u-boot/arch/arm/mach-tegra/cpu.c

426 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010-2015, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/gp_padctrl.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/scu.h>
#include "cpu.h"
int get_num_cpus(void)
{
struct apb_misc_gp_ctlr *gp;
uint rev;
debug("%s entry\n", __func__);
gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
switch (rev) {
case CHIPID_TEGRA20:
return 2;
break;
case CHIPID_TEGRA30:
case CHIPID_TEGRA114:
case CHIPID_TEGRA124:
case CHIPID_TEGRA210:
default:
return 4;
break;
}
}
/*
* Timing tables for each SOC for all four oscillator options.
*/
struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
/*
* T20: 1 GHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 22:20 3
* PLLX_BASE n 17: 8 10
* PLLX_BASE m 4: 0 5
* PLLX_MISC cpcon 11: 8 4
*/
{
{ .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
{ .n = 625, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
{ .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
{ .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
{ .n = 0, .m = 0, .p = 0, .cpcon = 0 }, /* OSC: 38.4 MHz (N/A) */
{ .n = 0, .m = 0, .p = 0, .cpcon = 0 }, /* OSC: 48.0 MHz (N/A) */
},
/*
* T25: 1.2 GHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 22:20 3
* PLLX_BASE n 17: 8 10
* PLLX_BASE m 4: 0 5
* PLLX_MISC cpcon 11: 8 4
*/
{
{ .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
{ .n = 750, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
{ .n = 600, .m = 6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
{ .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
{ .n = 0, .m = 0, .p = 0, .cpcon = 0 }, /* OSC: 38.4 MHz (N/A) */
{ .n = 0, .m = 0, .p = 0, .cpcon = 0 }, /* OSC: 48.0 MHz (N/A) */
},
/*
ARM: tegra: use a CPU freq that all SKUs can support U-Boot on Tegra30 currently selects a main CPU frequency that cannot be supported at all on some SKUs, and needs higher VDD_CPU/VDD_CORE values on some others. This can result in unreliable operation of the main CPUs. Resolve this by switching to a CPU frequency that can be supported by any SKU. According to the following link, the maximum supported CPU frequency of the slowest Tegra30 SKU is 600MHz: repo http://nv-tegra.nvidia.com/gitweb/?p=linux-2.6.git;a=summary branch l4t/l4t-r16-r2 path arch/arm/mach-tegra/tegra3_dvfs.c table cpu_dvfs_table[] According to that same table, the minimum VDD_CPU required to operate at that frequency across all SKUs is 1.007V. Given the adjustment resolution of the TPS65911 PMIC that's used on all Tegra30-based boards we support, we'll end up using 1.0125V instead. At that VDD_CPU, tegra3_get_core_floor_mv() in that same file dictates that VDD_CORE must be at least 1.2V on all SKUs. According to tegra_core_speedo_mv() (in tegra3_speedo.c in the same source tree), that voltage is safe for all SKUs. An alternative would be to port much of the code from tegra3_dvfs.c and tegra3_speedo.c in the kernel tree mentioned above. That's more work than I want to take on right now. While all the currently supported boards use the same regulator chip for VDD_CPU, different types of regulators are used for VDD_CORE. Hence, we add some small conditional code to select how VDD_CORE is programmed. If this becomes more complex in the future as new boards are added, or we end up adding code to detect the SoC SKU and dynamically determine the allowed frequency and required voltages, we should probably make this a runtime call into a function provided by the board file and/or relevant PMIC driver. Cc: Alban Bedel <alban.bedel@avionic-design.de> Cc: Marcel Ziswiler <marcel@ziswiler.com> Cc: Bard Liao <bardliao@realtek.com> Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2014-05-08 15:33:45 +00:00
* T30: 600 MHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 22:20 3
* PLLX_BASE n 17: 8 10
* PLLX_BASE m 4: 0 5
* PLLX_MISC cpcon 11: 8 4
*/
{
ARM: tegra: use a CPU freq that all SKUs can support U-Boot on Tegra30 currently selects a main CPU frequency that cannot be supported at all on some SKUs, and needs higher VDD_CPU/VDD_CORE values on some others. This can result in unreliable operation of the main CPUs. Resolve this by switching to a CPU frequency that can be supported by any SKU. According to the following link, the maximum supported CPU frequency of the slowest Tegra30 SKU is 600MHz: repo http://nv-tegra.nvidia.com/gitweb/?p=linux-2.6.git;a=summary branch l4t/l4t-r16-r2 path arch/arm/mach-tegra/tegra3_dvfs.c table cpu_dvfs_table[] According to that same table, the minimum VDD_CPU required to operate at that frequency across all SKUs is 1.007V. Given the adjustment resolution of the TPS65911 PMIC that's used on all Tegra30-based boards we support, we'll end up using 1.0125V instead. At that VDD_CPU, tegra3_get_core_floor_mv() in that same file dictates that VDD_CORE must be at least 1.2V on all SKUs. According to tegra_core_speedo_mv() (in tegra3_speedo.c in the same source tree), that voltage is safe for all SKUs. An alternative would be to port much of the code from tegra3_dvfs.c and tegra3_speedo.c in the kernel tree mentioned above. That's more work than I want to take on right now. While all the currently supported boards use the same regulator chip for VDD_CPU, different types of regulators are used for VDD_CORE. Hence, we add some small conditional code to select how VDD_CORE is programmed. If this becomes more complex in the future as new boards are added, or we end up adding code to detect the SoC SKU and dynamically determine the allowed frequency and required voltages, we should probably make this a runtime call into a function provided by the board file and/or relevant PMIC driver. Cc: Alban Bedel <alban.bedel@avionic-design.de> Cc: Marcel Ziswiler <marcel@ziswiler.com> Cc: Bard Liao <bardliao@realtek.com> Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2014-05-08 15:33:45 +00:00
