For dual/quad die package devices from Spansion/Cypress, the device's
status needs to be checked by reading status registers in all dies, by
using Read Any Register command. To support this, a Flash specific hook
that can overwrite the legacy status check is needed.
Signed-off-by: Takahiro Kuwano <Takahiro.Kuwano@infineon.com>
Reviewed-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Some of Spansion/Cypress chips support volatile version of configuration
registers and it is recommended to update volatile registers in the field
application due to a risk of the non-volatile registers corruption by
power interrupt. This patch adds a function to set Quad Enable bit in CFR1
volatile.
Signed-off-by: Takahiro Kuwano <Takahiro.Kuwano@infineon.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Some of Spansion/Cypress chips support Read/Write Any Register commands.
These commands are mainly used to write volatile registers and access to
the registers in second and subsequent die for multi-die package parts.
The Read Any Register instruction (65h) is followed by register address
and dummy cycles, then the selected register byte is returned.
The Write Any Register instruction (71h) is followed by register address
and register byte to write.
Signed-off-by: Takahiro Kuwano <Takahiro.Kuwano@infineon.com>
Reviewed-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Since this flash doesn't have a Profile 1.0 table, the Octal DTR
capabilities are enabled in the post SFDP fixup, along with the 8D-8D-8D
fast read settings.
Enable Octal DTR mode with 20 dummy cycles to allow running at the
maximum supported frequency of 200Mhz.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
The Cypress Semper flash is an xSPI compliant octal DTR flash. Add
support for using it in octal DTR mode.
The flash by default boots in a hybrid sector mode. Switch to uniform
sector mode on boot. Use the default 20 dummy cycles for a read fast
command.
The SFDP programming on some older versions of the flash was incorrect.
Fixes for that are included in the fixup hooks.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Some of Spansion/Cypress chips have overlaid 4KB sectors at top and/or
bottom, depending on the device configuration, while U-Boot supports
uniform sector layout only.
The spansion_erase_non_uniform() erases overlaid 4KB sectors,
non-overlaid portion of normal sector, and remaining normal sectors, by
selecting correct erase command and size based on the address to erase
and size of overlaid portion in parameters. Since different Spansion
flashes can use different opcode for erasing the 4K sectors, the opcode
must be passed in as a parameter based on the flash being used.
Signed-off-by: Takahiro Kuwano <Takahiro.Kuwano@infineon.com>
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
[p.yadav@ti.com: Refactor the function to be compatible with nor->erase,
make 4K opcode customizable, call spi_nor_setup_op() before executing
the op.]
Acked-by: Jagan Teki <jagan@amarulasolutions.com>
On devices with non-uniform sector sizes like Spansion S25 or S28 family
of flashes the sector under erase does not necessarily have to be
mtd->erasesize bytes long. For example, on S28 flashes the first 128 KiB
region is composed of 32 4 KiB sectors, then a 128 KiB sector, and then
256 KiB sectors till the end.
Let the flash-specific erase functions erase less than the requested
length in case of the 4 or 128 KiB sectors and report the number of
bytes erased back to the calling function.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
When the flash is handed to us in a stateful mode like 8D-8D-8D, it is
difficult to detect the mode the flash is in. One option is to read SFDP
in all modes and see which one gives the correct "SFDP" signature, but
not all flashes support SFDP in 8D-8D-8D mode.
Further, even if you detect the mode of the flash via SFDP, you still
have the problem of actually reading the ID. The Read ID command is not
standardized across flash vendors. Flashes can have different dummy
cycles needed for reading the ID. Some flashes even expect a 4-byte
dummy address with the Read ID command. All this information cannot be
obtained from the SFDP table.
So, perform a Software Reset sequence before reading the ID and
initializing the flash. A Soft Reset will bring back the flash in its
default protocol mode assuming no non-volatile configuration was set.
This will let us detect the flash even if ROM hands it to us in Octal
DTR mode.
To accommodate cases where there is more than one flash on a board, and
only one of them needs a soft reset, failure to reset is not made fatal,
and we still try to read ID if possible.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
On probe, the SPI NOR core will put a flash in 8D-8D-8D mode if it
supports it. But Linux as of now expects to get the flash in 1S-1S-1S
mode. Handing the flash to Linux in Octal DTR mode means the kernel will
fail to detect the flash.
So, we need to reset to Power-on-Reset (POR) state before handing off
the flash. A Software Reset command can be used to do this.
One limitation of the soft reset is that it will restore state from
non-volatile registers in some flashes. This means that if the flash was
set to 8D mode in a non-volatile configuration, a soft reset won't help.
