Intel has invented yet another binary blob which firmware is required to
run. This is run after SDRAM is ready. It is linked to load at a particular
address, typically 0, but is a relocatable ELF so can be moved if required.
Add support for this in the build system. The file should be placed in the
board directory, and called refcode.elf.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
We don't need this anymore - we can use device tree and the new pinconfig
driver instead.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Rather than setting up the pin configuration in the GPIO driver, use the
new pinctrl driver to do it.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Add a driver which sets up the pin configuration on x86 devices with an ICH6
(or later) Platform Controller Hub.
The driver is not in the pinctrl uclass due to some oddities of the way x86
devices work:
- The GPIO controller is not present in I/O space until it is set up
- This is done by writing a register in the PCH
- The PCH has a driver which itself uses PCI, another driver
- The pinctrl uclass requires that a pinctrl device be available before any
other device can be probed
It would be possible to work around the limitations by:
- Hard-coding the GPIO address rather than reading it from the PCH
- Using special x86 PCI access to set the GPIO address in the PCH
However it is not clear that this is better, since the pin configuration
driver does not actually provide normal pin configuration services - it
simply sets up all the pins statically when probed. While this remains the
case, it seems better to use a syscon uclass instead. This can be probed
whenever it is needed, without any limitations.
Also add an 'invert' property to support inverting the input.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
At present pin configuration on link does not use the standard mechanism,
but some rather ugly custom code. As a first step to resolving this, add the
pin configuration to the device tree.
Four of the GPIOs must be available before relocation (for SDRAM pin
strapping).
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Each CPU needs to have its microcode loaded. Add support for this so that
all CPUs will have the same version.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Enable the microcode feature so that the microcode version is shown with the
'cpu detail' command.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
As each core starts up, record its microcode version and CPU ID so these can
be presented with the 'cpu detail' command.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
At present the MRC options are private to ivybridge. Other Intel CPUs also
use these settings. Move them to a common place.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
It is common with memory-mapped I/O to use the address of a structure member
to access memory, as in:
struct some_regs {
u32 ctrl;
u32 data;
}
struct some_regs *regs = (struct some_regs *)BASE_ADDRESS;
writel(1, ®->ctrl);
writel(2, ®->data);
This does not currently work with inl(), outl(), etc. Add a cast to permit
this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
The clrsetbits_...() macros are useful for working with memory mapped I/O.
But they do not work with I/O space, as used on x86 machines.
Add some macros to provide similar features for I/O.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
This function was removed in the previous clean-up. Drop it from the header
file also.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Some of the Intel ME code is common to several Intel CPUs. Move it into a
common location. Add a header file for report_platform.c also.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
[squashed in http://patchwork.ozlabs.org/patch/598372/]
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
This same name is used in USB. Add a prefix to distinguish it.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Some of the Intel CPU code is common to several Intel CPUs. Move it into a
common location along with required declarations.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Some of the LPC code is common to several Intel LPC devices. Move it into a
common location.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
This is similar to MCH in that it is used in various drivers. Add it to
the common header.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
There are several blocks of registers that are accessed from all over the
code on Intel CPUs. These don't currently have their own driver and it is
not clear whether having a driver makes sense.
An example is the Memory Controller Hub (MCH). We map it to a known location
on some Intel chips (mostly those without FSP - Firmware Support Package).
Add a new header file for these registers, and move MCH into it.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
This code is used on several Intel CPUs. Move it into a common location.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
This cache-as-RAM (CAR) code is common to several Intel chips. Create a new
intel_common directory and move it in there.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
These two identifiers can be useful for drivers which need to adjust their
behaviour depending on the CPU family or stepping (revision).
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
At present on x86 machines with use cache-as-RAM, the memory goes away just
before board_init_r() is called. This means that serial drivers are
no-longer unavailable, until initr_dm() it called, etc.
Any attempt to use printf() within this period will cause a hang.
