u-boot/drivers/mtd/spi/spi-nor-core.c
Pratyush Yadav ea9a22f7e7 mtd: spi-nor-core: Add support for Cypress Semper flash
The Cypress Semper flash is an xSPI compliant octal DTR flash. Add
support for using it in octal DTR mode.

The flash by default boots in a hybrid sector mode. Switch to uniform
sector mode on boot. Use the default 20 dummy cycles for a read fast
command.

The SFDP programming on some older versions of the flash was incorrect.
Fixes for that are included in the fixup hooks.

Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
2021-06-28 12:06:43 +05:30

3489 lines
93 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*
* Synced from Linux v4.19
*/
#include <common.h>
#include <log.h>
#include <watchdog.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/log2.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/spi-nor.h>
#include <spi-mem.h>
#include <spi.h>
#include "sf_internal.h"
/* Define max times to check status register before we give up. */
/*
* For everything but full-chip erase; probably could be much smaller, but kept
* around for safety for now
*/
#define HZ CONFIG_SYS_HZ
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
#define ROUND_UP_TO(x, y) (((x) + (y) - 1) / (y) * (y))
struct sfdp_parameter_header {
u8 id_lsb;
u8 minor;
u8 major;
u8 length; /* in double words */
u8 parameter_table_pointer[3]; /* byte address */
u8 id_msb;
};
#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
(((p)->parameter_table_pointer[2] << 16) | \
((p)->parameter_table_pointer[1] << 8) | \
((p)->parameter_table_pointer[0] << 0))
#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
#define SFDP_SST_ID 0x01bf /* Manufacturer specific Table */
#define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 Table */
#define SFDP_SIGNATURE 0x50444653U
#define SFDP_JESD216_MAJOR 1
#define SFDP_JESD216_MINOR 0
#define SFDP_JESD216A_MINOR 5
#define SFDP_JESD216B_MINOR 6
struct sfdp_header {
u32 signature; /* Ox50444653U <=> "SFDP" */
u8 minor;
u8 major;
u8 nph; /* 0-base number of parameter headers */
u8 unused;
/* Basic Flash Parameter Table. */
struct sfdp_parameter_header bfpt_header;
};
/* Basic Flash Parameter Table */
/*
* JESD216 rev D defines a Basic Flash Parameter Table of 20 DWORDs.
* They are indexed from 1 but C arrays are indexed from 0.
*/
#define BFPT_DWORD(i) ((i) - 1)
#define BFPT_DWORD_MAX 20
/* The first version of JESB216 defined only 9 DWORDs. */
#define BFPT_DWORD_MAX_JESD216 9
#define BFPT_DWORD_MAX_JESD216B 16
/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17)
#define BFPT_DWORD1_DTR BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT 4
#define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
/* 15th DWORD. */
/*
* (from JESD216 rev B)
* Quad Enable Requirements (QER):
* - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
* reads based on instruction. DQ3/HOLD# functions are hold during
* instruction phase.
* - 001b: QE is bit 1 of status register 2. It is set via Write Status with
* two data bytes where bit 1 of the second byte is one.
* [...]
* Writing only one byte to the status register has the side-effect of
* clearing status register 2, including the QE bit. The 100b code is
* used if writing one byte to the status register does not modify
* status register 2.
* - 010b: QE is bit 6 of status register 1. It is set via Write Status with
* one data byte where bit 6 is one.
* [...]
* - 011b: QE is bit 7 of status register 2. It is set via Write status
* register 2 instruction 3Eh with one data byte where bit 7 is one.
* [...]
* The status register 2 is read using instruction 3Fh.
* - 100b: QE is bit 1 of status register 2. It is set via Write Status with
* two data bytes where bit 1 of the second byte is one.
* [...]
* In contrast to the 001b code, writing one byte to the status
* register does not modify status register 2.
* - 101b: QE is bit 1 of status register 2. Status register 1 is read using
* Read Status instruction 05h. Status register2 is read using
* instruction 35h. QE is set via Writ Status instruction 01h with
* two data bytes where bit 1 of the second byte is one.
* [...]
*/
#define BFPT_DWORD15_QER_MASK GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
#define BFPT_DWORD16_SOFT_RST BIT(12)
#define BFPT_DWORD18_CMD_EXT_MASK GENMASK(30, 29)
#define BFPT_DWORD18_CMD_EXT_REP (0x0UL << 29) /* Repeat */
#define BFPT_DWORD18_CMD_EXT_INV (0x1UL << 29) /* Invert */
#define BFPT_DWORD18_CMD_EXT_RES (0x2UL << 29) /* Reserved */
#define BFPT_DWORD18_CMD_EXT_16B (0x3UL << 29) /* 16-bit opcode */
/* xSPI Profile 1.0 table (from JESD216D.01). */
#define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8)
#define PROFILE1_DWORD1_RDSR_DUMMY BIT(28)
#define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29)
#define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7)
#define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27)
#define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17)
#define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7)
#define PROFILE1_DUMMY_DEFAULT 20
struct sfdp_bfpt {
u32 dwords[BFPT_DWORD_MAX];
};
/**
* struct spi_nor_fixups - SPI NOR fixup hooks
* @default_init: called after default flash parameters init. Used to tweak
* flash parameters when information provided by the flash_info
* table is incomplete or wrong.
* @post_bfpt: called after the BFPT table has been parsed
* @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs
* that do not support RDSFDP). Typically used to tweak various
* parameters that could not be extracted by other means (i.e.
* when information provided by the SFDP/flash_info tables are
* incomplete or wrong).
*
* Those hooks can be used to tweak the SPI NOR configuration when the SFDP
* table is broken or not available.
*/
struct spi_nor_fixups {
void (*default_init)(struct spi_nor *nor);
int (*post_bfpt)(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params);
void (*post_sfdp)(struct spi_nor *nor,
struct spi_nor_flash_parameter *params);
};
#define SPI_NOR_SRST_SLEEP_LEN 200
/**
* spi_nor_get_cmd_ext() - Get the command opcode extension based on the
* extension type.
* @nor: pointer to a 'struct spi_nor'
* @op: pointer to the 'struct spi_mem_op' whose properties
* need to be initialized.
*
* Right now, only "repeat" and "invert" are supported.
*
* Return: The opcode extension.
*/
static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
const struct spi_mem_op *op)
{
switch (nor->cmd_ext_type) {
case SPI_NOR_EXT_INVERT:
return ~op->cmd.opcode;
case SPI_NOR_EXT_REPEAT:
return op->cmd.opcode;
default:
dev_dbg(nor->dev, "Unknown command extension type\n");
return 0;
}
}
/**
* spi_nor_setup_op() - Set up common properties of a spi-mem op.
* @nor: pointer to a 'struct spi_nor'
* @op: pointer to the 'struct spi_mem_op' whose properties
* need to be initialized.
* @proto: the protocol from which the properties need to be set.
*/
static void spi_nor_setup_op(const struct spi_nor *nor,
struct spi_mem_op *op,
const enum spi_nor_protocol proto)
{
u8 ext;
op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
if (op->addr.nbytes)
op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
if (op->dummy.nbytes)
op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
if (op->data.nbytes)
op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
if (spi_nor_protocol_is_dtr(proto)) {
/*
* spi-mem supports mixed DTR modes, but right now we can only
* have all phases either DTR or STR. IOW, spi-mem can have
* something like 4S-4D-4D, but spi-nor can't. So, set all 4
* phases to either DTR or STR.
*/
op->cmd.dtr = op->addr.dtr = op->dummy.dtr =
op->data.dtr = true;
/* 2 bytes per clock cycle in DTR mode. */
op->dummy.nbytes *= 2;
ext = spi_nor_get_cmd_ext(nor, op);
op->cmd.opcode = (op->cmd.opcode << 8) | ext;
op->cmd.nbytes = 2;
}
}
static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
*op, void *buf)
{
if (op->data.dir == SPI_MEM_DATA_IN)
op->data.buf.in = buf;
else
op->data.buf.out = buf;
return spi_mem_exec_op(nor->spi, op);
}
static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 0),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(len, NULL, 0));
int ret;
spi_nor_setup_op(nor, &op, nor->reg_proto);
ret = spi_nor_read_write_reg(nor, &op, val);
if (ret < 0)
dev_dbg(nor->dev, "error %d reading %x\n", ret, code);
return ret;
}
static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, NULL, 0));
spi_nor_setup_op(nor, &op, nor->reg_proto);
if (len == 0)
op.data.dir = SPI_MEM_NO_DATA;
return spi_nor_read_write_reg(nor, &op, buf);
}
static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
u_char *buf)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
SPI_MEM_OP_DATA_IN(len, buf, 0));
size_t remaining = len;
int ret;
spi_nor_setup_op(nor, &op, nor->read_proto);
/* convert the dummy cycles to the number of bytes */
op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
if (spi_nor_protocol_is_dtr(nor->read_proto))
op.dummy.nbytes *= 2;
while (remaining) {
op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
ret = spi_mem_adjust_op_size(nor->spi, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
op.addr.val += op.data.nbytes;
remaining -= op.data.nbytes;
op.data.buf.in += op.data.nbytes;
}
return len;
}
static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
const u_char *buf)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, buf, 0));
int ret;
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
op.addr.nbytes = 0;
spi_nor_setup_op(nor, &op, nor->write_proto);
ret = spi_mem_adjust_op_size(nor->spi, &op);
if (ret)
return ret;
op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
return op.data.nbytes;
}
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct spi_nor *nor)
{
struct spi_mem_op op;
int ret;
u8 val[2];
u8 addr_nbytes, dummy;
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
addr_nbytes = nor->rdsr_addr_nbytes;
dummy = nor->rdsr_dummy;
} else {
addr_nbytes = 0;
dummy = 0;
}
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
SPI_MEM_OP_ADDR(addr_nbytes, 0, 0),
SPI_MEM_OP_DUMMY(dummy, 0),
SPI_MEM_OP_DATA_IN(1, NULL, 0));
spi_nor_setup_op(nor, &op, nor->reg_proto);
/*
* We don't want to read only one byte in DTR mode. So, read 2 and then
* discard the second byte.