This commit assumes that we don't set any non-volatile bits anywhere,
and the flash doesn't have any non-volatile Octal DTR mode
configuration.
Since spi-nor-tiny doesn't (and likely shouldn't) have
spi_nor_soft_reset(), add a dummy spi_nor_remove() for it that does
nothing.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
A Soft Reset sequence will return the flash to Power-on-Reset (POR)
state. It consists of two commands: Soft Reset Enable and Soft Reset.
Find out if the sequence is supported from BFPT DWORD 16.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
The Micron MT35XU512ABA flash does not support the quad enable bit. But
instead of programming the Quad Enable Require field to 000b ("Device
does not have a QE bit"), it is programmed to 111b ("Reserved").
While this is technically incorrect, it is not reason enough to abort
BFPT parsing. Instead, continue BFPT parsing assuming there is no quad
enable bit present.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Allow flashes to specify a hook to enable octal DTR mode. Use this hook
whenever possible to get optimal transfer speeds.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
The xSPI Profile 1.0 table specifies how many dummy cycles and address
bytes are needed for the Read Status Register command in Octal DTR mode.
Use that information to send the correct Read SR command.
Some controllers might have trouble reading just 1 byte in DTR mode. So,
when we are in DTR mode read 2 bytes and discard the second. This shows
no side effects with the two flashes I tested: Micron mt35xu512aba and
Cypress s28hs512t.
Update Read FSR to mimic Read SR because they share the same
characteristics.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
This table is indication that the flash is xSPI compliant and hence
supports octal DTR mode. Extract information like the fast read opcode,
the number of dummy cycles needed for a Read Status Register command,
and the number of address bytes needed for a Read Status Register
command.
The default dummy cycles for a fast octal DTR read are set to 20. Since
there is no simple way of determining the dummy cycles needed for the
fast read command, flashes that use a different value should update it
in their flash-specific hooks.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Acked-by: Jagan Teki <jagan@amarulasolutions.com>
Some devices in DTR mode expect an extra command byte called the
extension. The extension can either be same as the opcode, bitwise
inverse of the opcode, or another additional byte forming a 16-byte
opcode. Get the extension type from the BFPT. For now, only flashes with
"repeat" and "inverse" extensions are supported.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
JESD216 rev D makes BFPT 20 DWORDs. Update the BFPT size define to
reflect that.
The check for rev A or later compared the BFPT header length with the
maximum BFPT length, BFPT_DWORD_MAX. Since BFPT_DWORD_MAX was 16, and so
was the BFPT length for both rev A and B, this check worked fine. But
now, since BFPT_DWORD_MAX is 20, it means this check will also stop BFPT
parsing for rev A or B, since their length is 16.
So, instead check for BFPT_DWORD_MAX_JESD216 to stop BFPT parsing for
the first JESD216 version, and check for BFPT_DWORD_MAX_JESD216B for the
next two versions.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Double Transfer Rate (DTR) is SPI protocol in which data is transferred
on each clock edge as opposed to on each clock cycle. Make
framework-level changes to allow supporting flashes in DTR mode.
Right now, mixed DTR modes are not supported. So, for example a mode
like 4S-4D-4D will not work. All phases need to be either DTR or STR.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Even when spi_nor_write_reg() has no data to write, like when executing
a write enable operation, it sets the data direction to
SPI_MEM_DATA_OUT. This trips up spi_mem_check_buswidth() because it
expects a data phase when there is none. Make sure the data direction is
set to SPI_MEM_NO_DATA when there is no data to write.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
The spi-mem layer provides a spi_mem_supports_op() function to check
whether a specific operation is supported by the controller or not.
This is much more accurate than the hwcaps selection logic based on
SPI_{RX,TX}_ flags.
Rework the hwcaps selection logic to use spi_mem_supports_op().
To make sure the build doesn't break for boards not using CONFIG_DM_SPI,
add a simple SPI_{RX,TX}_ based hwcaps selection logic in spi-mem-nodm
similar to spi_mem_default_supports_op(). This change is only
compile-tested.
To avoid SPL size problems on the x530 board, the old hwcaps selection
is still kept around. Leaving the code in-place was getting difficult to
read and understand, so the code is restructured to have it all in one
isolated function. As a result of this, the parameter hwcaps to
spi_nor_setup() is no longer needed. Remove it.
Based on the Linux commit c76f5089796a (mtd: spi-nor: Rework hwcaps
selection for the spi-mem case, 2019-08-06)
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Sometimes the information in a flash's SFDP tables is wrong. Sometimes
some information just can't be expressed in the SFDP table. So,
introduce the fixup hooks to allow tailoring settings for a specific
flash.
