded over the serial port prior
to the main console being brought up and made available.
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
Although we currently use the MAIN_UART0 for R5 SPL console output there
are cases where we require access to the MCU_UART0 as well for example in
case of UART-based Y-Modem boot. To support these scenarios add related
DTS definitions to be able to use that UART early on.
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
In order to allow booting TI K3 family SoCs via Y-Modem add support for
loading System Firmware by tapping into the associated SPL core loader
function.
In this context also make sure a console is available and if not go
ahead and activate the early console feature which allows bringing up
an alternate full console before the main console is activated. Such
an alternate console is typically setup in a way that the associated
UART can be fully initialized prior to SYSFW services being available.
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
Implement an early console functionality in SPL that can be used before
the main console is being brought up. This helps in situations where the
main console is dependent on System Firmware (SYSFW) being up and running,
which is usually not the case during the very early stages of boot. Using
this early console functionality will allow for an alternate serial port
to be used to support things like UART-based boot and early diagnostic
messages until the main console is ready to get activated.
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
Expose SPL's Y-Modem core loader function via the common SPL header
file so it can be re-used for purposes other than loading U-Boot itself.
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
During FIT reading through ymodem_read_fit() the function
xyzModem_stream_read() is being used which returns zero once the end
of a stream has been reached. This could lead to an premature exit from
ymodem_read_fit() with certain-sized FIT images reporting that zero
bytes overall were read. Such a premature exit would then result in an
-EIO failure being triggered within the spl_load_simple_fit() caller
function and ultimately lead to a boot failure.
Fix this logic by simply aborting the stream read loops and continuing
with the regular code flow which ultimately would lead to returning
the number of bytes to be read ('size') as expected by the callers of
ymodem_read_fit().
Fixes: fa715193c0 ("spl: Add an option to load a FIT containing U-Boot from UART")
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
Build the keystone 3 platforms with the keystone 2 platforms, in order
to get back more room in the "catch-all" build jobs.
Signed-off-by: Tom Rini <trini@konsulko.com>
As both "catch-all" ARM jobs are nearing their time limit, move all of
the bcm SoC boards into a single job.
Signed-off-by: Tom Rini <trini@konsulko.com>
- Rename existing FSP code to fsp1
- Add fsp2 directory in preparation to support FSP 2.0
- Various x86 platform codes update
- Various bug fixes and updates in dm core, sandbox and spl
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJdnCy/AAoJEB6zHgIOrC/Izp4IAJVDE0oyOYcwBoCsAqa8zvMJ
/G815T1TGyc6674TQ+Px47t+1O9InClag576E1ttKVSZHnTqH9AW1aGdVqYFgmwu
bbk7a/N2bSYc1ZruiH1YMzwVMTmwaIvn9cvNeBMkQ0cXBP6R7m9DsupaTG9mNsll
7wNFF6gZCOXQEOL6hgxerxr6UM2xaQMpSqfYhfYfmHyU0S86Cr1J7dORL1MHhZ4/
WLVuxCPpgeTwiZ0i9TerC0eH0agPQ2dmtDPAQFn+RihVS29YNDTaR+a4XVKJJ6hs
Y/77d0JYmPSY5JgYLAdjqx+GQKKqy9kpdHJz+sXCiolDdYHmG3c+4zQzrLzkH+k=
=Y0qG
-----END PGP SIGNATURE-----
Merge tag 'u-boot-atmel-2020.01-a' of https://gitlab.denx.de/u-boot/custodians/u-boot-atmel
First set of u-boot-atmel features and fixes for 2020.01 cycle
The feature set includes support for two new boards from Microchip AT91:
The sama5d27_wlsom1_ek , an evaluation kit which includes the SAMA5D2
SOC packaged in a 256 MB LPDDR2 SIP, on a SOM including wireless, which
is placed on evaluation kit with sd-card, ethernet, LCD, Camera sensor,
QSPI, etc
The sam9x60ek, an evaluation kit for the new SoC based on ARM926j , the
SAM9X60 . The evaluation kit includes NAND flash, QSPI, Ethernet, Audio,
Camera sensor connector, etc.
The full support for sam9x60ek will come at a later time. There are
still missing bits regarding the clock support and power management
controller.