*/
if (spi_nor_protocol_is_dtr(nor->reg_proto))
op.data.nbytes = 2;
ret = spi_nor_read_write_reg(nor, &op, val);
if (ret < 0) {
pr_debug("error %d reading SR\n", (int)ret);
return ret;
}
return *val;
}
/*
* Read the flag status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_fsr(struct spi_nor *nor)
{
struct spi_mem_op op;
int ret;
u8 val[2];
u8 addr_nbytes, dummy;
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
addr_nbytes = nor->rdsr_addr_nbytes;
dummy = nor->rdsr_dummy;
} else {
addr_nbytes = 0;
dummy = 0;
}
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
SPI_MEM_OP_ADDR(addr_nbytes, 0, 0),
SPI_MEM_OP_DUMMY(dummy, 0),
SPI_MEM_OP_DATA_IN(1, NULL, 0));
spi_nor_setup_op(nor, &op, nor->reg_proto);
/*
* We don't want to read only one byte in DTR mode. So, read 2 and then
* discard the second byte.
*/
if (spi_nor_protocol_is_dtr(nor->reg_proto))
op.data.nbytes = 2;
ret = spi_nor_read_write_reg(nor, &op, val);
if (ret < 0) {
pr_debug("error %d reading FSR\n", ret);
return ret;
}
return *val;
}
/*
* Read configuration register, returning its value in the
* location. Return the configuration register value.
* Returns negative if error occurred.
*/
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
static int read_cr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
if (ret < 0) {
dev_dbg(nor->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
#endif
/*
* Write status register 1 byte
* Returns negative if error occurred.
*/
static int write_sr(struct spi_nor *nor, u8 val)
{
nor->cmd_buf[0] = val;
return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
}
/*
* Set write enable latch with Write Enable command.
* Returns negative if error occurred.
*/
static int write_enable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
}
/*
* Send write disable instruction to the chip.
*/
static int write_disable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
}
static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
return mtd->priv;
}
#ifndef CONFIG_SPI_FLASH_BAR
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == opcode)
return table[i][1];
/* No conversion found, keep input op code. */
return opcode;
}
static u8 spi_nor_convert_3to4_read(u8 opcode)
{
static const u8 spi_nor_3to4_read[][2] = {
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
{ SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
{ SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
{ SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
ARRAY_SIZE(spi_nor_3to4_read));
}
static u8 spi_nor_convert_3to4_program(u8 opcode)
{
static const u8 spi_nor_3to4_program[][2] = {
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
{ SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
{ SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
ARRAY_SIZE(spi_nor_3to4_program));
}
static u8 spi_nor_convert_3to4_erase(u8 opcode)
{
static const u8 spi_nor_3to4_erase[][2] = {
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
ARRAY_SIZE(spi_nor_3to4_erase));
}
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
const struct flash_info *info)
{
/* Do some manufacturer fixups first */
switch (JEDEC_MFR(info)) {
case SNOR_MFR_SPANSION:
/* No small sector erase for 4-byte command set */
nor->erase_opcode = SPINOR_OP_SE;
nor->mtd.erasesize = info->sector_size;
break;
default:
break;
}
nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
}
#endif /* !CONFIG_SPI_FLASH_BAR */
/* Enable/disable 4-byte addressing mode. */
static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
int enable)
{
int status;
bool need_wren = false;
u8 cmd;
switch (JEDEC_MFR(info)) {
case SNOR_MFR_ST:
case SNOR_MFR_MICRON:
/* Some Micron need WREN command; all will accept it */
need_wren = true;
case SNOR_MFR_ISSI:
case SNOR_MFR_MACRONIX:
case SNOR_MFR_WINBOND:
if (need_wren)
write_enable(nor);
cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
status = nor->write_reg(nor, cmd, NULL, 0);
if (need_wren)
write_disable(nor);
if (!status && !enable &&
JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
/*
* On Winbond W25Q256FV, leaving 4byte mode causes
* the Extended Address Register to be set to 1, so all
* 3-byte-address reads come from the second 16M.
* We must clear the register to enable normal behavior.
*/
write_enable(nor);
nor->cmd_buf[0] = 0;
nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
write_disable(nor);
}
return status;
default:
/* Spansion style */
nor->cmd_buf[0] = enable << 7;
return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
}
}
static int spi_nor_sr_ready(struct spi_nor *nor)
{
int sr = read_sr(nor);
if (sr < 0)
return sr;
if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
if (sr & SR_E_ERR)
dev_dbg(nor->dev, "Erase Error occurred\n");
else
dev_dbg(nor->dev, "Programming Error occurred\n");
nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
return -EIO;
}
return !(sr & SR_WIP);
}
static int spi_nor_fsr_ready(struct spi_nor *nor)
{
int fsr = read_fsr(nor);
if (fsr < 0)
return fsr;
if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
if (fsr & FSR_E_ERR)
dev_err(nor->dev, "Erase operation failed.\n");
else
dev_err(nor->dev, "Program operation failed.\n");
if (fsr & FSR_PT_ERR)
dev_err(nor->dev,
"Attempted to modify a protected sector.\n");
nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
return -EIO;
}
return fsr & FSR_READY;
}
static int spi_nor_ready(struct spi_nor *nor)
{
int sr, fsr;
sr = spi_nor_sr_ready(nor);
if (sr < 0)
return sr;
fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
if (fsr < 0)
return fsr;
return sr && fsr;
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
unsigned long timeout)
{
unsigned long timebase;
int ret;
timebase = get_timer(0);
while (get_timer(timebase) < timeout) {
ret = spi_nor_ready(nor);
if (ret < 0)
return ret;
if (ret)
return 0;
}
dev_err(nor->dev, "flash operation timed out\n");
return -ETIMEDOUT;
}
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
return spi_nor_wait_till_ready_with_timeout(nor,
DEFAULT_READY_WAIT_JIFFIES);
}
#ifdef CONFIG_SPI_FLASH_BAR
/*
* This "clean_bar" is necessary in a situation when one was accessing
* spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
*
* After it the BA24 bit shall be cleared to allow access to correct
* memory region after SW reset (by calling "reset" command).
*
* Otherwise, the BA24 bit may be left set and then after reset, the
* ROM would read/write/erase SPL from 16 MiB * bank_sel address.
*/
static int clean_bar(struct spi_nor *nor)
{
u8 cmd, bank_sel = 0;
if (nor->bank_curr == 0)
return 0;
cmd = nor->bank_write_cmd;
nor->bank_curr = 0;
write_enable(nor);
return nor->write_reg(nor, cmd, &bank_sel, 1);
}
static int write_bar(struct spi_nor *nor, u32 offset)
{
u8 cmd, bank_sel;
int ret;
bank_sel = offset / SZ_16M;
if (bank_sel == nor->bank_curr)
goto bar_end;
cmd = nor->bank_write_cmd;
write_enable(nor);
ret = nor->write_reg(nor, cmd, &bank_sel, 1);
if (ret < 0) {
debug("SF: fail to write bank register\n");
return ret;
}
bar_end:
nor->bank_curr = bank_sel;
return nor->bank_curr;
}
static int read_bar(struct spi_nor *nor, const struct flash_info *info)
{
u8 curr_bank = 0;
int ret;
switch (JEDEC_MFR(info)) {
case SNOR_MFR_SPANSION:
nor->bank_read_cmd = SPINOR_OP_BRRD;
nor->bank_write_cmd = SPINOR_OP_BRWR;
break;
default:
nor->bank_read_cmd = SPINOR_OP_RDEAR;
nor->bank_write_cmd = SPINOR_OP_WREAR;
}
ret = nor->read_reg(nor, nor->bank_read_cmd,
&curr_bank, 1);
if (ret) {
debug("SF: fail to read bank addr register\n");
return ret;
}
nor->bank_curr = curr_bank;
return 0;
}
#endif
/*
* Initiate the erasure of a single sector. Returns the number of bytes erased
* on success, a negative error code on error.
*/
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
int ret;
spi_nor_setup_op(nor, &op, nor->write_proto);
if (nor->erase)
return nor->erase(nor, addr);
/*
* Default implementation, if driver doesn't have a specialized HW
* control
*/
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
return nor->mtd.erasesize;
}
/*
* Erase an address range on the nor chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 addr, len, rem;
int ret;
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
if (!instr->len)
return 0;
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem)
return -EINVAL;
addr = instr->addr;
len = instr->len;
while (len) {
WATCHDOG_RESET();
#ifdef CONFIG_SPI_FLASH_BAR
ret = write_bar(nor, addr);
if (ret < 0)
return ret;
#endif
write_enable(nor);
ret = spi_nor_erase_sector(nor, addr);
if (ret < 0)
goto erase_err;
addr += ret;
len -= ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto erase_err;
}
erase_err:
#ifdef CONFIG_SPI_FLASH_BAR
ret = clean_bar(nor);
#endif
write_disable(nor);
return ret;
}
#ifdef CONFIG_SPI_FLASH_S28HS512T
/**
* spansion_erase_non_uniform() - erase non-uniform sectors for Spansion/Cypress
* chips
* @nor: pointer to a 'struct spi_nor'
* @addr: address of the sector to erase
* @opcode_4k: opcode for 4K sector erase
* @ovlsz_top: size of overlaid portion at the top address
* @ovlsz_btm: size of overlaid portion at the bottom address
*
* Erase an address range on the nor chip that can contain 4KB sectors overlaid
* on top and/or bottom. The appropriate erase opcode and size are chosen by
* address to erase and size of overlaid portion.