Three hooks are added: default_init, post_sfdp, and post_bfpt. These
allow tweaking the flash settings at different point in the probe
sequence. Since the hooks reside in nor->info, set that value just
before the call to spi_nor_init_params().
The hooks and at what points they are executed mimics Linux's spi-nor
framework. One major difference is that Linux puts the struct
spi_nor_fixups in nor->info. This is not possible in U-Boot because the
spi-nor-ids list is shared between spi-nor-core.c and spi-nor-tiny.c.
Since spi-nor-tiny shouldn't have those fixup hooks populated, add a
separate function that lets flashes populate their fixup hooks.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
These structures will be used in a later commit inside another structure
definition. Also take the declarations out of the ifdef since they won't
affect the final binary anyway and will be used in a later commit.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
nor->setup() can be used by flashes to configure settings in case they
have any peculiarities that can't be easily expressed by the generic
spi-nor framework. This includes things like different opcodes, dummy
cycles, page size, uniform/non-uniform sector sizes, etc.
Move related declarations to avoid forward declarations.
Inspired by the Linux kernel's setup() hook.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Acked-by: Jagan Teki <jagan@amarulasolutions.com>
If a flash chip has more than 16MB capacity but its BFPT reports
BFPT_DWORD1_ADDRESS_BYTES_3_OR_4, the spi-nor framework defaults to 3.
The check in spi_nor_scan() doesn't catch it because addr_width did get
set. This fixes that check.
Ported from Kernel commit 324f78dfb442b82365548b657ec4e6974c677502.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Fill in mtd->dev member with nor->dev.
This can be used by MTD OF partition parser.
Signed-off-by: Marek Behún <marek.behun@nic.cz>
Reviewed-by: Pali Rohár <pali@kernel.org>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Patrice Chotard <patrice.chotard@foss.st.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Cc: Priyanka Jain <priyanka.jain@nxp.com>
Cc: Simon Glass <sjg@chromium.org>
Cc: Heiko Schocher <hs@denx.de>
Cc: Patrick Delaunay <patrick.delaunay@st.com>
This feature was dropped from U-Boot some time ago:
f12f96cfaf (sf: Drop spl_flash_get_sw_write_prot")
However, we do need a way to see if a flash device is write-protected,
since if it is, it may not be possible to write to do (i.e. failing to
write is expected).
I am not sure of the correct layer to implement this, so this patch is a
stab at it. If spi-flash makes sense then I will add to the 'sf' also.
Re the points mentioned in the removal commit:
1) This kind of requirement can be achieved using existing
flash operations and flash locking API calls instead of
making a separate flash API.
Which uclass is this?
2) Technically there is no real hardware user for this API to
use in the source tree.
I do want coral (at least) to support this.
3) Having a flash operations API for simple register read bits
also make difficult to extend the flash operations.
This new patch only mentions write-protect being on or off, rather than
the actual mechanism.
4) Instead of touching generic code, it is possible to have
this functionality inside spinor operations in the form of
flash hooks or fixups for associated flash chips.
That sounds to me like what drivers are for. But we still need some sort
of API for it to be accessible.
Signed-off-by: Simon Glass <sjg@chromium.org>
In case of big area write/erase on spi nor, watchdog timeout may occurs.
Issue reproduced on stm32mp157c-ev1 with following commands:
sf write 0xC0000000 0 0x3000000
or
sf erase 0 0x1000000
Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
Provide an explicit configuration option to disable default "unlock all"
of any flash chip which supports locking. It doesn't make sense to
automatically unprotect the entire flash on each u-boot startup if the
block protection bits are actually used.
Traditionally, the unlock was there to be able to write to flash devices
which powered-up with the block protection bits set. Over time this
feature creeped into all flash devices which support locking.
For a more detailed description and discussion see:
https://lore.kernel.org/linux-mtd/20201203162959.29589-8-michael@walle.cc/
Keep things simple in u-boot and just provide a configration option to
disable this behavior which can be set per board.
Signed-off-by: Michael Walle <michael@walle.cc>
Reviewed-by: Priyanka Jain <priyanka.jain@nxp.com>
This header is needed so struct udevice can be used in dev_xxx().
Signed-off-by: Sean Anderson <seanga2@gmail.com>
Tested-by: Patrick Delaunay <patrick.delaunay@st.com>
The -ENODEV error value in spi_nor_read_id() is incorrect since there
clearly is a device - it just cannot be supported. Use -ENOMEDIUM instead
which has the virtue of being less common.