The major corrections in this pull request are:
Fixes for the SetVariable() boot service.
Device path node for NVMe drives.
Disable CONFIG_CMD_NVEDIT by default.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEbcT5xx8ppvoGt20zxIHbvCwFGsQFAl2aVscACgkQxIHbvCwF
GsTx+Q//ThJM6BGFE3Rk2pI0SXGqyPK1CIt78S8xj9WFjowpnL4y3sU5NQryzf7k
OdGvl4KnO+qNHVIaUuOU+ylCms/DdJZcqljBE+VGRiHijjeWuWb4zv70655/DQra
zxBXhmGM1RoabTR6ZosXDx9QRz+qg7eVP66oFHXAPjiAj0UEYiiKTO4wCV882POa
thqI/mEg7wFI9abyVbvpG36ROT/h0t5uvH0B7h/rsCMOK9ABHrWOcy6/xibu0gZT
Y25/ve6fxGfd8vW1b4/z/F+hPXqy+LYbblm+hZ+mCDPZ0kblmqmbeXGydDZkr2UN
pm6niczwWqb5PL1Z5KevfytbojQTN6vnedIw3yUEFA6Znh2uSW4pry1xMQbpfkuw
EQc0r0eoxlMyc0PCYqKoznrje0GXBaEG71+wcG5hhWQCzdx3BktUosrLdAdj4Km+
nho+WxOSXv3rPntY9etQ6U+EyyOyDXMHud2tnE3BN0L+gIl7pLyf3TCS/NumTAFm
R7Gf9/YjazExmdJrpEjq+rBVHoF7+wdfBzok6aEw1BmTqqNiBEGpkywgg7eHYjIG
lThM4VE14VITGq95FbnkhmH33NDD89UQ4DRbPWC10IajSZbGktUpIRYdYQKKHGDq
vRWaaF61eDOIY4xQlX3ecDlsi5rKF2EdBtqAxWekZAAMA64okcw=
=nzgb
-----END PGP SIGNATURE-----
Merge tag 'efi-2020-01-rc1' of https://gitlab.denx.de/u-boot/custodians/u-boot-efi
Pull request for UEFI sub-system for efi-2020-01-rc1
The major corrections in this pull request are:
Fixes for the SetVariable() boot service.
Device path node for NVMe drives.
Disable CONFIG_CMD_NVEDIT by default.
- Python3 conversion of genboardscfg.py
- Resync Kconfiglib.py
- Switch to running CI on Ubuntu "bionic" to facilitate Python 3.6 being
the minimum we use and test.
In order to run all filesystem tests we need to have newer ext4 tools,
move up to Ubuntu 18.04 'bionic' for our base. We need to change
slightly how we invoke the provided grub-mkimage. This will also make
future python3 work easier.
Signed-off-by: Tom Rini <trini@konsulko.com>
When running as another user we might not be able to use '..' for
certain directories and this is the default for buildman. Specify an
output directory instead.
Signed-off-by: Tom Rini <trini@konsulko.com>
We may not always be able to write to the default output directory so
have a temporary directory for our output be created.
Cc: Simon Glass <sjg@chromium.org>
Reviewed-by: Stephen Warren <swarren@wwwdotorg.org>
Suggested-by: Stephen Warren <swarren@wwwdotorg.org>
Signed-off-by: Tom Rini <trini@konsulko.com>
With the reverting of a previous change to spl_boot_device,
this board needs a new solution to determining if we're booting
from MMC1 or MMC2.
This patch creates board_boot_order function which overrides the
standard, and returns not only MMC1, or MMC2, but also can fall
back to NAND or the serial downloader should other boot options
fail.
Signed-off-by: Adam Ford <aford173@gmail.com>
Apologies to everyone whose board I broke by attempting to return
MMC1 or MMC2. I misunderstood how the MMC indexing worked.
This reverts commit 14d319b185.
Signed-off-by: Adam Ford <aford173@gmail.com>
With upcoming patches u-boot.kwb gets too large.
Save 3740 bytes in u-boot.kwb by disabling Unicode support in the UEFI
sub-system.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Since convert dm_video, unused code introduced, so remove this
Signed-off-by: Joris Offouga <offougajoris@gmail.com>
Reviewed-by: Otavio Salvador <otavio@ossystems.com.br>