*
* Return: number of bytes erased on success, -errno otherwise.
*/
static int spansion_erase_non_uniform(struct spi_nor *nor, u32 addr,
u8 opcode_4k, u32 ovlsz_top,
u32 ovlsz_btm)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
struct mtd_info *mtd = &nor->mtd;
u32 erasesize;
int ret;
/* 4KB sectors */
if (op.addr.val < ovlsz_btm ||
op.addr.val >= mtd->size - ovlsz_top) {
op.cmd.opcode = opcode_4k;
erasesize = SZ_4K;
/* Non-overlaid portion in the normal sector at the bottom */
} else if (op.addr.val == ovlsz_btm) {
op.cmd.opcode = nor->erase_opcode;
erasesize = mtd->erasesize - ovlsz_btm;
/* Non-overlaid portion in the normal sector at the top */
} else if (op.addr.val == mtd->size - mtd->erasesize) {
op.cmd.opcode = nor->erase_opcode;
erasesize = mtd->erasesize - ovlsz_top;
/* Normal sectors */
} else {
op.cmd.opcode = nor->erase_opcode;
erasesize = mtd->erasesize;
}
spi_nor_setup_op(nor, &op, nor->write_proto);
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
return erasesize;
}
#endif
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
/* Write status register and ensure bits in mask match written values */
static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
{
int ret;
write_enable(nor);
ret = write_sr(nor, status_new);
if (ret)
return ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_sr(nor);
if (ret < 0)
return ret;
return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
}
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
uint64_t *len)
{
struct mtd_info *mtd = &nor->mtd;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
int shift = ffs(mask) - 1;
int pow;
if (!(sr & mask)) {
/* No protection */
*ofs = 0;
*len = 0;
} else {
pow = ((sr & mask) ^ mask) >> shift;
*len = mtd->size >> pow;
if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
*ofs = 0;
else
*ofs = mtd->size - *len;
}
}
/*
* Return 1 if the entire region is locked (if @locked is true) or unlocked (if
* @locked is false); 0 otherwise
*/
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
u8 sr, bool locked)
{
loff_t lock_offs;
uint64_t lock_len;
if (!len)
return 1;
stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
if (locked)
/* Requested range is a sub-range of locked range */
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
else
/* Requested range does not overlap with locked range */
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}
static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return stm_check_lock_status_sr(nor, ofs, len, sr, false);
}
/*
* Lock a region of the flash. Compatible with ST Micro and similar flash.
* Supports the block protection bits BP{0,1,2} in the status register
* (SR). Does not support these features found in newer SR bitfields:
* - SEC: sector/block protect - only handle SEC=0 (block protect)
* - CMP: complement protect - only support CMP=0 (range is not complemented)
*
* Support for the following is provided conditionally for some flash:
* - TB: top/bottom protect
*
* Sample table portion for 8MB flash (Winbond w25q64fw):
*
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
* --------------------------------------------------------------------------
* X | X | 0 | 0 | 0 | NONE | NONE
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
* X | X | 1 | 1 | 1 | 8 MB | ALL
* ------|-------|-------|-------|-------|---------------|-------------------
* 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
* 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
* 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
* 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
* 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
* 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
*
* Returns negative on errors, 0 on success.
*/
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
int status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
/* If nothing in our range is unlocked, we don't need to do anything */
if (stm_is_locked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is unlocked, we can't use 'bottom' protection */
if (!stm_is_locked_sr(nor, 0, ofs, status_old))
can_be_bottom = false;
/* If anything above us is unlocked, we can't use 'top' protection */
if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_top = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should end up locked */
if (use_top)
lock_len = mtd->size - ofs;
else
lock_len = ofs + len;
/*
* Need smallest pow such that:
*
* 1 / (2^pow) <= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
*/
pow = ilog2(mtd->size) - ilog2(lock_len);
val = mask - (pow << shift);
if (val & ~mask)
return -EINVAL;
/* Don't "lock" with no region! */
if (!(val & mask))
return -EINVAL;
status_new = (status_old & ~mask & ~SR_TB) | val;
/* Disallow further writes if WP pin is asserted */
status_new |= SR_SRWD;
if (!use_top)
status_new |= SR_TB;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not unlock other areas */
if ((status_new & mask) < (status_old & mask))
return -EINVAL;
return write_sr_and_check(nor, status_new, mask);
}
/*
* Unlock a region of the flash. See stm_lock() for more info
*
* Returns negative on errors, 0 on success.
*/
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
int status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
/* If nothing in our range is locked, we don't need to do anything */
if (stm_is_unlocked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is locked, we can't use 'top' protection */
if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
can_be_top = false;
/* If anything above us is locked, we can't use 'bottom' protection */
if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_bottom = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should remain locked */
if (use_top)
lock_len = mtd->size - (ofs + len);
else
lock_len = ofs;
/*
* Need largest pow such that:
*
* 1 / (2^pow) >= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
*/
pow = ilog2(mtd->size) - order_base_2(lock_len);
if (lock_len == 0) {
val = 0; /* fully unlocked */
} else {
val = mask - (pow << shift);
/* Some power-of-two sizes are not supported */
if (val & ~mask)
return -EINVAL;
}
status_new = (status_old & ~mask & ~SR_TB) | val;
/* Don't protect status register if we're fully unlocked */
if (lock_len == 0)
status_new &= ~SR_SRWD;
if (!use_top)
status_new |= SR_TB;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not lock other areas */
if ((status_new & mask) > (status_old & mask))
return -EINVAL;
return write_sr_and_check(nor, status_new, mask);
}
/*
* Check if a region of the flash is (completely) locked. See stm_lock() for
* more info.
*
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
* negative on errors.
*/
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
int status;
status = read_sr(nor);
if (status < 0)
return status;
return stm_is_locked_sr(nor, ofs, len, status);
}
#endif /* CONFIG_SPI_FLASH_STMICRO */
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
{
int tmp;
u8 id[SPI_NOR_MAX_ID_LEN];
const struct flash_info *info;
tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
if (tmp < 0) {
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
}
info = spi_nor_ids;
for (; info->name; info++) {
if (info->id_len) {
if (!memcmp(info->id, id, info->id_len))
return info;
}
}
dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
id[0], id[1], id[2]);
return ERR_PTR(-ENODEV);
}
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
while (len) {
loff_t addr = from;
size_t read_len = len;
#ifdef CONFIG_SPI_FLASH_BAR
u32 remain_len;
ret = write_bar(nor, addr);
if (ret < 0)
return log_ret(ret);
remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
if (len < remain_len)
read_len = len;
else
read_len = remain_len;
#endif
ret = nor->read(nor, addr, read_len, buf);
if (ret == 0) {
/* We shouldn't see 0-length reads */
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
*retlen += ret;
buf += ret;
from += ret;
len -= ret;
}
ret = 0;
read_err:
#ifdef CONFIG_SPI_FLASH_BAR
ret = clean_bar(nor);
#endif
return ret;
}
#ifdef CONFIG_SPI_FLASH_SST
/*
* sst26 flash series has its own block protection implementation:
* 4x - 8 KByte blocks - read & write protection bits - upper addresses
* 1x - 32 KByte blocks - write protection bits
* rest - 64 KByte blocks - write protection bits
* 1x - 32 KByte blocks - write protection bits
* 4x - 8 KByte blocks - read & write protection bits - lower addresses
*
* We'll support only per 64k lock/unlock so lower and upper 64 KByte region
* will be treated as single block.
*/
#define SST26_BPR_8K_NUM 4
#define SST26_MAX_BPR_REG_LEN (18 + 1)
#define SST26_BOUND_REG_SIZE ((32 + SST26_BPR_8K_NUM * 8) * SZ_1K)
enum lock_ctl {
SST26_CTL_LOCK,
SST26_CTL_UNLOCK,
SST26_CTL_CHECK
};
static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
{
switch (ctl) {
case SST26_CTL_LOCK:
cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
break;
case SST26_CTL_UNLOCK:
cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
break;
case SST26_CTL_CHECK:
return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
}
return false;
}
/*
* Lock, unlock or check lock status of the flash region of the flash (depending
* on the lock_ctl value)
*/
static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl)
{
struct mtd_info *mtd = &nor->mtd;
u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
bool lower_64k = false, upper_64k = false;
u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
int ret;
/* Check length and offset for 64k alignment */
if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) {
dev_err(nor->dev, "length or offset is not 64KiB allighned\n");
return -EINVAL;
}
if (ofs + len > mtd->size) {
dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n",
ofs, len, mtd->size);
return -EINVAL;
}
/* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
if (mtd->size != SZ_2M &&
mtd->size != SZ_4M &&
mtd->size != SZ_8M)
return -EINVAL;
bpr_size = 2 + (mtd->size / SZ_64K / 8);
ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size);
if (ret < 0) {
dev_err(nor->dev, "fail to read block-protection register\n");
return ret;
}
rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE);
lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE));
lower_64k = (ofs < SST26_BOUND_REG_SIZE);
/* Lower bits in block-protection register are about 64k region */
bpr_ptr = lptr_64k / SZ_64K - 1;
/* Process 64K blocks region */
while (lptr_64k < rptr_64k) {
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
bpr_ptr++;
lptr_64k += SZ_64K;
}
/* 32K and 8K region bits in BPR are after 64k region bits */
bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
/* Process lower 32K block region */
if (lower_64k)
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
bpr_ptr++;
/* Process upper 32K block region */
if (upper_64k)
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
bpr_ptr++;
/* Process lower 8K block regions */
for (i = 0; i < SST26_BPR_8K_NUM; i++) {
if (lower_64k)
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
/* In 8K area BPR has both read and write protection bits */
bpr_ptr += 2;
}
/* Process upper 8K block regions */
for (i = 0; i < SST26_BPR_8K_NUM; i++) {
if (upper_64k)
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
/* In 8K area BPR has both read and write protection bits */
bpr_ptr += 2;
}
/* If we check region status we don't need to write BPR back */
if (ctl == SST26_CTL_CHECK)
return 0;
ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size);
if (ret < 0) {
dev_err(nor->dev, "fail to write block-protection register\n");
return ret;
}
return 0;
}
static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK);
}
static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK);
}
/*
* Returns EACCES (positive value) if region is locked, 0 if region is unlocked,
* and negative on errors.