{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
{ .n = 600, .m = 26, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
{ .n = 0, .m = 0, .p = 0, .cpcon = 0 }, /* OSC: 38.4 MHz (N/A) */
{ .n = 0, .m = 0, .p = 0, .cpcon = 0 }, /* OSC: 48.0 MHz (N/A) */
},
/*
* T114: 700 MHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 23:20 4
* PLLX_BASE n 15: 8 8
* PLLX_BASE m 7: 0 8
*/
{
{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
{ .n = 73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
{ .n = 0, .m = 0, .p = 0 }, /* OSC: 38.4 MHz (N/A) */
{ .n = 0, .m = 0, .p = 0 }, /* OSC: 48.0 MHz (N/A) */
},
/*
* T124: 700 MHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 23:20 4
* PLLX_BASE n 15: 8 8
* PLLX_BASE m 7: 0 8
*/
{
{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
{ .n = 73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
{ .n = 0, .m = 0, .p = 0 }, /* OSC: 38.4 MHz (N/A) */
{ .n = 0, .m = 0, .p = 0 }, /* OSC: 48.0 MHz (N/A) */
},
/*
* T210: 700 MHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 24:20 5
* PLLX_BASE n 15: 8 8
* PLLX_BASE m 7: 0 8
*/
{
{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz = 702 MHz*/
{ .n = 73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz = 700.8 MHz*/
{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz = 696 MHz*/
{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz = 702 MHz*/
{ .n = 36, .m = 1, .p = 1 }, /* OSC: 38.4 MHz = 691.2 MHz */
{ .n = 58, .m = 2, .p = 1 }, /* OSC: 48.0 MHz = 696 MHz */
},
};
static inline void pllx_set_iddq(void)
{
#if defined(CONFIG_TEGRA124) || defined(CONFIG_TEGRA210)
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
debug("%s entry\n", __func__);
/* Disable IDDQ */
reg = readl(&clkrst->crc_pllx_misc3);
reg &= ~PLLX_IDDQ_MASK;
writel(reg, &clkrst->crc_pllx_misc3);
udelay(2);
debug("%s: IDDQ: PLLX IDDQ = 0x%08X\n", __func__,
readl(&clkrst->crc_pllx_misc3));
#endif
}
int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
u32 divp, u32 cpcon)
{
struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_XCPU];
int chip = tegra_get_chip();
u32 reg;
debug("%s entry\n", __func__);
/* If PLLX is already enabled, just return */
if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
debug("%s: PLLX already enabled, returning\n", __func__);
return 0;
}
pllx_set_iddq();
/* Set BYPASS, m, n and p to PLLX_BASE */
reg = PLL_BYPASS_MASK | (divm << pllinfo->m_shift);
reg |= (divn << pllinfo->n_shift) | (divp << pllinfo->p_shift);
writel(reg, &pll->pll_base);
/* Set cpcon to PLLX_MISC */
if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
reg = (cpcon << pllinfo->kcp_shift);
else
reg = 0;
/*
* TODO(twarren@nvidia.com) Check which SoCs use DCCON
* and add to pllinfo table if needed!
*/
/* Set dccon to PLLX_MISC if freq > 600MHz */
if (divn > 600)
reg |= (1 << PLL_DCCON_SHIFT);
writel(reg, &pll->pll_misc);
/* Disable BYPASS */
reg = readl(&pll->pll_base);
reg &= ~PLL_BYPASS_MASK;
writel(reg, &pll->pll_base);
debug("%s: base = 0x%08X\n", __func__, reg);
/* Set lock_enable to PLLX_MISC if lock_ena is valid (i.e. 0-31) */
reg = readl(&pll->pll_misc);
if (pllinfo->lock_ena < 32)
reg |= (1 << pllinfo->lock_ena);
writel(reg, &pll->pll_misc);
debug("%s: misc = 0x%08X\n", __func__, reg);
/* Enable PLLX last, once it's all configured */
reg = readl(&pll->pll_base);
reg |= PLL_ENABLE_MASK;
writel(reg, &pll->pll_base);
debug("%s: base final = 0x%08X\n", __func__, reg);
return 0;
}
void init_pllx(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
int soc_type, sku_info, chip_sku;
enum clock_osc_freq osc;
struct clk_pll_table *sel;
debug("%s entry\n", __func__);
/* get SOC (chip) type */
soc_type = tegra_get_chip();
debug("%s: SoC = 0x%02X\n", __func__, soc_type);
/* get SKU info */
sku_info = tegra_get_sku_info();
debug("%s: SKU info byte = 0x%02X\n", __func__, sku_info);
/* get chip SKU, combo of the above info */
chip_sku = tegra_get_chip_sku();
debug("%s: Chip SKU = %d\n", __func__, chip_sku);
/* get osc freq */
osc = clock_get_osc_freq();
debug("%s: osc = %d\n", __func__, osc);
/* set pllx */
sel = &tegra_pll_x_table[chip_sku][osc];
pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
}
void enable_cpu_clock(int enable)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 clk;
debug("%s entry\n", __func__);
/*
* NOTE:
* Regardless of whether the request is to enable or disable the CPU
* clock, every processor in the CPU complex except the master (CPU 0)
* will have it's clock stopped because the AVP only talks to the
* master.
