We plan to move architecture-specific data into a separate structure so
that we can make the rest of it common.
As a first step, create struct arch_global_data to hold these fields.
Initially it is empty.
This patch applies to all archs at once. I can split it if this is really
a pain.
Signed-off-by: Simon Glass <sjg@chromium.org>
When CoreNet Fabric (CCF) internal resources are consumed by the cores,
inbound SRIO messaging traffic through RMan can put the device into a
deadlock condition.
This errata workaround forces internal resources to be reserved for
upstream transactions. This ensures resources exist on the device for
upstream transactions and removes the deadlock condition.
The Workaround is for the T4240 silicon rev 1.0.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
If property 'fsl,sec-era' is already present, it is updated.
This property is required so that applications can ascertain which
descriptor commands are supported on a particular CAAM version.
Signed-off-by: Vakul Garg <vakul@freescale.com>
Cc: Andy Fleming <afleming@gmail.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
e6500 implements MMUv2 and supports power-of-2 page sizes rather than
power-of-4. Add support for such pages.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The BSC9132 is a highly integrated device that targets the evolving
Microcell, Picocell, and Enterprise-Femto base station market subsegments.
The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850
core technologies with MAPLE-B2P baseband acceleration processing elements
to address the need for a high performance, low cost, integrated solution
that handles all required processing layers without the need for an
external device except for an RF transceiver or, in a Micro base station
configuration, a host device that handles the L3/L4 and handover between
sectors.
The BSC9132 SoC includes the following function and features:
- Power Architecture subsystem including two e500 processors with
512-Kbyte shared L2 cache
- Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2
cache
- 32 Kbyte of shared M3 memory
- The Multi Accelerator Platform Engine for Pico BaseStation Baseband
Processing (MAPLE-B2P)
- Two DDR3/3L memory interfaces with 32-bit data width (40 bits including
ECC), up to 1333 MHz data rate
- Dedicated security engine featuring trusted boot
- Two DMA controllers
- OCNDMA with four bidirectional channels
- SysDMA with sixteen bidirectional channels
- Interfaces
- Four-lane SerDes PHY
- PCI Express controller complies with the PEX Specification-Rev 2.0
- Two Common Public Radio Interface (CPRI) controller lanes
- High-speed USB 2.0 host and device controller with ULPI interface
- Enhanced secure digital (SD/MMC) host controller (eSDHC)
- Antenna interface controller (AIC), supporting four industry
standard JESD207/four custom ADI RF interfaces
- ADI lanes support both full duplex FDD support & half duplex TDD
- Universal Subscriber Identity Module (USIM) interface that
facilitates communication to SIM cards or Eurochip pre-paid phone
cards
- Two DUART, two eSPI, and two I2C controllers
- Integrated Flash memory controller (IFC)
- GPIO
- Sixteen 32-bit timers
Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
strncasecmp() is present as strnicmp() but disabled. Make it available
and define strcasecmp() also. There is a only a small performance penalty
to having strcasecmp() call strncasecmp(), so do this instead of a
standalone function, to save code space.
Update the prototype in arch-specific headers as needed to avoid warnings.
Signed-off-by: Simon Glass <sjg@chromium.org>
By extracting these defines into a header, they can be re-used by other
C sources as well. This will be done by the SPL framework OS boot
support.
Signed-off-by: Stefan Roese <sr@denx.de>
The documented work-around for P4080 erratum SERDES-9 has been updated.
It is now compatible with the work-around for erratum A-4580.
This requires adding a few bitfield macros for the BnTTLCRy0 register.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Due to SerDes configuration error, if we set the PCI-e controller link width
as x8 in RCW and add a narrower width(such as x4, x2 or x1) PCI-e device to
PCI-e slot, it fails to train down to the PCI-e device's link width. According
to p4080ds errata PCIe-A003, we reset the PCI-e controller link width to x4 in
u-boot. Then it can train down to x2 or x1 width to make the PCI-e link between
RC and EP.
Signed-off-by: Yuanquan Chen <B41889@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
board configuration file is included before asm/config_mpc85xx.h.
however, CONFIG_FSL_SATA_V2 is defined in asm/config_mpc85xx.h.
it will never take effective in the board configuration file for
this kind of code :
#ifdef CONFIG_FSL_SATA_V2
...
#endif
To solve this problem, move CONFIG_FSL_SATA_V2 to board
configuration header file.
This patch reverts Timur's
commit:3e0529f742e893653848494ffb9f7cd0d91304bf
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The work-around for erratum A-004580 ("Internal tracking loop can falsely
lock causing unrecoverable bit errors") is implemented via the PBI
(pre-boot initialization code, typically attached to the RCW binary).
This is because the work-around is easier to implement in PBI than in
U-Boot itself.
It is still useful, however, for the 'errata' command to tell us whether
the work-around has been applied. For A-004580, we can do this by verifying
that the values in the specific registers that the work-around says to
update.
This change requires access to the SerDes lane sub-structure in
serdes_corenet_t, so we make it a named struct.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Once u-boot sets the spin table to cache-enabled memory, old kernel which
uses cache-inhibit mapping without coherence will not work properly. We
use this temporary fix until kernel has updated its spin table code.
For now this fix is activated by default. To disable this fix for new
kernel, set environmental variable "spin_table_compat=no". After kernel
has updated spin table code, this default shall be changed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The work-around for erratum A-004849 ("CoreNet fabric (CCF) can exhibit a
deadlock under certain traffic patterns causing the system to hang") is
implemented via the PBI (pre-boot initialization code, typically attached
to the RCW binary). This is because the work-around is easier to implement
in PBI than in U-Boot itself.
It is still useful, however, for the 'errata' command to tell us whether
the work-around has been applied. For A-004849, we can do this by verifying
that the values in the specific registers that the work-around says to
update.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The P5040 has an e5500 core, so CONFIG_SYS_PPC64 should be defined in
config_mpc85xx.h. This macro was absent in the initial P5040 patch because
it crossed paths with the patch that introduced the macro.
Also delete CONFIG_SYS_FSL_ELBC_MULTIBIT_ECC, since it's not used in the
upstream U-Boot. It's a holdover from the SDK.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
There were a number of shared files that were using
CONFIG_SYS_MPC85xx_DDR_ADDR, or CONFIG_SYS_MPC86xx_DDR_ADDR, and
several variants (DDR2, DDR3). A recent patchset added
85xx-specific ones to code which was used by 86xx systems.
After reviewing places where these constants were used, and
noting that the type definitions of the pointers assigned to
point to those addresses were the same, the cleanest approach
to fixing this problem was to unify the namespace for the
85xx, 83xx, and 86xx DDR address definitions.
This patch does:
s/CONFIG_SYS_MPC8.xx_DDR/CONFIG_SYS_MPC8xxx_DDR/g
All 85xx, 86xx, and 83xx have been built with this change.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Tested-by: Andy Fleming <afleming@freescale.com>
Acked-by: Kim Phillips <kim.phillips@freescale.com>
a fixup __iomem definition in arch code appears to be placed there as a cover
up from a code import from linux when u-boot didn't yet have a compiler.h,
introduced by commit 812711ce6b "Implement
__raw_{read,write}[bwl] on all architectures".
git show 812711ce6b3a386125dcf0d6a59588e461abbb87:include/linux/compiler.h
fatal: Path 'include/linux/compiler.h' exists on disk, but not in '812711ce6b3a386125dcf0d6a59588e461abbb87'.