*/
static int sst26_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
/*
* is_locked function is used for check before reading or erasing flash
* region, so offset and length might be not 64k allighned, so adjust
* them to be 64k allighned as sst26_lock_ctl works only with 64k
* allighned regions.
*/
ofs -= ofs & (SZ_64K - 1);
len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
return sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK);
}
static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
size_t actual;
int ret = 0;
for (actual = 0; actual < len; actual++) {
nor->program_opcode = SPINOR_OP_BP;
write_enable(nor);
/* write one byte. */
ret = nor->write(nor, to, 1, buf + actual);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
to++;
}
sst_write_err:
write_disable(nor);
return ret;
}
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
struct spi_slave *spi = nor->spi;
size_t actual;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
if (spi->mode & SPI_TX_BYTE)
return sst_write_byteprogram(nor, to, len, retlen, buf);
write_enable(nor);
nor->sst_write_second = false;
actual = to % 2;
/* Start write from odd address. */
if (actual) {
nor->program_opcode = SPINOR_OP_BP;
/* write one byte. */
ret = nor->write(nor, to, 1, buf);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
}
to += actual;
/* Write out most of the data here. */
for (; actual < len - 1; actual += 2) {
nor->program_opcode = SPINOR_OP_AAI_WP;
/* write two bytes. */
ret = nor->write(nor, to, 2, buf + actual);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
to += 2;
nor->sst_write_second = true;
}
nor->sst_write_second = false;
write_disable(nor);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
/* Write out trailing byte if it exists. */
if (actual != len) {
write_enable(nor);
nor->program_opcode = SPINOR_OP_BP;
ret = nor->write(nor, to, 1, buf + actual);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
write_disable(nor);
actual += 1;
}
sst_write_err:
*retlen += actual;
return ret;
}
#endif
/*
* Write an address range to the nor chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t page_offset, page_remain, i;
ssize_t ret;
#ifdef CONFIG_SPI_FLASH_SST
/* sst nor chips use AAI word program */
if (nor->info->flags & SST_WRITE)
return sst_write(mtd, to, len, retlen, buf);
#endif
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
if (!len)
return 0;
for (i = 0; i < len; ) {
ssize_t written;
loff_t addr = to + i;
WATCHDOG_RESET();
/*
* If page_size is a power of two, the offset can be quickly
* calculated with an AND operation. On the other cases we
* need to do a modulus operation (more expensive).
*/
if (is_power_of_2(nor->page_size)) {
page_offset = addr & (nor->page_size - 1);
} else {
u64 aux = addr;
page_offset = do_div(aux, nor->page_size);
}
/* the size of data remaining on the first page */
page_remain = min_t(size_t,
nor->page_size - page_offset, len - i);
#ifdef CONFIG_SPI_FLASH_BAR
ret = write_bar(nor, addr);
if (ret < 0)
return ret;
#endif
write_enable(nor);
ret = nor->write(nor, addr, page_remain, buf + i);
if (ret < 0)
goto write_err;
written = ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto write_err;
*retlen += written;
i += written;
}
write_err:
#ifdef CONFIG_SPI_FLASH_BAR
ret = clean_bar(nor);
#endif
return ret;
}
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
/**
* macronix_quad_enable() - set QE bit in Status Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Status Register.
*
* bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int macronix_quad_enable(struct spi_nor *nor)
{
int ret, val;
val = read_sr(nor);
if (val < 0)
return val;
if (val & SR_QUAD_EN_MX)
return 0;
write_enable(nor);
write_sr(nor, val | SR_QUAD_EN_MX);
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_sr(nor);
if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
dev_err(nor->dev, "Macronix Quad bit not set\n");
return -EINVAL;
}
return 0;
}
#endif
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
/*
* Write status Register and configuration register with 2 bytes
* The first byte will be written to the status register, while the
* second byte will be written to the configuration register.
* Return negative if error occurred.
*/
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
{
int ret;
write_enable(nor);
ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
if (ret < 0) {
dev_dbg(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
}
ret = spi_nor_wait_till_ready(nor);
if (ret) {
dev_dbg(nor->dev,
"timeout while writing configuration register\n");
return ret;
}
return 0;
}
/**
* spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Configuration Register.
* This function should be used with QSPI memories supporting the Read
* Configuration Register (35h) instruction.
*
* bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
* memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_read_cr_quad_enable(struct spi_nor *nor)
{
u8 sr_cr[2];
int ret;
/* Check current Quad Enable bit value. */
ret = read_cr(nor);
if (ret < 0) {
dev_dbg(nor->dev,
"error while reading configuration register\n");
return -EINVAL;
}
if (ret & CR_QUAD_EN_SPAN)
return 0;
sr_cr[1] = ret | CR_QUAD_EN_SPAN;
/* Keep the current value of the Status Register. */
ret = read_sr(nor);
if (ret < 0) {
dev_dbg(nor->dev, "error while reading status register\n");
return -EINVAL;
}
sr_cr[0] = ret;
ret = write_sr_cr(nor, sr_cr);
if (ret)
return ret;
/* Read back and check it. */
ret = read_cr(nor);
if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
dev_dbg(nor->dev, "Spansion Quad bit not set\n");
return -EINVAL;
}
return 0;
}
#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
/**
* spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Configuration Register.
* This function should be used with QSPI memories not supporting the Read
* Configuration Register (35h) instruction.
*
* bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
* memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
{
u8 sr_cr[2];
int ret;
/* Keep the current value of the Status Register. */
ret = read_sr(nor);
if (ret < 0) {
dev_dbg(nor->dev, "error while reading status register\n");
return -EINVAL;
}
sr_cr[0] = ret;
sr_cr[1] = CR_QUAD_EN_SPAN;
return write_sr_cr(nor, sr_cr);
}
#endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
#endif /* CONFIG_SPI_FLASH_SPANSION */
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
u8 num_mode_clocks,
u8 num_wait_states,
u8 opcode,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = num_mode_clocks;
read->num_wait_states = num_wait_states;
read->opcode = opcode;
read->proto = proto;
}
static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
u8 opcode,
enum spi_nor_protocol proto)
{
pp->opcode = opcode;
pp->proto = proto;
}
#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
/*
* Serial Flash Discoverable Parameters (SFDP) parsing.
*/
/**
* spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
* @len: number of bytes to read
* @buf: buffer where the SFDP data are copied into (dma-safe memory)
*
* Whatever the actual numbers of bytes for address and dummy cycles are
* for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
* followed by a 3-byte address and 8 dummy clock cycles.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
size_t len, void *buf)
{
u8 addr_width, read_opcode, read_dummy;
int ret;
read_opcode = nor->read_opcode;
addr_width = nor->addr_width;
read_dummy = nor->read_dummy;
nor->read_opcode = SPINOR_OP_RDSFDP;
nor->addr_width = 3;
nor->read_dummy = 8;
while (len) {
ret = nor->read(nor, addr, len, (u8 *)buf);
if (!ret || ret > len) {
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
buf += ret;
addr += ret;
len -= ret;
}
ret = 0;
read_err:
nor->read_opcode = read_opcode;
nor->addr_width = addr_width;
nor->read_dummy = read_dummy;
return ret;
}
/* Fast Read settings. */
static void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
u16 half,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = (half >> 5) & 0x07;
read->num_wait_states = (half >> 0) & 0x1f;
read->opcode = (half >> 8) & 0xff;
read->proto = proto;
}
struct sfdp_bfpt_read {
/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
u32 hwcaps;
/*
* The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
* whether the Fast Read x-y-z command is supported.
*/
u32 supported_dword;
u32 supported_bit;
/*
* The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
* encodes the op code, the number of mode clocks and the number of wait
* states to be used by Fast Read x-y-z command.