Fix the return value in spi_nor_scan().
Also there are a few printf() statements which should be debug() since
they bloat the code with unused strings at present. Fix those while here.
Signed-off-by: Simon Glass <sjg@chromium.org>
Enable QE bit for ISSI flash chips.
QE enablement logic is similar to what Macronix
has, so reuse the existing code itself.
Signed-off-by: Pragnesh Patel <pragnesh.patel@sifive.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Currently spi-nor code is assigning _write ops for SST
and other flashes separately.
Just call the sst_write from generic write ops and return
if SST flash found, this way it avoids the confusion of
multiple write ops assignment during the scan and makes
it more feasible for code readability.
No functionality changes.
Cc: Simon Glass <sjg@chromium.org>
Cc: Vignesh R <vigneshr@ti.com>
Signed-off-by: Jagan Teki <jagan@amarulasolutions.com>
The get_sw_write_prot API is used to get the write-protected
bits of flash by reading the status register and other wards
it's API for reading register bits.
1) This kind of requirement can be achieved using existing
flash operations and flash locking API calls instead of
making a separate flash API.
2) Technically there is no real hardware user for this API to
use in the source tree.
3) Having a flash operations API for simple register read bits
also make difficult to extend the flash operations.
4) Instead of touching generic code, it is possible to have
this functionality inside spinor operations in the form of
flash hooks or fixups for associated flash chips.
Considering all these points, this patch drops the get_sw_write_prot
and associated code bases.
Cc: Simon Glass <sjg@chromium.org>
Cc: Vignesh R <vigneshr@ti.com>
Signed-off-by: Jagan Teki <jagan@amarulasolutions.com>
Probably the non-use of the device parameter by the print routines did
not generate compilation errors.
Signed-off-by: Dario Binacchi <dariobin@libero.it>
Enable QE bit for ISSI flash chips.
QE enablement logic is similar to what Macronix
has, so reuse the existing code itself.
Cc: Sagar Shrikant Kadam <sagar.kadam@sifive.com>
Signed-off-by: Jagan Teki <jagan@amarulasolutions.com>
hweight32 is a somewhat expensive way to check for power-of-2. Use the
is_power_of_2 helper, which does the standard and cheap idiom
foo&(foo-1)==0.
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-96 (-96)
Function old new delta
spi_nor_write 388 292 -96
Signed-off-by: Rasmus Villemoes <rasmus.villemoes@prevas.dk>
Acked-by: Vignesh Raghavendra <vigneshr@ti.com>
Acked-by: Jagan Teki <jagan@amarulasolutions.com>
At present dm/device.h includes the linux-compatible features. This
requires including linux/compat.h which in turn includes a lot of headers.
One of these is malloc.h which we thus end up including in every file in
U-Boot. Apart from the inefficiency of this, it is problematic for sandbox
which needs to use the system malloc() in some files.
Move the compatibility features into a separate header file.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present devres.h is included in all files that include dm.h but few
make use of it. Also this pulls in linux/compat which adds several more
headers. Drop the automatic inclusion and require files to include devres
themselves. This provides a good indication of which files use devres.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Anatolij Gustschin <agust@denx.de>
Add support for Octal flash devices. Octal flash devices use 8 IO lines
for data transfer. Currently only 1-1-8 Octal Read mode is supported.
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJeFDfVAAoJEB6zHgIOrC/IKfsH/2cUfXuc9IgA7L90L3g7htlS
zLAQSC8Xk0WbgbmBJh/lq6zFWj2Mu2yfkZqRzwN8bHkmOPq40F+pEAszVtjH77HM
FpSjMSDVWfNXuhmoiS571dehA0TGi1b2kknrAXqpOwVuMRncMCwaPi8yZYZSGlSV
VzMtguQxD0sZg4oMZVde3tCd41smPTPNDjzLZnXdLa0b09+EtW6enGuk3vzXlS/8
QUT68wUzkeoptJhf3pQ3BXNvkFwdNdYJ74uevDmkAYtvxyl10WNykcwYmH50Q9qq
9plF11EizmTHlj16rWpZLx66RP0s4pziKaeGMr6S8uln33Cr9N496wPqtuDBnvA=
=FYPj
-----END PGP SIGNATURE-----
Merge tag 'u-boot-atmel-2020.04-a' of https://gitlab.denx.de/u-boot/custodians/u-boot-atmel
First set of u-boot-atmel features for 2020.04 cycle
This feature set is a patch series from Tudor Ambarus which includes
parsing of the spi flash SFDP parser for SST flashes, and using those
tables to retrieve unique saved per device MAC address. This is then
used as base mac address on the SAMA5D2 Wireless SOM EK board.