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
u-boot's byteorder headers did not contain endianness attributions
for use with sparse, causing a lot of false positives. Import the
kernel's latest definitions, and enable them by including compiler.h
and types.h. They come with 'const' added for some swab functions, so
fix those up, too:
include/linux/byteorder/big_endian.h:46:2: warning: passing argument 1 of '__swab64p' discards 'const' qualifier from pointer target type [enabled by default]
Also, note: u-boot's historic __BYTE_ORDER definition has been
preserved (for the time being at least).
We also remove ad-hoc barrier() definitions, since we're including
compiler.h in files that hadn't in the past:
macb.c:54:0: warning: "barrier" redefined [enabled by default]
In addition, including compiler.h in byteorder changes the 'noinline'
definition to expand to __attribute__((noinline)). This fixes
arch/powerpc/lib/bootm.c:
bootm.c:329:16: error: attribute '__attribute__': unknown attribute
bootm.c:329:16: error: expected ')' before '__attribute__'
bootm.c:329:25: error: expected identifier or '(' before ')' token
powerpc sparse builds yield:
include/common.h:356:22: error: marked inline, but without a definition
the unknown-reason inlining without a definition is considered obsolete
given it was part of the 2002 initial commit, and no arm version was
'fixed.'
also fixed:
ydirectenv.h:60:0: warning: "inline" redefined [enabled by default]
and:
Configuring for devconcenter - Board: intip, Options: DEVCONCENTER
make[1]: *** [4xx_ibm_ddr2_autocalib.o] Error 1
make: *** [arch/powerpc/cpu/ppc4xx/libppc4xx.o] Error 2
powerpc-fsl-linux-size: './u-boot': No such file
4xx_ibm_ddr2_autocalib.c: In function 'DQS_autocalibration':
include/asm/ppc4xx-sdram.h:1407:13: sorry, unimplemented: inlining failed in call to 'ppc4xx_ibm_ddr2_register_dump': function body not available
4xx_ibm_ddr2_autocalib.c:1243:32: sorry, unimplemented: called from here
and:
In file included from crc32.c:50:0:
crc32table.h:4:1: warning: implicit declaration of function '___constant_swab32' [-Wimplicit-function-declaration]
crc32table.h:4:1: error: initializer element is not constant
crc32table.h:4:1: error: (near initialization for 'crc32table_le[0]')
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
[trini: Remove '#endif' in include/common.h around setenv portion]
Signed-off-by: Tom Rini <trini@ti.com>
This processor, though very similar to other members of the
PowerQUICC II Pro family (namely 8308, 8360 and 832x), provides
yet another feature set than any supported sibling.
Signed-off-by: Gerlando Falauto <gerlando.falauto@keymile.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Introduce a new configuration token CONFIG_MPC830x to be shared among
mpc8308 and mpc8309. Define it for existing 8308 boards, and refactor
existing common code so to make future introduction of 8309 simpler.
Signed-off-by: Gerlando Falauto <gerlando.falauto@keymile.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Currently, the SRIO and PCIE boot master module will be compiled into the
u-boot image if the macro "CONFIG_FSL_CORENET" has been defined. And this
macro has been included by all the corenet architecture platform boards.
But in fact, it's uncertain whether all corenet platform boards support
this feature.
So it may be better to get rid of the macro "CONFIG_FSL_CORENET", and add
a special macro for every board which can support the feature. This
special macro will be defined in the header file
"arch/powerpc/include/asm/config_mpc85xx.h". It will decide if the SRIO
and PCIE boot master module should be compiled into the board u-boot image.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Move spin table to cached memory to comply with ePAPR v1.1.
Load R3 with 64-bit value if CONFIG_SYS_PPC64 is defined.
'M' bit is set for DDR TLB to maintain cache coherence.
See details in doc/README.mpc85xx-spin-table.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
After DDR controller is enabled, it performs a calibration for the
transmit data vs DQS paths. During this calibration, the DDR controller
may make an inaccurate calculation, resulting in a non-optimal tap point.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Boot space translation utilizes the pre-translation address to select
the DDR controller target. However, the post-translation address will be
presented to the selected DDR controller. It is possible that the pre-
translation address selects one DDR controller but the post-translation
address exists in a different DDR controller when using certain DDR
controller interleaving modes. The device may fail to boot under these
circumstances. Note that a DDR MSE error will not be detected since DDR
controller bounds registers are programmed to be the same when configured
for DDR controller interleaving.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When ECC is enabled, DDR controller needs to initialize the data and ecc.
The wait time can be calcuated with total memory size, bus width, bus speed
and interleaving mode. If it went wrong, it is bettert to timeout than
waiting for D_INIT to clear, where it probably hangs.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Fix handling quad-rank DIMMs in a system with two DIMM slots and first
slot supports both dual-rank DIMM and quad-rank DIMM.
For systems with quad-rank DIMM and double dual-rank DIMMs, cs_config
registers need to be enabled to maintain proper ODT operation. The
inactive CS should have bnds registers cleared.
Fix the turnaround timing for systems with all chip-selects enabled. This
wasn't an issue before because DDR was running lower than 1600MT/s with
this interleaving mode.
Fix DDR address calculation. It wasn't an issue until we have multiple
controllers with each more than 4GB and interleaving is disabled.
It also fixes the message of DDR: 2 GiB (DDR3, 64-bit, CL=0.5, ECC off)
when debugging DDR and first DDR controller is disabled. With the fix,
the first enabled controller information will be displayed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
DDRC ver 4.7 adds DDR_SLOW bit in sdram_cfg_2 register. This bit needs to be
set for speed lower than 1250MT/s.
CDR1 and CDR2 are control driver registers. ODT termination valueis for
IOs are defined. Starting from DDRC 4.7, the decoding of ODT for IOs is
000 -> Termsel off
001 -> 120 Ohm
010 -> 180 Ohm
011 -> 75 Ohm
100 -> 110 Ohm
101 -> 60 Ohm
110 -> 70 Ohm
111 -> 47 Ohm
Add two write leveling registers. Each QDS now has its own write leveling
start value. In case of zero value, the value of QDS0 will be used. These
values are board-specific and are set in board files.
Extend DDR register timing_cfg_1 to have 4 bits for each field.
DDR control driver registers and write leveling registers are added to
interactive debugging for easy access.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The multirate ethernet media access controller (mEMAC) interfaces to
10Gbps and below Ethernet/IEEE 802.3 networks via either RGMII/RMII
interfaces or XAUI/XFI/SGMII/QSGMII using the high-speed SerDes interface.
Signed-off-by: Sandeep Singh <Sandeep@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for Freescale B4860 and variant SoCs. Features of B4860 are
(incomplete list):
Six fully-programmable StarCore SC3900 FVP subsystems, divided into three
clusters-each core runs up to 1.2 GHz, with an architecture highly
optimized for wireless base station applications
Four dual-thread e6500 Power Architecture processors organized in one
cluster-each core runs up to 1.8 GHz
Two DDR3/3L controllers for high-speed, industry-standard memory interface
each runs at up to 1866.67 MHz
MAPLE-B3 hardware acceleration-for forward error correction schemes
including Turbo or Viterbi decoding, Turbo encoding and rate matching,
MIMO MMSE equalization scheme, matrix operations, CRC insertion and
check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration,
and UMTS chip rate acceleration
CoreNet fabric that fully supports coherency using MESI protocol between
the e6500 cores, SC3900 FVP cores, memories and external interfaces.