*/
u32 settings_dword;
u32 settings_shift;
/* The SPI protocol for this Fast Read x-y-z command. */
enum spi_nor_protocol proto;
};
static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
/* Fast Read 1-1-2 */
{
SNOR_HWCAPS_READ_1_1_2,
BFPT_DWORD(1), BIT(16), /* Supported bit */
BFPT_DWORD(4), 0, /* Settings */
SNOR_PROTO_1_1_2,
},
/* Fast Read 1-2-2 */
{
SNOR_HWCAPS_READ_1_2_2,
BFPT_DWORD(1), BIT(20), /* Supported bit */
BFPT_DWORD(4), 16, /* Settings */
SNOR_PROTO_1_2_2,
},
/* Fast Read 2-2-2 */
{
SNOR_HWCAPS_READ_2_2_2,
BFPT_DWORD(5), BIT(0), /* Supported bit */
BFPT_DWORD(6), 16, /* Settings */
SNOR_PROTO_2_2_2,
},
/* Fast Read 1-1-4 */
{
SNOR_HWCAPS_READ_1_1_4,
BFPT_DWORD(1), BIT(22), /* Supported bit */
BFPT_DWORD(3), 16, /* Settings */
SNOR_PROTO_1_1_4,
},
/* Fast Read 1-4-4 */
{
SNOR_HWCAPS_READ_1_4_4,
BFPT_DWORD(1), BIT(21), /* Supported bit */
BFPT_DWORD(3), 0, /* Settings */
SNOR_PROTO_1_4_4,
},
/* Fast Read 4-4-4 */
{
SNOR_HWCAPS_READ_4_4_4,
BFPT_DWORD(5), BIT(4), /* Supported bit */
BFPT_DWORD(7), 16, /* Settings */
SNOR_PROTO_4_4_4,
},
};
struct sfdp_bfpt_erase {
/*
* The half-word at offset <shift> in DWORD <dwoard> encodes the
* op code and erase sector size to be used by Sector Erase commands.
*/
u32 dword;
u32 shift;
};
static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
/* Erase Type 1 in DWORD8 bits[15:0] */
{BFPT_DWORD(8), 0},
/* Erase Type 2 in DWORD8 bits[31:16] */
{BFPT_DWORD(8), 16},
/* Erase Type 3 in DWORD9 bits[15:0] */
{BFPT_DWORD(9), 0},
/* Erase Type 4 in DWORD9 bits[31:16] */
{BFPT_DWORD(9), 16},
};
static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
static int
spi_nor_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
if (nor->fixups && nor->fixups->post_bfpt)
return nor->fixups->post_bfpt(nor, bfpt_header, bfpt, params);
return 0;
}
/**
* spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
* @nor: pointer to a 'struct spi_nor'
* @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
* the Basic Flash Parameter Table length and version
* @params: pointer to the 'struct spi_nor_flash_parameter' to be
* filled
*
* The Basic Flash Parameter Table is the main and only mandatory table as
* defined by the SFDP (JESD216) specification.
* It provides us with the total size (memory density) of the data array and
* the number of address bytes for Fast Read, Page Program and Sector Erase
* commands.
* For Fast READ commands, it also gives the number of mode clock cycles and
* wait states (regrouped in the number of dummy clock cycles) for each
* supported instruction op code.
* For Page Program, the page size is now available since JESD216 rev A, however
* the supported instruction op codes are still not provided.
* For Sector Erase commands, this table stores the supported instruction op
* codes and the associated sector sizes.
* Finally, the Quad Enable Requirements (QER) are also available since JESD216
* rev A. The QER bits encode the manufacturer dependent procedure to be
* executed to set the Quad Enable (QE) bit in some internal register of the
* Quad SPI memory. Indeed the QE bit, when it exists, must be set before
* sending any Quad SPI command to the memory. Actually, setting the QE bit
* tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
* and IO3 hence enabling 4 (Quad) I/O lines.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_bfpt(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
struct spi_nor_flash_parameter *params)
{
struct mtd_info *mtd = &nor->mtd;
struct sfdp_bfpt bfpt;
size_t len;
int i, cmd, err;
u32 addr;
u16 half;
/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
return -EINVAL;
/* Read the Basic Flash Parameter Table. */
len = min_t(size_t, sizeof(bfpt),
bfpt_header->length * sizeof(u32));
addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
memset(&bfpt, 0, sizeof(bfpt));
err = spi_nor_read_sfdp(nor, addr, len, &bfpt);
if (err < 0)
return err;
/* Fix endianness of the BFPT DWORDs. */
for (i = 0; i < BFPT_DWORD_MAX; i++)
bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
/* Number of address bytes. */
switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
nor->addr_width = 3;
break;
case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
nor->addr_width = 4;
break;
default:
break;
}
/* Flash Memory Density (in bits). */
params->size = bfpt.dwords[BFPT_DWORD(2)];
if (params->size & BIT(31)) {
params->size &= ~BIT(31);
/*
* Prevent overflows on params->size. Anyway, a NOR of 2^64
* bits is unlikely to exist so this error probably means
* the BFPT we are reading is corrupted/wrong.
*/
if (params->size > 63)
return -EINVAL;
params->size = 1ULL << params->size;
} else {
params->size++;
}
params->size >>= 3; /* Convert to bytes. */
/* Fast Read settings. */
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
struct spi_nor_read_command *read;
if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
params->hwcaps.mask &= ~rd->hwcaps;
continue;
}
params->hwcaps.mask |= rd->hwcaps;
cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
read = &params->reads[cmd];
half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
}
/* Sector Erase settings. */
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
u32 erasesize;
u8 opcode;
half = bfpt.dwords[er->dword] >> er->shift;
erasesize = half & 0xff;
/* erasesize == 0 means this Erase Type is not supported. */
if (!erasesize)
continue;
erasesize = 1U << erasesize;
opcode = (half >> 8) & 0xff;
#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
if (erasesize == SZ_4K) {
nor->erase_opcode = opcode;
mtd->erasesize = erasesize;
break;
}
#endif
if (!mtd->erasesize || mtd->erasesize < erasesize) {
nor->erase_opcode = opcode;
mtd->erasesize = erasesize;
}
}
/* Stop here if not JESD216 rev A or later. */
if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
params);
/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
params->page_size = bfpt.dwords[BFPT_DWORD(11)];
params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
params->page_size = 1U << params->page_size;
/* Quad Enable Requirements. */
switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
case BFPT_DWORD15_QER_NONE:
params->quad_enable = NULL;
break;
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
params->quad_enable = spansion_no_read_cr_quad_enable;
break;
#endif
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
case BFPT_DWORD15_QER_SR1_BIT6:
params->quad_enable = macronix_quad_enable;
break;
#endif
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
case BFPT_DWORD15_QER_SR2_BIT1:
params->quad_enable = spansion_read_cr_quad_enable;
break;
#endif
default:
dev_dbg(nor->dev, "BFPT QER reserved value used\n");
break;
}
/* Soft Reset support. */
if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SOFT_RST)
nor->flags |= SNOR_F_SOFT_RESET;
/* Stop here if JESD216 rev B. */
if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
params);
/* 8D-8D-8D command extension. */
switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
case BFPT_DWORD18_CMD_EXT_REP:
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
break;
case BFPT_DWORD18_CMD_EXT_INV:
nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
break;
case BFPT_DWORD18_CMD_EXT_RES:
return -EINVAL;
case BFPT_DWORD18_CMD_EXT_16B:
dev_err(nor->dev, "16-bit opcodes not supported\n");
return -ENOTSUPP;
}
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
}
/**
* spi_nor_parse_microchip_sfdp() - parse the Microchip manufacturer specific
* SFDP table.
* @nor: pointer to a 'struct spi_nor'.
* @param_header: pointer to the SFDP parameter header.
*
* Return: 0 on success, -errno otherwise.
*/
static int
spi_nor_parse_microchip_sfdp(struct spi_nor *nor,
const struct sfdp_parameter_header *param_header)
{
size_t size;
u32 addr;
int ret;
size = param_header->length * sizeof(u32);
addr = SFDP_PARAM_HEADER_PTP(param_header);
nor->manufacturer_sfdp = devm_kmalloc(nor->dev, size, GFP_KERNEL);
if (!nor->manufacturer_sfdp)
return -ENOMEM;
ret = spi_nor_read_sfdp(nor, addr, size, nor->manufacturer_sfdp);
return ret;
}
/**
* spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
* @nor: pointer to a 'struct spi_nor'
* @profile1_header: pointer to the 'struct sfdp_parameter_header' describing
* the 4-Byte Address Instruction Table length and version.
* @params: pointer to the 'struct spi_nor_flash_parameter' to be.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_profile1(struct spi_nor *nor,
const struct sfdp_parameter_header *profile1_header,
struct spi_nor_flash_parameter *params)
{
u32 *table, opcode, addr;
size_t len;
int ret, i;
u8 dummy;
len = profile1_header->length * sizeof(*table);
table = kmalloc(len, GFP_KERNEL);
if (!table)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(profile1_header);
ret = spi_nor_read_sfdp(nor, addr, len, table);
if (ret)
goto out;
/* Fix endianness of the table DWORDs. */
for (i = 0; i < profile1_header->length; i++)
table[i] = le32_to_cpu(table[i]);
/* Get 8D-8D-8D fast read opcode and dummy cycles. */
opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, table[0]);
/*
* We don't know what speed the controller is running at. Find the
* dummy cycles for the fastest frequency the flash can run at to be
* sure we are never short of dummy cycles. A value of 0 means the
* frequency is not supported.
*
* Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
* flashes set the correct value if needed in their fixup hooks.
*/
dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, table[3]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, table[4]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, table[4]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, table[4]);
if (!dummy)
dummy = PROFILE1_DUMMY_DEFAULT;
/* Round up to an even value to avoid tripping controllers up. */
dummy = ROUND_UP_TO(dummy, 2);
/* Update the fast read settings. */
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, dummy, opcode,
SNOR_PROTO_8_8_8_DTR);
/*
* Set the Read Status Register dummy cycles and dummy address bytes.