To fix this, mark the serial devices as 'unavailable' when it is no-longer
available. Bring it back when serial_initialize() is called. This means that
the debug UART will be used instead for this period.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Add one more step into the init sequence. This fixes the keyboard on samus,
which otherwise does not work.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
If the device cannot be probed, syscon_get_by_driver_data() will still
return a useful value in its devp parameter. Ensure that it returns NULL
instead.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Commit 1057e6c broke use of the timer with driver model. If the timer is used
before relocation, then it becomes broken after relocation. This prevents
some x86 boards from booting. Fix it.
Fixes: 1057e6c (timer: Set up the real timer after driver model is available)
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
The Intel SIPI (start-up inter-processor interrupt) vector is the entry
point for each secondary CPU (also called an AP - applications processor).
The assembler and C code are linked, so add comments to indicate this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
The timeout step is always 50us. By updating apic_wait_timeout() to print
the debug messages we can simplify the code. Also tidy up a few messages and
comments while we are here.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
It is useful to automate the process of converting code from coreboot a
little. Add a sed script which performs some common transformations.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Bin Meng <bmeng.cn@gmail.com>
The Intel GPIO driver can set up the GPIO pin mapping when the first GPIO
is probed. However, it assumes that the first GPIO to be probed is in the
first GPIO bank. If this is not the case then the init will write to the
wrong registers.
Fix this. Also add a note that this code is deprecated. We should move to
using device tree instead.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
At present the board ID GPIOs are hard-coded. Move them to the device tree
so that we can use general SDRAM init code.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
The SDRAM SPD (Serial Presence Detect) information should be contained
with the SDRAM controller. This makes it easier for the controller to access
it and removes the need for a separate compatible string.
As a first step, move the information.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
In order to use GPIO phandles we need to add some GPIO properties as
specified by the GPIO bindings. Add these for link.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Many of the model-specific indexes are common to several Intel CPUs. Add
some more common ones, and remove them from the ivybridge-specific header
file.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
This does not need to be modified at run-time, so make it const.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Output the pointer returned by each call to malloc(). This can be useful
when debugging memory problems.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Two comments are missing a parameter and there is an extra blank line. Also
two of the region access macros are misnamed. Correct these problems.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
It is common to read a config register value, clear and set some bits, then
write back the updated value. Add functions to do this in one step, for
convenience.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Some functions do not change the struct gpio_desc parameter. Update these to
use const so this is clear.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
We can use GPIOs as binary digits for reading 'strapping' values. Each GPIO
is assigned a single bit and can be set high or low on the circuit board. We
already have a legacy function for reading these values. Add one that
supports driver model.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Some CPUs use microcode and each core can have a different version of
microcode loaded. Also some CPUs support the concept of an integer ID used
for identification purposes. Add support for these in the CPU uclass.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
At present simple-panel requires regulator support and will not build
without it. But some panels do not have a power supply, or at least not one
that can be controlled. Update the implementation to cope with this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Anatolij Gustschin <agust@denx.de>
Boting SeaBIOS is done via U-Boot's bootelf command. Document this.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
SeaBIOS is an open source implementation of a 16-bit x86 BIOS.
It can run in an emulator or natively on x86 hardware with the
use of coreboot. With SeaBIOS's help, we can boot some OSes
that require 16-bit BIOS services like Windows/DOS.
As U-Boot, we have to manually create a table where SeaBIOS gets
system information (eg: E820) from. The table unfortunately has
to follow the coreboot table format as SeaBIOS currently supports
booting as a coreboot payload.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
To prepare generating coreboot table from U-Boot, implement functions
to handle the writing.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
For those secondary bootloaders like SeaBIOS who want to live in
the F segment, which conflicts the configuration table address,
now we allow write_tables() to write the configuration tables in
high area (malloc'ed memory).
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Given all table write routines have the same signature, we can
simplify the codes by using a function table.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>