CoreNet fabric interconnect runs at 667 MHz and supports coherent and
non-coherent out of order transactions with prioritization and
bandwidth allocation amongst CoreNet endpoints.
Data Path Acceleration Architecture, which includes the following:
Frame Manager (FMan), which supports in-line packet parsing and general
classification to enable policing and QoS-based packet distribution
Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading
of queue management, task management, load distribution, flow ordering,
buffer management, and allocation tasks from the cores
Security engine (SEC 5.3)-crypto-acceleration for protocols such as
IPsec, SSL, and 802.16
RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and
outbound). Supports types 5, 6 (outbound only)
Large internal cache memory with snooping and stashing capabilities for
bandwidth saving and high utilization of processor elements. The
9856-Kbyte internal memory space includes the following:
32 Kbyte L1 ICache per e6500/SC3900 core
32 Kbyte L1 DCache per e6500/SC3900 core
2048 Kbyte unified L2 cache for each SC3900 FVP cluster
2048 Kbyte unified L2 cache for the e6500 cluster
Two 512 Kbyte shared L3 CoreNet platform caches (CPC)
Sixteen 10-GHz SerDes lanes serving:
Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total
of up to 8 lanes
Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue-
less antenna connection
Two 10-Gbit Ethernet controllers (10GEC)
Six 1G/2.5-Gbit Ethernet controllers for network communications
PCI Express controller
Debug (Aurora)
Two OCeaN DMAs
Various system peripherals
182 32-bit timers
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for Freescale T4240 SoC. Feature of T4240 are
(incomplete list):
12 dual-threaded e6500 cores built on Power Architecture® technology
Arranged as clusters of four cores sharing a 2 MB L2 cache.
Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture
v2.06-compliant)
Three levels of instruction: user, supervisor, and hypervisor
1.5 MB CoreNet Platform Cache (CPC)
Hierarchical interconnect fabric
CoreNet fabric supporting coherent and non-coherent transactions with
prioritization and bandwidth allocation amongst CoreNet end-points
1.6 Tbps coherent read bandwidth
Queue Manager (QMan) fabric supporting packet-level queue management and
quality of service scheduling
Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support
Memory prefetch engine (PMan)
Data Path Acceleration Architecture (DPAA) incorporating acceleration for
the following functions:
Packet parsing, classification, and distribution (Frame Manager 1.1)
Queue management for scheduling, packet sequencing, and congestion
management (Queue Manager 1.1)
Hardware buffer management for buffer allocation and de-allocation
(BMan 1.1)
Cryptography acceleration (SEC 5.0) at up to 40 Gbps
RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps
Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps
DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0)
32 SerDes lanes at up to 10.3125 GHz
Ethernet interfaces
Up to four 10 Gbps Ethernet MACs
Up to sixteen 1 Gbps Ethernet MACs
Maximum configuration of 4 x 10 GE + 8 x 1 GE
High-speed peripheral interfaces
Four PCI Express 2.0/3.0 controllers
Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with
Type 11 messaging and Type 9 data streaming support
Interlaken look-aside interface for serial TCAM connection
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Four I2C controllers
Four 2-pin or two 4-pin UARTs
Integrated Flash controller supporting NAND and NOR flash
Two eight-channel DMA engines
Support for hardware virtualization and partitioning enforcement
QorIQ Platform's Trust Architecture 1.1
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The T4 has added devices to previous corenet implementations:
* SEC has 3 more DECO units
* New PMAN device
* New DCE device
This doesn't add full support for the new devices. Just some
preliminary support.
Move PMAN LIODN to upper half of register
Despite having only one LIODN, the PMAN LIODN is stored in the
upper half of the register. Re-use the 2-LIODN code and just
set the LIODN as if the second one is 0. This results in the
actual LIODN being written to the upper half of the register.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Create new files to handle 2nd generation Chassis as the registers are
organized differently.
- Add SerDes protocol parsing and detection
- Add support of 4 SerDes
- Add CPRI protocol in fsl_serdes.h
The Common Public Radio Interface (CPRI) is publicly available
specification that standardizes the protocol interface between the
radio equipment control (REC) and the radio equipment (RE) in wireless
basestations. This allows interoperability of equipment from different
vendors,and preserves the software investment made by wireless service
providers.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Corenet 2nd generation Chassis has different RCW and registers for SerDes.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The QCSP registers are expanded and moved from offset 0 to offset 0x1000
for SoCs with QMan v3.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Expand the reference clock select to three bits
000: 100 MHz
001: 125 MHz
010: 156.25MHz
011: 150 MHz
100: 161.1328125 MHz
All others reserved
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Corenet based SoCs have different core clocks starting from Chassis
generation 2. Cores are organized into clusters. Each cluster has up to
4 cores sharing same clock, which can be chosen from one of three PLLs in
the cluster group with one of the devisors /1, /2 or /4. Two clusters are
put together as a cluster group. These two clusters share the PLLs but may
have different divisor. For example, core 0~3 are in cluster 1. Core 4~7
are in cluster 2. Core 8~11 are in cluster 3 and so on. Cluster 1 and 2
are cluster group A. Cluster 3 and 4 are in cluster group B. Cluster group
A has PLL1, PLL2, PLL3. Cluster group B has PLL4, PLL5. Core 0~3 may have
PLL1/2, core 4~7 may have PLL2/2. Core 8~11 may have PLL4/1.
PME and FMan blocks can take different PLLs, configured by RCW.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Chassis generation 2 has different mask and shift. Use macro instead of
magic numbers.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Using E6500 L1 cache as initram requires L2 cache enabled.
Add l2-cache cluster enabling.
Setup stash id for L1 cache as (coreID) * 2 + 32 + 0
Setup stash id for L2 cache as (cluster) * 2 + 32 + 1
Stash id for L2 is only set for Chassis 2.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
FSL_HW_PORTAL_PME is used even when CONFIG_SYS_DPAA_PME is not defined.
Remove the #ifdef.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for the Freescale P5040 SOC, which is similar to the P5020.
Features of the P5040 are:
Four P5040 single-threaded e5500 cores built
Up to 2.4 GHz with 64-bit ISA support
Three levels of instruction: user, supervisor, hypervisor
CoreNet platform cache (CPC)
2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric
Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support Up to 1600MT/s
Memory pre-fetch engine
DPAA incorporating acceleration for the following functions
Packet parsing, classification, and distribution (FMAN)
Queue management for scheduling, packet sequencing and
congestion management (QMAN)
Hardware buffer management for buffer allocation and
de-allocation (BMAN)
Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes
20 lanes at up to 5 Gbps
Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces
Two 10 Gbps Ethernet MACs
Ten 1 Gbps Ethernet MACs
High-speed peripheral interfaces
Two PCI Express 2.0/3.0 controllers
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Two I2C controllers
Four UARTs
Integrated flash controller supporting NAND and NOR flash
DMA
Dual four channel
Support for hardware virtualization and partitioning enforcement
Extra privileged level for hypervisor support
QorIQ Trust Architecture 1.1
Secure boot, secure debug, tamper detection, volatile key storage
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The P5040 does not have SRIO support, so there are no SRIO LIODNs.