*/
if (table[0] & PROFILE1_DWORD1_RDSR_DUMMY)
params->rdsr_dummy = 8;
else
params->rdsr_dummy = 4;
if (table[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
params->rdsr_addr_nbytes = 4;
else
params->rdsr_addr_nbytes = 0;
out:
kfree(table);
return ret;
}
/**
* spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to the 'struct spi_nor_flash_parameter' to be
* filled
*
* The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
* specification. This is a standard which tends to supported by almost all
* (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
* runtime the main parameters needed to perform basic SPI flash operations such
* as Fast Read, Page Program or Sector Erase commands.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_sfdp(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
const struct sfdp_parameter_header *param_header, *bfpt_header;
struct sfdp_parameter_header *param_headers = NULL;
struct sfdp_header header;
size_t psize;
int i, err;
/* Get the SFDP header. */
err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
if (err < 0)
return err;
/* Check the SFDP header version. */
if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
header.major != SFDP_JESD216_MAJOR)
return -EINVAL;
/*
* Verify that the first and only mandatory parameter header is a
* Basic Flash Parameter Table header as specified in JESD216.
*/
bfpt_header = &header.bfpt_header;
if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
bfpt_header->major != SFDP_JESD216_MAJOR)
return -EINVAL;
/*
* Allocate memory then read all parameter headers with a single
* Read SFDP command. These parameter headers will actually be parsed
* twice: a first time to get the latest revision of the basic flash
* parameter table, then a second time to handle the supported optional
* tables.
* Hence we read the parameter headers once for all to reduce the
* processing time. Also we use kmalloc() instead of devm_kmalloc()
* because we don't need to keep these parameter headers: the allocated
* memory is always released with kfree() before exiting this function.
*/
if (header.nph) {
psize = header.nph * sizeof(*param_headers);
param_headers = kmalloc(psize, GFP_KERNEL);
if (!param_headers)
return -ENOMEM;
err = spi_nor_read_sfdp(nor, sizeof(header),
psize, param_headers);
if (err < 0) {
dev_err(nor->dev,
"failed to read SFDP parameter headers\n");
goto exit;
}
}
/*
* Check other parameter headers to get the latest revision of
* the basic flash parameter table.
*/
for (i = 0; i < header.nph; i++) {
param_header = &param_headers[i];
if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
param_header->major == SFDP_JESD216_MAJOR &&
(param_header->minor > bfpt_header->minor ||
(param_header->minor == bfpt_header->minor &&
param_header->length > bfpt_header->length)))
bfpt_header = param_header;
}
err = spi_nor_parse_bfpt(nor, bfpt_header, params);
if (err)
goto exit;
/* Parse other parameter headers. */
for (i = 0; i < header.nph; i++) {
param_header = &param_headers[i];
switch (SFDP_PARAM_HEADER_ID(param_header)) {
case SFDP_SECTOR_MAP_ID:
dev_info(nor->dev,
"non-uniform erase sector maps are not supported yet.\n");
break;
case SFDP_SST_ID:
err = spi_nor_parse_microchip_sfdp(nor, param_header);
break;
case SFDP_PROFILE1_ID:
err = spi_nor_parse_profile1(nor, param_header, params);
break;
default:
break;
}
if (err) {
dev_warn(nor->dev,
"Failed to parse optional parameter table: %04x\n",
SFDP_PARAM_HEADER_ID(param_header));
/*
* Let's not drop all information we extracted so far
* if optional table parsers fail. In case of failing,
* each optional parser is responsible to roll back to
* the previously known spi_nor data.
*/
err = 0;
}
}
exit:
kfree(param_headers);
return err;
}
#else
static int spi_nor_parse_sfdp(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
return -EINVAL;
}
#endif /* SPI_FLASH_SFDP_SUPPORT */
/**
* spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
* after SFDP has been parsed (is also called for SPI NORs that do not
* support RDSFDP).
* @nor: pointer to a 'struct spi_nor'
*
* Typically used to tweak various parameters that could not be extracted by
* other means (i.e. when information provided by the SFDP/flash_info tables
* are incomplete or wrong).
*/
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
if (nor->fixups && nor->fixups->post_sfdp)
nor->fixups->post_sfdp(nor, params);
}
static void spi_nor_default_init_fixups(struct spi_nor *nor)
{
if (nor->fixups && nor->fixups->default_init)
nor->fixups->default_init(nor);
}
static int spi_nor_init_params(struct spi_nor *nor,
const struct flash_info *info,
struct spi_nor_flash_parameter *params)
{
/* Set legacy flash parameters as default. */
memset(params, 0, sizeof(*params));
/* Set SPI NOR sizes. */
params->size = info->sector_size * info->n_sectors;
params->page_size = info->page_size;
/* (Fast) Read settings. */
params->hwcaps.mask |= SNOR_HWCAPS_READ;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
0, 0, SPINOR_OP_READ,
SNOR_PROTO_1_1_1);
if (!(info->flags & SPI_NOR_NO_FR)) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
0, 8, SPINOR_OP_READ_FAST,
SNOR_PROTO_1_1_1);
}
if (info->flags & SPI_NOR_DUAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
0, 8, SPINOR_OP_READ_1_1_2,
SNOR_PROTO_1_1_2);
}
if (info->flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
0, 8, SPINOR_OP_READ_1_1_4,
SNOR_PROTO_1_1_4);
}
if (info->flags & SPI_NOR_OCTAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
0, 8, SPINOR_OP_READ_1_1_8,
SNOR_PROTO_1_1_8);
}
if (info->flags & SPI_NOR_OCTAL_DTR_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, 20, SPINOR_OP_READ_FAST,
SNOR_PROTO_8_8_8_DTR);
}
/* Page Program settings. */
params->hwcaps.mask |= SNOR_HWCAPS_PP;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
if (info->flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
}
/* Select the procedure to set the Quad Enable bit. */
if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
SNOR_HWCAPS_PP_QUAD)) {
switch (JEDEC_MFR(info)) {
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
case SNOR_MFR_MACRONIX:
case SNOR_MFR_ISSI:
params->quad_enable = macronix_quad_enable;
break;
#endif
case SNOR_MFR_ST:
case SNOR_MFR_MICRON:
break;
default:
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
/* Kept only for backward compatibility purpose. */
params->quad_enable = spansion_read_cr_quad_enable;
#endif
break;
}
}
spi_nor_default_init_fixups(nor);
/* Override the parameters with data read from SFDP tables. */
nor->addr_width = 0;
nor->mtd.erasesize = 0;
if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_OCTAL_DTR_READ)) &&
!(info->flags & SPI_NOR_SKIP_SFDP)) {
struct spi_nor_flash_parameter sfdp_params;
memcpy(&sfdp_params, params, sizeof(sfdp_params));
if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
nor->addr_width = 0;
nor->mtd.erasesize = 0;
} else {
memcpy(params, &sfdp_params, sizeof(*params));
}
}
spi_nor_post_sfdp_fixups(nor, params);
return 0;
}
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == (int)hwcaps)
return table[i][1];
return -EINVAL;
}
static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
static const int hwcaps_read2cmd[][2] = {
{ SNOR_HWCAPS_READ, SNOR_CMD_READ },
{ SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
{ SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
{ SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
{ SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
{ SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
{ SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
{ SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
{ SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
{ SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
{ SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
{ SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
{ SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
{ SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
{ SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
{ SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
ARRAY_SIZE(hwcaps_read2cmd));
}
static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
static const int hwcaps_pp2cmd[][2] = {
{ SNOR_HWCAPS_PP, SNOR_CMD_PP },
{ SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
{ SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
{ SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
{ SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
{ SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
{ SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
{ SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
ARRAY_SIZE(hwcaps_pp2cmd));
}
#ifdef CONFIG_SPI_FLASH_SMART_HWCAPS
/**
* spi_nor_check_op - check if the operation is supported by controller
* @nor: pointer to a 'struct spi_nor'
* @op: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_check_op(struct spi_nor *nor,
struct spi_mem_op *op)
{
/*
* First test with 4 address bytes. The opcode itself might be a 3B
* addressing opcode but we don't care, because SPI controller
* implementation should not check the opcode, but just the sequence.
*/
op->addr.nbytes = 4;
if (!spi_mem_supports_op(nor->spi, op)) {
if (nor->mtd.size > SZ_16M)
return -ENOTSUPP;
/* If flash size <= 16MB, 3 address bytes are sufficient */
op->addr.nbytes = 3;
if (!spi_mem_supports_op(nor->spi, op))
return -ENOTSUPP;
}
return 0;
}
/**
* spi_nor_check_readop - check if the read op is supported by controller
* @nor: pointer to a 'struct spi_nor'
* @read: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_check_readop(struct spi_nor *nor,
const struct spi_nor_read_command *read)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
SPI_MEM_OP_ADDR(3, 0, 0),
SPI_MEM_OP_DUMMY(1, 0),
SPI_MEM_OP_DATA_IN(2, NULL, 0));
spi_nor_setup_op(nor, &op, read->proto);
op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
op.dummy.buswidth / 8;
if (spi_nor_protocol_is_dtr(nor->read_proto))
op.dummy.nbytes *= 2;
return spi_nor_check_op(nor, &op);
}
/**
* spi_nor_check_pp - check if the page program op is supported by controller
* @nor: pointer to a 'struct spi_nor'
* @pp: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_check_pp(struct spi_nor *nor,
const struct spi_nor_pp_command *pp)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
SPI_MEM_OP_ADDR(3, 0, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(2, NULL, 0));
spi_nor_setup_op(nor, &op, pp->proto);
return spi_nor_check_op(nor, &op);
}
/**
* spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI
* controller capabilities
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to the 'struct spi_nor_flash_parameter'
* representing SPI NOR flash capabilities
* @hwcaps: pointer to resulting capabilities after adjusting
* according to controller and flash's capability
*
* Discard caps based on what the SPI controller actually supports (using
* spi_mem_supports_op()).