*/
if (enable) {
/* Initialize PLLX */
init_pllx();
/* Wait until all clocks are stable */
udelay(PLL_STABILIZATION_DELAY);
writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
}
/*
* Read the register containing the individual CPU clock enables and
* always stop the clocks to CPUs > 0.
*/
clk = readl(&clkrst->crc_clk_cpu_cmplx);
clk |= 1 << CPU1_CLK_STP_SHIFT;
if (get_num_cpus() == 4)
clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
/* Stop/Unstop the CPU clock */
clk &= ~CPU0_CLK_STP_MASK;
clk |= !enable << CPU0_CLK_STP_SHIFT;
writel(clk, &clkrst->crc_clk_cpu_cmplx);
clock_enable(PERIPH_ID_CPU);
}
static int is_cpu_powered(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
}
static void remove_cpu_io_clamps(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
debug("%s entry\n", __func__);
/* Remove the clamps on the CPU I/O signals */
reg = readl(&pmc->pmc_remove_clamping);
reg |= CPU_CLMP;
writel(reg, &pmc->pmc_remove_clamping);
/* Give I/O signals time to stabilize */
udelay(IO_STABILIZATION_DELAY);
}
void powerup_cpu(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
int timeout = IO_STABILIZATION_DELAY;
debug("%s entry\n", __func__);
if (!is_cpu_powered()) {
/* Toggle the CPU power state (OFF -> ON) */
reg = readl(&pmc->pmc_pwrgate_toggle);
reg &= PARTID_CP;
reg |= START_CP;
writel(reg, &pmc->pmc_pwrgate_toggle);
/* Wait for the power to come up */
while (!is_cpu_powered()) {
if (timeout-- == 0)
printf("CPU failed to power up!\n");
else
udelay(10);
}
/*
* Remove the I/O clamps from CPU power partition.
* Recommended only on a Warm boot, if the CPU partition gets
* power gated. Shouldn't cause any harm when called after a
* cold boot according to HW, probably just redundant.
*/
remove_cpu_io_clamps();
}
}
void reset_A9_cpu(int reset)
{
/*
* NOTE: Regardless of whether the request is to hold the CPU in reset
* or take it out of reset, every processor in the CPU complex
* except the master (CPU 0) will be held in reset because the
* AVP only talks to the master. The AVP does not know that there
* are multiple processors in the CPU complex.
*/
int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
int num_cpus = get_num_cpus();
int cpu;
debug("%s entry\n", __func__);
/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
for (cpu = 1; cpu < num_cpus; cpu++)
reset_cmplx_set_enable(cpu, mask, 1);
reset_cmplx_set_enable(0, mask, reset);
/* Enable/Disable master CPU reset */
reset_set_enable(PERIPH_ID_CPU, reset);
}
void clock_enable_coresight(int enable)
{
u32 rst, src = 2;
debug("%s entry\n", __func__);
clock_set_enable(PERIPH_ID_CORESIGHT, enable);
reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
if (enable) {
/*
* Put CoreSight on PLLP_OUT0 and divide it down as per
* PLLP base frequency based on SoC type (T20/T30+).
* Clock divider request would setup CSITE clock as 144MHz
* for PLLP base 216MHz and 204MHz for PLLP base 408MHz
*/
src = CLK_DIVIDER(NVBL_PLLP_KHZ, CSITE_KHZ);
clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
/* Unlock the CPU CoreSight interfaces */
rst = CORESIGHT_UNLOCK;
writel(rst, CSITE_CPU_DBG0_LAR);
writel(rst, CSITE_CPU_DBG1_LAR);
if (get_num_cpus() == 4) {
writel(rst, CSITE_CPU_DBG2_LAR);
writel(rst, CSITE_CPU_DBG3_LAR);
}
}
}
void halt_avp(void)
{
debug("%s entry\n", __func__);
for (;;) {
writel(HALT_COP_EVENT_JTAG | (FLOW_MODE_STOP << 29),
FLOW_CTLR_HALT_COP_EVENTS);
}
}