Therefore, the functions that set the SRIO LIODNs should not be compiled.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The liodn for the new PCIE controller included in P5040DS is no longer set
through a register in the guts register block but with one in the PCIE
register block itself. Update the PCIE CCSR structure to add the new liodn
register and add a new dedicated SET_PCI_LIODN_BASE macro that puts
the liodn in the correct register.
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Erratum: A-004034
Affects: SRIO
Description: During port initialization, the SRIO port performs
lane synchronization (detecting valid symbols on a lane) and
lane alignment (coordinating multiple lanes to receive valid data
across lanes). Internal errors in lane synchronization and lane
alignment may cause failure to achieve link initialization at
the configured port width.
An SRIO port configured as a 4x port may see one of these scenarios:
1. One or more lanes fails to achieve lane synchronization.
Depending on which lanes fail, this may result in downtraining
from 4x to 1x on lane 0, 4x to 1x on lane R (redundant lane).
2. The link may fail to achieve lane alignment as a 4x, even
though all 4 lanes achieve lane synchronization, and downtrain
to a 1x. An SRIO port configured as a 1x port may fail to complete
port initialization (PnESCSR[PU] never deasserts) because of
scenario 1.
Impact: SRIO port may downtrain to 1x, or may fail to complete
link initialization. Once a port completes link initialization
successfully, it will operate normally.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
P4080 Rev3.0 fixes ESDHC13 errata, so update the code to make the
workaround conditional.
In formal release document, the errata number should be ESDHC13 instead
of ESDHC136.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Users of familiar with the Linux gpiolib API expect that value parameter
to gpio_direction_output reflects the initial state of the output pin.
gpio_direction_output was always driving the output low, now it drives
it high or low according to the value provided.
Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Cc: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Cc: Andy Fleming <afleming@gmail.com>
Cc: Peter Tyser <ptyser@xes-inc.com>
Cc: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
As the board seems to be unmaintained for some time, lets remove
the support in mainline completely.
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: James MacAulay <james.macaulay@amirix.com>
Acked-by: Marek Vasut <marex@denx.de>
As the board seems to be unmaintained for some time, lets remove
the support in mainline completely.
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Peter De Schrijver <p2@mind.be>
Acked-by: Marek Vasut <marex@denx.de>
Since the IOP480 (PPC401/3 variant from PLX) is only used on 2
boards that are not actively maintained, lets remove support
for it completely. This way the ppc4xx code will get a bit cleaner.
Signed-off-by: Stefan Roese <sr@denx.de>
Acked-by: Matthias Fuchs <matthias.fuchs@esd.eu>
Acked-by: Marek Vasut <marex@denx.de>
Since commit 50a47d0523
(net: punt bd->bi_ip_addr) booting old 2.4.x ppc kernels
is broken due to changed offsets of the fields in struct bd_t.
Offsets of the fields after removed bi_ip_addr are wrong,
causing wrong bus clocks and console baudrate configurations
and various other issues. Re-add the bi_ip_addr field to preserve
backward compatibility with older ppc kernels. Setting bi_ip_addr
in board.c is not really needed, grepping in the 2.4 linux tree
shows that bi_ip_addr is not accessed there. Adding bi_ip_addr
to struct bd_t for other arches isn't needed it seems. bd_t is
not used by other arches in the 2.4 linux tree.
Signed-off-by: Anatolij Gustschin <agust@denx.de>
Acked-by: Wolfgang Denk <wd@denx.de>
Instead of just shooting down the entry that covers CCSR, clear out
every TLB entry that isn't the one that we're executing out of.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Before proper environment is setup, we extract hwconfig and put it into a
buffer with size HWCONFIG_BUFFER_SIZE. We need to enlarge the buffer to
accommodate longer string. Since this macro is used in multiple files, we
move it into arch/powerpc/include/asm/config.h.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Restructure DDR interleaving option to support 3 and 4 DDR controllers
for 2-, 3- and 4-way interleaving.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When the DDR3 speed goes higher, we need to utilize fine offset
from SPD.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
For the cores with multiple threads, we need to figure out which physical
core a thread belongs. To match the core ids, update PIR registers and
spin tables.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
In case more than 32 bit address is used, the EXT bit should be set.
Need to fix up address map for IFC #CS for 4, also need to move # of IFC
banks into config_mpc85xx.h
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
We have actual topology infomation to find out exactly which core is present.
Calculate the number of cores if not specified.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Freescale's High-End SoC are going to have Integrated Flash controller
(IFC)'s support.
So add IFC LAW target ID support for High-End SoC or corenet SoC.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Freescale's e500v1 and e500v2 cores (used in mpc85xx chips) have some
restrictions on external debugging (JTAG). Need to define define
CONFIG_SYS_PPC_E500_DEBUG_TLB to enable a temporary TLB entry to be
used during boot to work around the limitations.
Enable missed e500v2 SoC i.e. MPC8536, MPC8544, MPC8548 and MPC8572 for
debug support.
Signed-off-by: Radu Lazarescu <radu.lazarescu@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Cc: Tang Yuantian <Yuantian.Tang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Erratum A004510 says that under certain load conditions, modified
cache lines can be discarded, causing data corruption.
To work around this, several CCSR and DCSR register updates need to be
made in a careful manner, so that there is no other transaction in
corenet when the update is made.
The update is made from a locked cacheline, with a delay before to flush
any previous activity, and a delay after to flush the CCSR/DCSR update.
We can't use a readback because that would be another corenet
transaction, which is not allowed.
We lock the subsequent cacheline to prevent it from being fetched while
we're executing the previous cacheline. It is filled with nops so that a
branch doesn't cause us to fetch another cacheline.
Ordinarily we are running in a cache-inhibited mapping at this point, so
we temporarily change that. We make it guarded so that we should never
see a speculative load, and we never do an explicit load. Thus, only the
I-cache should ever fill from this mapping, and we flush/unlock it
afterward. Thus we should avoid problems from any potential cache
aliasing between inhibited and non-inhibited mappings.
NOTE that if PAMU is used with this patch, it will need to use a
dedicated LAW as described in the erratum. This is the responsibility
of the OS that sets up PAMU.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
These are not supported as individual build targets, but instead
are supported by another target.
The dead p4040 defines in particular had bitrotted significantly.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The P3060 was cancelled before it went into production, so there's no point
in supporting it.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Unlike previous SOCs, the Freescale P5040 has a fifth DTSEC on the second
Fman, so add the Fman and SerDes macros for that DTSEC.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Currently, for NAND boot for the P1010/4RDB we hard code the DDR
configuration. We can still dynamically set the DDR bus width in
the nand spl so the P1010/4RDB boards can boot from the same
u-boot image
Signed-off-by: Matthew McClintock <msm@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
P1015 is the same as P1011 and P1016 is the same as P1012 from software
point of view. They have different packages but share SVRs.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When compile the slave image for boot from SRIO, no longer need to
specify which SRIO port it will boot from. The code will get this
information from RCW and then finishes corresponding configurations.
This has the following advantages:
1. No longer need to rebuild an image when change the SRIO port for
boot from SRIO, just rewrite the new RCW with selected port,
then the code will get the port information by reading new RCW.