*/
static void
spi_nor_adjust_hwcaps(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 *hwcaps)
{
unsigned int cap;
/*
* Enable all caps by default. We will mask them after checking what's
* really supported using spi_mem_supports_op().
*/
*hwcaps = SNOR_HWCAPS_ALL;
/* X-X-X modes are not supported yet, mask them all. */
*hwcaps &= ~SNOR_HWCAPS_X_X_X;
/*
* If the reset line is broken, we do not want to enter a stateful
* mode.
*/
if (nor->flags & SNOR_F_BROKEN_RESET)
*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
int rdidx, ppidx;
if (!(*hwcaps & BIT(cap)))
continue;
rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
if (rdidx >= 0 &&
spi_nor_check_readop(nor, &params->reads[rdidx]))
*hwcaps &= ~BIT(cap);
ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
if (ppidx < 0)
continue;
if (spi_nor_check_pp(nor, &params->page_programs[ppidx]))
*hwcaps &= ~BIT(cap);
}
}
#else
/**
* spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI
* controller capabilities
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to the 'struct spi_nor_flash_parameter'
* representing SPI NOR flash capabilities
* @hwcaps: pointer to resulting capabilities after adjusting
* according to controller and flash's capability
*
* Select caps based on what the SPI controller and SPI flash both support.
*/
static void
spi_nor_adjust_hwcaps(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 *hwcaps)
{
struct spi_slave *spi = nor->spi;
u32 ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
SNOR_HWCAPS_READ_4_4_4 |
SNOR_HWCAPS_READ_8_8_8 |
SNOR_HWCAPS_PP_4_4_4 |
SNOR_HWCAPS_PP_8_8_8);
u32 spi_hwcaps = (SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_PP);
/* Get the hardware capabilities the SPI controller supports. */
if (spi->mode & SPI_RX_OCTAL) {
spi_hwcaps |= SNOR_HWCAPS_READ_1_1_8;
if (spi->mode & SPI_TX_OCTAL)
spi_hwcaps |= (SNOR_HWCAPS_READ_1_8_8 |
SNOR_HWCAPS_PP_1_1_8 |
SNOR_HWCAPS_PP_1_8_8);
} else if (spi->mode & SPI_RX_QUAD) {
spi_hwcaps |= SNOR_HWCAPS_READ_1_1_4;
if (spi->mode & SPI_TX_QUAD)
spi_hwcaps |= (SNOR_HWCAPS_READ_1_4_4 |
SNOR_HWCAPS_PP_1_1_4 |
SNOR_HWCAPS_PP_1_4_4);
} else if (spi->mode & SPI_RX_DUAL) {
spi_hwcaps |= SNOR_HWCAPS_READ_1_1_2;
if (spi->mode & SPI_TX_DUAL)
spi_hwcaps |= SNOR_HWCAPS_READ_1_2_2;
}
/*
* Keep only the hardware capabilities supported by both the SPI
* controller and the SPI flash memory.
*/
*hwcaps = spi_hwcaps & params->hwcaps.mask;
if (*hwcaps & ignored_mask) {
dev_dbg(nor->dev,
"SPI n-n-n protocols are not supported yet.\n");
*hwcaps &= ~ignored_mask;
}
}
#endif /* CONFIG_SPI_FLASH_SMART_HWCAPS */
static int spi_nor_select_read(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
const struct spi_nor_read_command *read;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
read = &params->reads[cmd];
nor->read_opcode = read->opcode;
nor->read_proto = read->proto;
/*
* In the spi-nor framework, we don't need to make the difference
* between mode clock cycles and wait state clock cycles.
* Indeed, the value of the mode clock cycles is used by a QSPI
* flash memory to know whether it should enter or leave its 0-4-4
* (Continuous Read / XIP) mode.
* eXecution In Place is out of the scope of the mtd sub-system.
* Hence we choose to merge both mode and wait state clock cycles
* into the so called dummy clock cycles.
*/
nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
return 0;
}
static int spi_nor_select_pp(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
const struct spi_nor_pp_command *pp;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
pp = &params->page_programs[cmd];
nor->program_opcode = pp->opcode;
nor->write_proto = pp->proto;
return 0;
}
static int spi_nor_select_erase(struct spi_nor *nor,
const struct flash_info *info)
{
struct mtd_info *mtd = &nor->mtd;
/* Do nothing if already configured from SFDP. */
if (mtd->erasesize)
return 0;
#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
/* prefer "small sector" erase if possible */
if (info->flags & SECT_4K) {
nor->erase_opcode = SPINOR_OP_BE_4K;
mtd->erasesize = 4096;
} else if (info->flags & SECT_4K_PMC) {
nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
mtd->erasesize = 4096;
} else
#endif
{
nor->erase_opcode = SPINOR_OP_SE;
mtd->erasesize = info->sector_size;
}
return 0;
}
static int spi_nor_default_setup(struct spi_nor *nor,
const struct flash_info *info,
const struct spi_nor_flash_parameter *params)
{
u32 shared_mask;
bool enable_quad_io;
int err;
spi_nor_adjust_hwcaps(nor, params, &shared_mask);
/* Select the (Fast) Read command. */
err = spi_nor_select_read(nor, params, shared_mask);
if (err) {
dev_dbg(nor->dev,
"can't select read settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Page Program command. */
err = spi_nor_select_pp(nor, params, shared_mask);
if (err) {
dev_dbg(nor->dev,
"can't select write settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Sector Erase command. */
err = spi_nor_select_erase(nor, info);
if (err) {
dev_dbg(nor->dev,
"can't select erase settings supported by both the SPI controller and memory.\n");
return err;
}
/* Enable Quad I/O if needed. */
enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
spi_nor_get_protocol_width(nor->write_proto) == 4);
if (enable_quad_io && params->quad_enable)
nor->quad_enable = params->quad_enable;
else
nor->quad_enable = NULL;
return 0;
}
static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
const struct spi_nor_flash_parameter *params)
{
if (!nor->setup)
return 0;
return nor->setup(nor, info, params);
}
#ifdef CONFIG_SPI_FLASH_S28HS512T
/**
* spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
* @nor: pointer to a 'struct spi_nor'
*
* This also sets the memory access latency cycles to 24 to allow the flash to
* run at up to 200MHz.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 buf;
u8 addr_width = 3;
int ret;
/* Use 24 dummy cycles for memory array reads. */
ret = write_enable(nor);
if (ret)
return ret;
buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR2V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_warn(nor->dev,
"failed to set default memory latency value: %d\n",
ret);
return ret;
}
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
nor->read_dummy = 24;
/* Set the octal and DTR enable bits. */
ret = write_enable(nor);
if (ret)
return ret;
buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR5V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_warn(nor->dev, "Failed to enable octal DTR mode\n");
return ret;
}
return 0;
}
static int s28hs512t_erase_non_uniform(struct spi_nor *nor, loff_t addr)
{
/* Factory default configuration: 32 x 4 KiB sectors at bottom. */
return spansion_erase_non_uniform(nor, addr, SPINOR_OP_S28_SE_4K,
0, SZ_128K);
}
static int s28hs512t_setup(struct spi_nor *nor, const struct flash_info *info,
const struct spi_nor_flash_parameter *params)
{
struct spi_mem_op op;
u8 buf;
u8 addr_width = 3;
int ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
/*
* Check CFR3V to check if non-uniform sector mode is selected. If it
* is, set the erase hook to the non-uniform erase procedure.
*/
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width,
SPINOR_REG_CYPRESS_CFR3V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
if (!(buf & SPINOR_REG_CYPRESS_CFR3V_UNISECT))
nor->erase = s28hs512t_erase_non_uniform;
return spi_nor_default_setup(nor, info, params);
}
static void s28hs512t_default_init(struct spi_nor *nor)
{
nor->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable;
nor->setup = s28hs512t_setup;
}
static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
/*
* On older versions of the flash the xSPI Profile 1.0 table has the
* 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
*/
if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
SPINOR_OP_CYPRESS_RD_FAST;
params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
/* This flash is also missing the 4-byte Page Program opcode bit. */
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
/*
* The xSPI Profile 1.0 table advertises the number of additional
* address bytes needed for Read Status Register command as 0 but the
* actual value for that is 4.
*/
params->rdsr_addr_nbytes = 4;
}
static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
struct spi_mem_op op;
u8 buf;
u8 addr_width = 3;
int ret;
/*
* The BFPT table advertises a 512B page size but the page size is
* actually configurable (with the default being 256B). Read from
* CFR3V[4] and set the correct size.
*/
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR3V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
if (buf & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
params->page_size = 512;
else
params->page_size = 256;
/*
* The BFPT advertises that it supports 4k erases, and the datasheet
* says the same. But 4k erases did not work when testing. So, use 256k
* erases for now.