Static checker warns 'ret' variable may be used uninitialized in
spi_nor_erase() and spi_nor_write() in case of zero length requests.
Fix these warnings by checking for zero length requests and returning
early.
Reported-by: Dan Murphy <dmurphy@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
JESD216 allow vendors to define their own SFDP tables.
Add SST SFDP parser. The vendor table is allocated using resource-managed
kmalloc - the table will be freed on driver detach. It will be accessible
by getting the UCLASS_SPI_FLASH's private data.
The SST's SFDP table is particularly of interest because contains
pre-programmed globally unique EUI-48 and EUI-64 identifiers.
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Reviewed-by: Vignesh Raghavendra <vigneshr@ti.com>
U-Boot uses CONFIG_SPI_FLASH_USE_4K_SECTORS to enable 4K small sector
support. Use that instead of MTD_SPI_NOR_USE_4K_SECTORS.
Reported-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Use dev_err() when reporting reason for erase/write failures so that
users can be made aware of the reason for failure.
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Commit c4e8862308 (mtd: spi: Switch to new SPI NOR framework)
performs switch from previous 'spi_flash' infrastructure without
proper testing/investigations which results in a regressions for
SST26 flash series.
Add missing SST26* flash IC protection ops which were introduced
previously by
Commit 3d4fed87a5 (mtd: sf: Add support of sst26wf* flash ICs
protection ops)
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
Some SPI controllers can't write nor->page_size bytes in a single step
because their TX FIFO is too small, but when that happens we should
make sure a WRITE_EN command before each write access and READ_SR command
after each write access is issued.
We should allow nor->write() to return a size that is smaller than the
requested write size to gracefully handle this case.
Also, the spi_nor_write_data() should return the actual number of bytes
that were written during the spi_mem_exec_op() operation.
This patch is a combination of two commits backported from kernel:
commit 630d6bd8a3b4 ("mtd: spi-nor: Support controllers with limit ...")
commit 3baa8ec88c2f ("mtd: devices: m25p80: Make sure WRITE_EN is ...")
Cc: Vignesh R <vigneshr@ti.com>
Signed-off-by: Weijie Gao <weijie.gao@mediatek.com>
Acked-by: Vignesh R <vigneshr@ti.com>
Tested-by: Shyam Saini <shyam.saini@amarulasolutions.com> # microzed
Acked-by: Jagan Teki <jagan@amarulasolutions.com>
Replace the ad-hoc erase operation implementation with a simple spi_mem_op
implementation of the same functionality. This is a minor optimization and
removal of the ad-hoc code.
This however also changes the behavior of the execution of the erase
opcode from two separate transfer requests to the SPI NOR driver to
one transfer request to the SPI NOR driver. The former was how U-Boot
behaved before the SPI NOR framework was imported and the later was
introduced by the SPI NOR framework. The former is more optimal, so
keep that.
Signed-off-by: Marek Vasut <marek.vasut+renesas@gmail.com>
Cc: Horatiu Vultur <horatiu.vultur@microchip.com>
Cc: Jagan Teki <jagan@openedev.com>
Cc: Simon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
Cc: Stefan Roese <sr@denx.de>
Cc: Vignesh R <vigneshr@ti.com>
Tested-by: Ashish Kumar <Ashish.kumar@nxp.com>
Add a tiny SPI flash stack that just supports reading data/images from
SPI flash. This is useful for boards that have SPL size constraints and
would need to use SPI flash framework just to read images/data from
flash. There is approximately 1.5 to 2KB savings with this.
Based on prior work of reducing spi flash id table by
Simon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
Signed-off-by: Vignesh R <vigneshr@ti.com>
Tested-by: Simon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
Tested-by: Stefan Roese <sr@denx.de>
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Jagan Teki <jagan@openedev.com>
Tested-by: Jagan Teki <jagan@amarulasolutions.com> #zynq-microzed
Switch spi_flash_* interfaces to call into new SPI NOR framework via MTD
layer. Fix up sf_dataflash to work in legacy way. And update sandbox to
use new interfaces/definitions
Signed-off-by: Vignesh R <vigneshr@ti.com>
Tested-by: Simon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
Tested-by: Stefan Roese <sr@denx.de>
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Jagan Teki <jagan@openedev.com>
Tested-by: Jagan Teki <jagan@amarulasolutions.com> #zynq-microzed