2. It will be easier to support other boot location options, for
example, boot from PCIE.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Get rid of the SRIOBOOT_MASTER build target, and to support for serving as
a SRIO boot master via environment variable. Set the environment variable
"bootmaster" to "SRIO1" or "SRIO2" using the following command:
setenv bootmaster SRIO1
saveenv
The "bootmaster" will enable the function of the SRIO boot master, and
this has the following advantages compared with SRIOBOOT_MASTER build
configuration:
1. Reduce a build configuration item in boards.cfg file.
No longer need to build a special image for master, just use a
normal target image and set the "bootmaster" variable.
2. No longer need to rebuild an image when change the SRIO port for
boot from SRIO, just set the corresponding value to "bootmaster"
based on the using SRIO port.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
This erratum applies to the following SoCs:
P4080 rev 1.0, 2.0, fixed in rev 3.0
P2041 rev 1.0, 1.1, fixed in rev 2.0
P3041 rev 1.0, 1.1, fixed in rev 2.0.
Workaround for erratum NMG_CPU_A011 is enabled by default. This workaround
may degrade performance. P4080 erratum CPU22 shares the same workaround.
So it is always enabled for P4080. For other SoCs, it can be disabled by
hwconfig with syntax:
fsl_cpu_a011:disable
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Prototype declaration of I/O operation functions are not correct. as both
'extern' and function definition are at same place.
Chage protoype declaration as static.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Return type of in_8, in_be16 and in_le16 should not be'int'. Update it to type
u8/u16/u32.
Although 'unsigned' for in_be32 and in_le32 is correct. But to make return type
uniform across the file changed to u32
Similarly, parameter passed to out_8, out_be16, out_le16 ,out_be32 & out_le32
should not be 'int'.Change it to type u8/u16/u32.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
All the global flag defines are the same across all arches. So unify them
in one place, and add a simple way for arches to extend for their needs.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Commit 48f6a5c34 removed E bit. BSC9130/1 were left out due to patch apply
timing. Remove them now.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The BR_PHYS_ADDR(x) macro was missing parentheses around "x" in the macro
definition, so callers had to supply their own parenthesis.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Erratum NMG_CPU_A011 applies to P4080 rev 1.0, 2.0, fixed in rev 3.0.
It also applies to P3041 rev 1.0, 1.1, P2041 rev 1.0, 1.1. It shares the
same workaround as erratum CPU22. Rearrange registers usage in assembly
code to avoid accidental overwriting.
Signed-off-by: York Sun <yorksun@freescale.com>
We don't care E bit of SVR in most cases. Clear E bit for SVR_SOC_VER().
This will simplify the coding. Use IS_E_PROCESSOR() to identify SoC with
encryption. Remove all _E entries from SVR list and CPU list.
Signed-off-by: York Sun <yorksun@freescale.com>
addrmap_phys_to_virt() converts a physical address (phys_addr_t) to a
virtual address, so it should return a pointer instead of an unsigned long.
Its counterpart, addrmap_virt_to_phys(), takes a pointer, so now they're
orthogonal.
The only caller of addrmap_phys_to_virt() converts the return value to
a pointer anyway.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Freescale's e500v1 and e500v2 cores (used in mpc85xx chips) have some
restrictions on external debugging (JTAG).
So define CONFIG_SYS_PPC_E500_DEBUG_TLB to enable a temporary TLB entry to be
used during boot to work around the limitations.
Please refer doc/README.mpc85xx for more information
Signed-off-by: Radu Lazarescu <radu.lazarescu@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
- BSC9131 is integrated device that targets Femto base station market.
It combines Power Architecture e500v2 and DSP StarCore SC3850 core
technologies with MAPLE-B2F baseband acceleration processing elements.
- BSC9130 is exactly same as BSC9131 except that the max e500v2
core and DSP core frequencies are 800M(these are 1G in case of 9131).
- BSC9231 is similar to BSC9131 except no MAPLE
The BSC9131 SoC includes the following function and features:
. Power Architecture subsystem including a e500 processor with 256-Kbyte shared
L2 cache
. StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache
. The Multi Accelerator Platform Engine for Femto BaseStation Baseband
Processing (MAPLE-B2F)
. A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding,
Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing,
and CRC algorithms
. Consists of accelerators for Convolution, Filtering, Turbo Encoding,
Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion
operations
. DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with
ECC, up to 400-MHz clock/800 MHz data rate
. Dedicated security engine featuring trusted boot
. DMA controller
. OCNDMA with four bidirectional channels
. Interfaces
. Two triple-speed Gigabit Ethernet controllers featuring network acceleration
including IEEE 1588. v2 hardware support and virtualization (eTSEC)
. eTSEC 1 supports RGMII/RMII
. eTSEC 2 supports RGMII
. High-speed USB 2.0 host and device controller with ULPI interface
. Enhanced secure digital (SD/MMC) host controller (eSDHC)
. Antenna interface controller (AIC), supporting three industry standard
JESD207/three custom ADI RF interfaces (two dual port and one single port)
and three MAXIM's MaxPHY serial interfaces
. ADI lanes support both full duplex FDD support and half duplex TDD support
. Universal Subscriber Identity Module (USIM) interface that facilitates
communication to SIM cards or Eurochip pre-paid phone cards
. TDM with one TDM port
. Two DUART, four eSPI, and two I2C controllers
. Integrated Flash memory controller (IFC)
. TDM with 256 channels
. GPIO
. Sixteen 32-bit timers
The DSP portion of the SoC consists of DSP core (SC3850) and various
accelerators pertaining to DSP operations.
This patch takes care of code pertaining to power side functionality only.
Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com>
Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com>
Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
This field gets read in one place (by "bdinfo"), and we can replace
that with getenv("ipaddr"). After all, the bi_ip_addr field is kept
up-to-date implicitly with the value of the ipaddr env var.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Reviewed-by: Joe Hershberger <joe.hershberger@ni.com>
When boot from SRIO, slave's core can be in holdoff after powered on for
some specific requirements. Master can release the slave's core at the
right time by SRIO interface.
Master needs to:
1. Set outbound SRIO windows in order to configure slave's registers
for the core's releasing.
2. Check the SRIO port status when release slave core, if no errors,
will implement the process of the slave core's releasing.
Slave needs to:
1. Set all the cores in holdoff by RCW.
2. Be powered on before master's boot.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
For the powerpc processors with SRIO interface, boot location can be configured
from SRIO1 or SRIO2 by RCW. The processor booting from SRIO can do without flash
for u-boot image. The image can be fetched from another processor's memory
space by SRIO link connected between them.
The processor boots from SRIO is slave, the processor boots from normal flash
memory space and can help slave to boot from its memory space is master.
They are different environments and requirements:
master:
1. NOR flash for its own u-boot image, ucode and ENV space.
2. Slave's u-boot image in master NOR flash.
3. Normally boot from local NOR flash.
4. Configure SRIO switch system if needed.
slave:
1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV.
2. Boot location should be set to SRIO1 or SRIO2 by RCW.
3. RCW should configure the SerDes, SRIO interfaces correctly.
4. Slave must be powered on after master's boot.
For the master module, need to finish these processes:
1. Initialize the SRIO port and address space.
2. Set inbound SRIO windows covered slave's u-boot image stored in
master's NOR flash.