*/
nor->erase_opcode = SPINOR_OP_SE_4B;
nor->mtd.erasesize = 0x40000;
return 0;
}
static struct spi_nor_fixups s28hs512t_fixups = {
.default_init = s28hs512t_default_init,
.post_sfdp = s28hs512t_post_sfdp_fixup,
.post_bfpt = s28hs512t_post_bfpt_fixup,
};
#endif /* CONFIG_SPI_FLASH_S28HS512T */
/** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
* @nor: pointer to a 'struct spi_nor'
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_octal_dtr_enable(struct spi_nor *nor)
{
int ret;
if (!nor->octal_dtr_enable)
return 0;
if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
nor->write_proto == SNOR_PROTO_8_8_8_DTR))
return 0;
ret = nor->octal_dtr_enable(nor);
if (ret)
return ret;
nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
return 0;
}
static int spi_nor_init(struct spi_nor *nor)
{
int err;
err = spi_nor_octal_dtr_enable(nor);
if (err) {
dev_dbg(nor->dev, "Octal DTR mode not supported\n");
return err;
}
/*
* Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
* with the software protection bits set
*/
if (IS_ENABLED(CONFIG_SPI_FLASH_UNLOCK_ALL) &&
(JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
nor->info->flags & SPI_NOR_HAS_LOCK)) {
write_enable(nor);
write_sr(nor, 0);
spi_nor_wait_till_ready(nor);
}
if (nor->quad_enable) {
err = nor->quad_enable(nor);
if (err) {
dev_dbg(nor->dev, "quad mode not supported\n");
return err;
}
}
if (nor->addr_width == 4 &&
!(nor->info->flags & SPI_NOR_OCTAL_DTR_READ) &&
(JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
!(nor->info->flags & SPI_NOR_4B_OPCODES)) {
/*
* If the RESET# pin isn't hooked up properly, or the system
* otherwise doesn't perform a reset command in the boot
* sequence, it's impossible to 100% protect against unexpected
* reboots (e.g., crashes). Warn the user (or hopefully, system
* designer) that this is bad.
*/
if (nor->flags & SNOR_F_BROKEN_RESET)
debug("enabling reset hack; may not recover from unexpected reboots\n");
set_4byte(nor, nor->info, 1);
}
return 0;
}
#ifdef CONFIG_SPI_FLASH_SOFT_RESET
/**
* spi_nor_soft_reset() - perform the JEDEC Software Reset sequence
* @nor: the spi_nor structure
*
* This function can be used to switch from Octal DTR mode to legacy mode on a
* flash that supports it. The soft reset is executed in Octal DTR mode.
*
* Return: 0 for success, -errno for failure.
*/
static int spi_nor_soft_reset(struct spi_nor *nor)
{
struct spi_mem_op op;
int ret;
enum spi_nor_cmd_ext ext;
ext = nor->cmd_ext_type;
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DATA);
spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_warn(nor->dev, "Software reset enable failed: %d\n", ret);
goto out;
}
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DATA);
spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_warn(nor->dev, "Software reset failed: %d\n", ret);
goto out;
}
/*
* Software Reset is not instant, and the delay varies from flash to
* flash. Looking at a few flashes, most range somewhere below 100
* microseconds. So, wait for 200ms just to be sure.
*/
udelay(SPI_NOR_SRST_SLEEP_LEN);
out:
nor->cmd_ext_type = ext;
return ret;
}
#endif /* CONFIG_SPI_FLASH_SOFT_RESET */
int spi_nor_remove(struct spi_nor *nor)
{
#ifdef CONFIG_SPI_FLASH_SOFT_RESET
if (nor->info->flags & SPI_NOR_OCTAL_DTR_READ &&
nor->flags & SNOR_F_SOFT_RESET)
return spi_nor_soft_reset(nor);
#endif
return 0;
}
void spi_nor_set_fixups(struct spi_nor *nor)
{
#ifdef CONFIG_SPI_FLASH_S28HS512T
if (!strcmp(nor->info->name, "s28hs512t"))
nor->fixups = &s28hs512t_fixups;
#endif
}
int spi_nor_scan(struct spi_nor *nor)
{
struct spi_nor_flash_parameter params;
const struct flash_info *info = NULL;
struct mtd_info *mtd = &nor->mtd;
struct spi_slave *spi = nor->spi;
int ret;
/* Reset SPI protocol for all commands. */
nor->reg_proto = SNOR_PROTO_1_1_1;
nor->read_proto = SNOR_PROTO_1_1_1;
nor->write_proto = SNOR_PROTO_1_1_1;
nor->read = spi_nor_read_data;
nor->write = spi_nor_write_data;
nor->read_reg = spi_nor_read_reg;
nor->write_reg = spi_nor_write_reg;
nor->setup = spi_nor_default_setup;
#ifdef CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT
/*
* When the flash is handed to us in a stateful mode like 8D-8D-8D, it
* is difficult to detect the mode the flash is in. One option is to
* read SFDP in all modes and see which one gives the correct "SFDP"
* signature, but not all flashes support SFDP in 8D-8D-8D mode.
*
* Further, even if you detect the mode of the flash via SFDP, you
* still have the problem of actually reading the ID. The Read ID
* command is not standardized across flash vendors. Flashes can have
* different dummy cycles needed for reading the ID. Some flashes even
* expect a 4-byte dummy address with the Read ID command. All this
* information cannot be obtained from the SFDP table.
*
* So, perform a Software Reset sequence before reading the ID and
* initializing the flash. A Soft Reset will bring back the flash in
* its default protocol mode assuming no non-volatile configuration was
* set. This will let us detect the flash even if ROM hands it to us in
* Octal DTR mode.
*
* To accommodate cases where there is more than one flash on a board,
* and only one of them needs a soft reset, failure to reset is not
* made fatal, and we still try to read ID if possible.
*/
spi_nor_soft_reset(nor);
#endif /* CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT */
info = spi_nor_read_id(nor);
if (IS_ERR_OR_NULL(info))
return -ENOENT;
nor->info = info;
spi_nor_set_fixups(nor);
/* Parse the Serial Flash Discoverable Parameters table. */
ret = spi_nor_init_params(nor, info, &params);
if (ret)
return ret;
if (!mtd->name)
mtd->name = info->name;
mtd->dev = nor->dev;
mtd->priv = nor;
mtd->type = MTD_NORFLASH;
mtd->writesize = 1;
mtd->flags = MTD_CAP_NORFLASH;
mtd->size = params.size;
mtd->_erase = spi_nor_erase;
mtd->_read = spi_nor_read;
mtd->_write = spi_nor_write;
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
/* NOR protection support for STmicro/Micron chips and similar */
if (JEDEC_MFR(info) == SNOR_MFR_ST ||
JEDEC_MFR(info) == SNOR_MFR_MICRON ||
JEDEC_MFR(info) == SNOR_MFR_SST ||
info->flags & SPI_NOR_HAS_LOCK) {
nor->flash_lock = stm_lock;
nor->flash_unlock = stm_unlock;
nor->flash_is_locked = stm_is_locked;
}
#endif
#ifdef CONFIG_SPI_FLASH_SST
/*
* sst26 series block protection implementation differs from other
* series.
*/
if (info->flags & SPI_NOR_HAS_SST26LOCK) {
nor->flash_lock = sst26_lock;
nor->flash_unlock = sst26_unlock;
nor->flash_is_locked = sst26_is_locked;
}
#endif
if (info->flags & USE_FSR)
nor->flags |= SNOR_F_USE_FSR;
if (info->flags & SPI_NOR_HAS_TB)
nor->flags |= SNOR_F_HAS_SR_TB;
if (info->flags & NO_CHIP_ERASE)
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
if (info->flags & USE_CLSR)
nor->flags |= SNOR_F_USE_CLSR;
if (info->flags & SPI_NOR_NO_ERASE)
mtd->flags |= MTD_NO_ERASE;
nor->page_size = params.page_size;
mtd->writebufsize = nor->page_size;
/* Some devices cannot do fast-read, no matter what DT tells us */
if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
/*
* Configure the SPI memory:
* - select op codes for (Fast) Read, Page Program and Sector Erase.
* - set the number of dummy cycles (mode cycles + wait states).
* - set the SPI protocols for register and memory accesses.
* - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
*/
ret = spi_nor_setup(nor, info, &params);
if (ret)
return ret;
if (spi_nor_protocol_is_dtr(nor->read_proto)) {
/* Always use 4-byte addresses in DTR mode. */
nor->addr_width = 4;
} else if (nor->addr_width) {
/* already configured from SFDP */
} else if (info->addr_width) {
nor->addr_width = info->addr_width;
} else {
nor->addr_width = 3;
}
if (nor->addr_width == 3 && mtd->size > SZ_16M) {
#ifndef CONFIG_SPI_FLASH_BAR
/* enable 4-byte addressing if the device exceeds 16MiB */
nor->addr_width = 4;
if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
info->flags & SPI_NOR_4B_OPCODES)
spi_nor_set_4byte_opcodes(nor, info);
#else
/* Configure the BAR - discover bank cmds and read current bank */
nor->addr_width = 3;
ret = read_bar(nor, info);
if (ret < 0)
return ret;
#endif
}
if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
dev_dbg(nor->dev, "address width is too large: %u\n",
nor->addr_width);
return -EINVAL;
}
/* Send all the required SPI flash commands to initialize device */
ret = spi_nor_init(nor);
if (ret)
return ret;
nor->rdsr_dummy = params.rdsr_dummy;
nor->rdsr_addr_nbytes = params.rdsr_addr_nbytes;
nor->name = mtd->name;
nor->size = mtd->size;
nor->erase_size = mtd->erasesize;
nor->sector_size = mtd->erasesize;
#ifndef CONFIG_SPL_BUILD
printf("SF: Detected %s with page size ", nor->name);
print_size(nor->page_size, ", erase size ");
print_size(nor->erase_size, ", total ");
print_size(nor->size, "");
puts("\n");
#endif
return 0;
}
/* U-Boot specific functions, need to extend MTD to support these */
int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
{
int sr = read_sr(nor);
if (sr < 0)
return sr;
return (sr >> 2) & 7;
}