3. Master's u-boot image should be generated specifically by
make xxxx_SRIOBOOT_MASTER_config
4. Master must boot first, and then slave can be powered on.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
* 'master' of git://git.denx.de/u-boot-mpc85xx:
fsl_lbc: add printout of LCRR and LBCR to local bus regs
sbc8548: Fix up local bus init to be frequency aware
sbc8548: enable support for hardware SPD errata workaround
sbc8548: relocate fixed ddr init code to ddr.c file
sbc8548: Make enabling SPD RAM configuration work
sbc8548: Fix LBC SDRAM initialization settings
sbc8548: enable ability to boot from alternate flash
sbc8548: relocate 64MB user flash to sane boundary
Revert "SBC8548: fix address mask to allow 64M flash"
MPC85xxCDS: Fix missing LCRR_DBYP bits for 66-133MHz LBC
eXMeritus HWW-1U-1A: Add support for the AT24C128N I2C EEPROM
eXMeritus HWW-1U-1A: Minor environment variable tweaks
It can be handy to have these in the output when trying to
debug odd behaviour.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Joe Hershberger <joe.hershberger@ni.com>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
This adds support for the Freescale COM Express P2020 board. This board
is similar to the P1_P2_RDB, but has some extra (as well as missing)
peripherals.
Unlike all other mpc85xx boards, it uses a watchdog timeout to reset.
Using the HRESET_REQ register does not work.
This board has no NOR flash, and can only be booted via SD or SPI. This
procedure is documented in Freescale Document Number AN3659 "Booting
from On-Chip ROM (eSDHC or eSPI)." Some alternative documentation is
provided in Freescale Document Number P2020RM "P2020 QorIQ Integrated
Processor Reference Manual" (section 4.5).
Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Macro CONFIG_FSL_SATA_V2 is defined if the SOC has a V2 Freescale SATA
controller, so it should be defined in config_mpc85xx.h instead of the various
board header files. So now CONFIG_FSL_SATA_V2 is always defined on the P1013,
P1022, P2041, P3041, P5010, and P5020. It was already defined for the
P1010 and P1014.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Erratum A-003474: Internal DDR calibration circuit is not supported
Impact:
Experience shows no significant benefit to device operation with
auto-calibration enabled versus it disabled. To ensure consistent timing
results, Freescale recommends this feature be disabled in future customer
products. There should be no impact to parts that are already operating
in the field.
Workaround:
Prior to setting DDR_SDRAM_CFG[MEM_EN]=1, do the following:
1. Write a value of 0x0000_0015 to the register at offset
CCSRBAR + DDR OFFSET + 0xf30
2. Write a value of 0x2400_0000 to the register at offset
CCSRBAR + DDR OFFSET + 0xf54
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Erratum A-003999: Running Floating Point instructions requires special
initialization.
Impact:
Floating point arithmetic operations may result in an incorrect value.
Workaround:
Perform a read modify write to set bit 7 to a 1 in SPR 977 before
executing any floating point arithmetic operation. This bit can be set
when setting MSR[FP], and can be cleared when clearing MSR[FP].
Alternatively, the bit can be set once at boot time, and never cleared.
There will be no performance degradation due to setting this bit.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
A few of the config registers changed definition between MMU v1.0 and
MMUv2.0. The new e6500 core from Freescale implements v2.0 of the
architecture.
Specifically, how we determine the size of TLB entries we support in the
variable size (or TLBCAM/TLB1) array is specified in a new register
(TLBnPS - TLB n Page size) instead of via TLBnCFG.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Some of the MAS register macros do not protect the parameter with
parentheses, which could cause wrong values if the parameter includes
operators.
Also fix the definition of TSIZE_TO_BYTES() so that it actually uses
the parameter. This hasn't caused any problems to date because the
parameter was always been 'tsize'.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Erratum NMG_eTSEC129 (eTSEC86 in MPC8548 document) applies to some early
verion silicons. This workaround detects if the eTSEC Rx logic is properly
initialized, and reinitialize the eTSEC Rx logic.
Signed-off-by: Gong Chen <g.chen@freescale.com>
Signed-off-by: Zhao Chenhui <chenhui.zhao@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Joe Hershberger <joe.hershberger@ni.com>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Joe Hershberger <joe.hershberger@ni.com>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Added siprr_{b,c} and sepcr for completeness.
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
The byte address distance between GTCFR2 and GTMDR1 is 11, not 10.
Reported-by: Shawn Bai <programassem@hotmail.com>
Acked-by: Joe Hershberger <joe.hershberger@ni.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Anton Staaf <robotboy@chromium.org>
Acked-by: Stefan Roese <sr@denx.de>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Lukasz Majewski <l.majewski@samsung.com>
Cc: Wolfgang Denk <wd@denx.de>
Cc: Stefan Roese <sr@denx.de>
There are several mdelay() definitions in the driver and
board code. Remove them all and provide a common mdelay()
in lib/time.c.
Signed-off-by: Anatolij Gustschin <agust@denx.de>
Acked-by: Mike Frysinger <vapier@gentoo.org>
To ease the implementation of other MPC85xx board ports, several common
GPIO helpers are added to <asm/mpc85xx_gpio.h>.
Since each of these compiles to no more than 4-5 instructions it would
be very inefficient to call them out of line, therefore we put them
entirely in the header file.
The HWW-1U-1A board port which these were written for strongly prefers
to set multiple GPIOs as a single batch operation, so the API is
designed around that basis.
To assist other board ports, a small set of wrappers are used which
provides a standard gpio_request() interface around the MPC85xx-specific
functions. This can be enabled with CONFIG_MPC85XX_GENERIC_GPIO
Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Cc: Andy Fleming <afleming@gmail.com>
Cc: Peter Tyser <ptyser@xes-inc.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
This patch is intended to initialize RMan LIODN related registers on
P2041, P304S and P5020 SocS. It also adds the "rman@0" child node to
qman-portal nodes, adds "fsl,liodn" property to RMan inbound block nodes.
Signed-off-by: Minghuan Lian <Minghuan.Lian@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Properly set the LIODN values associated with SRIO controller. On
P4080/P3060 we have an LIODN per port and one for the RMU. On
P2041/P3041/P5020 we have 2 LIODNs per port.
Update the tables for all of these devices to properly handle both
styles.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The EC1_EXT, EC2_EXT, and EC3 bits in the RCW don't officially exist on the
P3060 and should always be set to zero.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
1. The SD_DATA[4:7] signals are shared with the SPI chip selects on 8536DS,
so don't set MPC85xx_PMUXCR_SD_DATA that config eSDHC data bus-width
to 4-bit and enable SPI signals.
2. Add eSPI controller and SPI-FLASH definition.
Signed-off-by: Xie Xiaobo <r63061@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Function dtsec_configure_serdes() needs to know where the TBI PHY registers
are in order to configure SGMII for proper SerDes operation.
During SGMII initialzation, fm_eth_init_mac() passing NULL for 'phyregs'
when it called init_dtsec(), because it was believed that phyregs was not
used. In fact, it is used by dtsec_configure_serdes() to configure the TBI
PHY registers.
We also need to define the PHY registers in struct fm_mdio.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
This is long over due. All but two net drivers have been converted, but
those have now been dropped.
The only thing left to do is actually delete all references to NET_MULTI
and code that is compiled when that is not defined. So here we scrub the
core code.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
This pushes the ugly duplicated arch ifdef lists we maintain in various
image related files out to the arch headers themselves.
Acked-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
Tested-by: Thomas Chou <thomas@wytron.com.tw>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
The current post_log_word in global data is currently split into 2x
16 bits: half for the test start, half for the test success.
Since we alredy have more than 16 POST tests defined and more could
be defined, this may result in an overflow and the post_output_backlog
would not work for the tests defined further of these 16 positions.
An additional field is added to global data so that we can now support up
to 32 (depending of architecture) tests. The post_log_word is only used
to record the start of the test and the new field post_log_res for the
test success (or failure). The post_output_backlog is for this change
also adapted.
Signed-off-by: Valentin Longchamp <valentin.longchamp@keymile.com>
Allow redirection of console output prior to console initialisation to a
temporary buffer.
To enable this functionality, the board (or arch) must define:
- CONFIG_PRE_CONSOLE_BUFFER - Enable pre-console buffer
- CONFIG_PRE_CON_BUF_ADDR - Base address of pre-console buffer
- CONFIG_PRE_CON_BUF_SZ - Size of pre-console buffer (in bytes)
The pre-console buffer will buffer the last CONFIG_PRE_CON_BUF_SZ bytes
Any earlier characters are silently dropped.
Add P3060 SoC specific information:cores setup, LIODN setup, etc
The P3060 SoC combines six e500mc Power Architecture processor cores with
high-performance datapath acceleration architecture(DPAA), CoreNet fabric
infrastructure, as well as network and peripheral interfaces.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Add support for Job Queue/Ring LIODN for the RAID Engine on P5020. Each
Job Queue/Ring combo needs one id assigned for a total of 4 (2 JQs/2
Rings per JQ). This just handles RAID Engine in non-DPAA mode.
Signed-off-by: Santosh Shukla <santosh.shukla@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The erratum NMG_LBC103 is LBIU3 in MPC8548 errata document.
Any local bus transaction may fail during LBIU resynchronization
process when the clock divider [CLKDIV] is changing. Ensure there
is no transaction on the local bus for at least 100 microseconds
after changing clock divider LCRR[CLKDIV].
Refer to the erratum LBIU3 of mpc8548.
Signed-off-by: Zhao Chenhui <chenhui.zhao@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Erratum NMG_DDR120 (DDR19 in MPC8548 errata document) applies to some
early version silicons. The default settings of the DDR IO receiver
biasing may not work at cold temperature. When a failure occurs,
a DDR input latches an incorrect value. The workaround will set the
receiver to an acceptable bias point.
Signed-off-by: Gong Chen
Signed-off-by: Zhao Chenhui <chenhui.zhao@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Pre u-boot Flow:
1. User loads the u-boot image in flash
2. PBL/Configuration word is used to create LAW for Flash at 0xc0000000
(Please note that ISBC expects all these addresses, images to be
validated, entry point etc within 0 - 3.5G range)
3. ISBC validates the u-boot image, and passes control to u-boot
at 0xcffffffc.
Changes in u-boot:
1. Temporarily map CONFIG_SYS_MONITOR_BASE to the 1M
CONFIG_SYS_PBI_FLASH_WINDOW in AS=1.
(The CONFIG_SYS_PBI_FLASH_WINDOW is the address map for the flash
created by PBL/configuration word within 0 - 3.5G memory range. The
u-boot image at this address has been validated by ISBC code)
2. Remove TLB entries for 0 - 3.5G created by ISBC code
3. Remove the LAW entry for the CONFIG_SYS_PBI_FLASH_WINDOW created by
PBL/configuration word after switch to AS = 1
Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Signed-off-by: Kuldip Giroh <kuldip.giroh@freescale.com>
Acked-by: Wood Scott-B07421 <B07421@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Unified DDR driver is maintained for better performance, robustness and bug
fixes. Upgrading to use unified DDR driver for MPC83xx takes advantage of
overall improvement. It requires changes for board files to customize
platform-dependent parameters.
To utilize the unified DDR driver, a board needs to define CONFIG_FSL_DDRx
in the header file. No more boards will be accepted without such definition.
Note: the workaround for erratum DDR6 for the very old MPC834x Rev 1.0/1.1
and MPC8360 Rev 1.1/1.2 parts is not migrated to unified driver.
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
DDR2 has different ODT table and values. Adding table according to Samsung
application note.
Fix additive latency calculation to avoid interger underflow.
Also converted typedef dynamic_odt_t to struct dynamic_odt.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Check second DIMM slot in case the first one is empty.
Honor DQS enable option for SDRAM mode register.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The MPC8536 seems to use only 3 bits for the major revision field in the
SVR rather than the 4 bits used by all other processors. The most
significant bit is used as a mfg code on MPC8536.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The P1023 has two 1G ethernet controllers the first can run in
SGMII, RGMII, or RMII. The second can only do SGMII & RGMII.
We need to setup a for SoC & board registers based on our various
configuration for ethernet to function properly on the board.
Removed CONFIG_SYS_FMAN_FW as its not used anywhere.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Haiying Wang <Haiying.Wang@freescale.com>
Signed-off-by: Lei Xu <B33228@freescale.com>
Signed-off-by: Ioana Radulescu <ruxandra.radulescu@freescale.com>
Signed-off-by: Shaohui Xie <b21989@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The Frame Manager (FMan) on QorIQ SoCs with DPAA (datapath acceleration
architecture) is the ethernet contoller block. Normally it is utilized
via Queue Manager (Qman) and Buffer Manager (Bman). However for boot
usage the FMan supports a mode similar to QE or CPM ethernet collers
called Independent mode.
Additionally the FMan block supports multiple 1g and 10g interfaces as a
single entity in the system rather than each controller being managed
uniquely. This means we have to initialize all of Fman regardless of
the number of interfaces we utilize.
Different SoCs support different combinations of the number of FMan as
well as the number of 1g & 10g interfaces support per Fman.
We add support for the following SoCs:
* P1023 - 1 Fman, 2x1g
* P4080 - 2 Fman, each Fman has 4x1g and 1x10g
* P204x/P3041/P5020 - 1 Fman, 5x1g, 1x10g
Signed-off-by: Dave Liu <daveliu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Dai Haruki <dai.haruki@freescale.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Ioana Radulescu <ruxandra.radulescu@freescale.com>
Signed-off-by: Lei Xu <B33228@freescale.com>
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Shaohui Xie <b21989@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Some SOCs have discontiguously-numbered cores, and so we can't determine the
valid core numbers via the FRR register any more. We define
CPU_TYPE_ENTRY_MASK to specify a discontiguous core mask, and helper functions
to process the mask and enumerate over the set of valid cores.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Issue: Address masking doesn't work properly.
When sum of the base address, defined by BA, and memory bank size,
defined by AM, exceeds 4GB (0xffff_ffff) then AMASKn[AM] doesn't mask
CSPRn[BA] bits.
Impact:
This will impact booting when we are reprogramming CSPR0(BA) and
AMASK0(AMASK) while executing from NOR Flash.
Workaround:
Re-programming of CSPR(BA) and AMASK is done while not executing from NOR
Flash. The code which programs the BA and AMASK is executed from L2-SRAM.
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Issue:
Peripheral connected to IFC_CS3 may hamper booting from IFC.
Impact:
Boot from IFC may not be successful if IFC_CS3 is used.
Workaround:
If IFC_CS3 is used, gate IFC_CS3 while booting from NAND or NOR.
Also Software should select IFC_CS3 using PMUXCR[26:27] = 0x01.
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Issue:
The NOR-FCM does not support access to unaligned addresses for 16 bit port size
Impact:
When 16 bit port size is used, accesses not aligned to 16 bit address boundary
will result in incorrect data
Workaround:
The workaround is to switch to GPCM mode for NOR Flash access.
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Add NAND support (including spl) on IFC, such as is found on the p1010.
Note that using hardware ECC on IFC with small-page NAND (which is what
comes on the p1010rdb reference board) means there will be insufficient
OOB space for JFFS2, since IFC does not support 1-bit ECC. UBI should
work, as it does not use OOB for anything but ECC.
When hardware ECC is not enabled in CSOR, software ECC is now used.
Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com>
[scottwood@freescale.com: ECC rework and misc fixes]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Introduce the CONFIG_SYS_CCSRBAR_PHYS_HIGH and CONFIG_SYS_CCSRBAR_PHYS_LOW
macros, which contain the high and low portions of CONFIG_SYS_CCSRBAR_PHYS.
This is necessary for the assembly-language code that relocates CCSR, since
the assembler does not understand 64-bit constants.
CONFIG_SYS_CCSRBAR_PHYS is automatically defined from the
CONFIG_SYS_CCSRBAR_PHYS_HIGH and CONFIG_SYS_CCSRBAR_PHYS_LOW macros, so it
should not be defined in a board header file. Similarly,
CONFIG_SYS_CCSRBAR_DEFAULT is defined for each SOC in config_mpc85xx.h, so
it should also not be defined in the board header file.
CONFIG_SYS_CCSR_DO_NOT_RELOCATE is a "short-cut" macro that guarantees that
CONFIG_SYS_CCSRBAR_PHYS is set to the same value as CONFIG_SYS_CCSRBAR_DEFAULT,
and so CCSR will not be relocated.
Since CONFIG_SYS_CCSRBAR_DEFAULT is locked to a fixed value, multi-stage U-Boot
builds (e.g. NAND) are required to relocate CCSR only during the last stage
(i.e. the "real" U-Boot). All other stages should define
CONFIG_SYS_CCSR_DO_NOT_RELOCATE to ensure that CCSR is not relocated.
README is updated with descriptions of all the CONFIG_SYS_CCSRBAR_xxx macros.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Add UTMI and ULPI PHY support for USB controller on qoriq series of
processors with internal UTMI PHY implemented, for example P1010/P1014
- Use both getenv() and hwconfig to get USB phy type till getenv()
is depricated
- Introduce CONFIG_SYS_FSL_USB_INTERNAL_UTMI_PHY to specify if soc
has internal UTMI phy
Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com>
Acked-by: Remy Bohmer <linux@bohmer.net>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Change bd_t->bi_phy* arrays from 1 to 2 for PPC405EX since
405EX has 2 ethernet interfaces.
Signed-off-by: Bernhard Weirich <bernhard.weirich@riedel.net>
Signed-off-by: Stefan Roese <sr@denx.de>
At some point we broke the detection of e500v1 class cores. Fix that
and simply the code to just utilize PVR_VER() to have a single case
statement.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Configuring DCSRCR to define the DCSR space to be 1G instead
of the default 4M. DCSRCR only allows selection of either 4M
or 1G.
Most DCSR registers are within 4M but the Nexus trace buffer
is located at offset 16M within the DCSR.
Configuring the LAW to be 32M to allow access to the Nexus
trace buffer. No TLB modification is required since accessing
the Nexus trace buffer from within u-boot is not required.
Signed-off-by: Stephen George <stephen.george@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Recieve/Receive
recieve/receive
Interupt/Interrupt
interupt/interrupt
Addres/Address
addres/address
Signed-off-by: Mike Williams <mike@mikebwilliams.com>
This is useful when we just want to wipe out the TLBs. There's currently
a function that resets the ddr tlbs to a different value; it is changed to
utilize this function. The new function can be used in conjunction with
setup_ddr_tlbs() for a board to temporarily map/unmap the DDR address
range as needed.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Add this option to allow boards to override the default read-to-write
turnaround time for better performance.
Signed-off-by: York Sun <yorksun@freescale.com>
On P1022/P1013 second USB controller is muxed with second
Ethernet controller. The current code to enable second USB
fails to properly clear pinmux bits used by ethernet. As a
result, Linux freezes when this controller is used. This
patch fixes the problem.
Signed-off-by: Felix Radensky <felix@embedded-sol.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Add support for 16-bit DDR bus. Also deal with system using 64- and 32-bit
DDR devices.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
We assumed that only a small set of compatiable strings would be needed
to find the PCIe device tree nodes to be fixed up. However on newer
platforms the simple rules no longer work. We need to allow specifying
the PCIe compatiable string for each individual SoC.
We introduce CONFIG_SYS_FSL_PCIE_COMPAT for this purpose and set it if
the default isn't sufficient.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
APM errata CHIP_21 for the 405EX/EXr (from the rev 1.09 document dated
4/27/11) states that rev D processors may wake up with the wrong feature
set. This patch implements the APM-proposed workaround.
To enable this patch for your board, add the appropriate define for your
CPU to your board header file. See kilauea.h for more information. The
following variants are supported:
#define CONFIG_SYS_4xx_CHIP_21_405EX_NO_SECURITY
#define CONFIG_SYS_4xx_CHIP_21_405EX_SECURITY
#define CONFIG_SYS_4xx_CHIP_21_405EXr_NO_SECURITY
#define CONFIG_SYS_4xx_CHIP_21_405EXr_SECURITY
Please note that if you select the wrong define, your board will not
boot, and JTAG will be required to recover.
Tested on custom boards using:
CONFIG_SYS_4xx_CHIP_21_405EX_NO_SECURITY <sfalco@harris.com>
CONFIG_SYS_4xx_CHIP_21_405EX_SECURITY <eibach@gdsys.de>
Signed-off-by: Steve Falco <sfalco@harris.com>
Acked-by: Dirk Eibach <eibach@gdsys.de>
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Singed-off-by: Jerry Huang <Chang-Ming.Huang@freescale.com>
Signed-off-by: Shaohui Xie <b21989@freescale.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Introduce new CONFIG_SYS_FSL_TBCLK_DIV on 85xx platforms because
different SoCs have different divisor amounts. All the PQ3 parts are
/8, the P4080/P4080 is /16, and P2040/P3041/P5020 are /32.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Bank powerdown through RCW[SRDS_LPD_Bn] for XAUI on FM2 and SGMII on FM1
are swapped.
Erratum SERDES-A001 says that if bank two is kept disabled and after bank
three is enabled, then the PLL for bank three won't lock properly. The
work-around is to enable and then disable bank two after bank three is
enabled.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Part of the SERDES9 erratum work-around is to set some bits in the SerDes
TTLCR0 register for lanes configured as XAUI, SGMII, SRIO, or AURORA. The
current code does this only for XAUI, so extend it to the other protocols.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
SerDes PLL bandwidth default setting is incorrect when no lanes are
configured as PCI Express.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>