u-boot/arch/arm/mach-tegra/tegra30/clock.c

821 lines
23 KiB
C
Raw Normal View History

/*
* (C) Copyright 2010-2015
* NVIDIA Corporation <www.nvidia.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
/* Tegra30 Clock control functions */
#include <common.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/timer.h>
#include <div64.h>
#include <fdtdec.h>
/*
* Clock types that we can use as a source. The Tegra30 has muxes for the
* peripheral clocks, and in most cases there are four options for the clock
* source. This gives us a clock 'type' and exploits what commonality exists
* in the device.
*
* Letters are obvious, except for T which means CLK_M, and S which means the
* clock derived from 32KHz. Beware that CLK_M (also called OSC in the
* datasheet) and PLL_M are different things. The former is the basic
* clock supplied to the SOC from an external oscillator. The latter is the
* memory clock PLL.
*
* See definitions in clock_id in the header file.
*/
enum clock_type_id {
CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
CLOCK_TYPE_MCPA, /* and so on */
CLOCK_TYPE_MCPT,
CLOCK_TYPE_PCM,
CLOCK_TYPE_PCMT,
CLOCK_TYPE_PCMT16,
CLOCK_TYPE_PDCT,
CLOCK_TYPE_ACPT,
CLOCK_TYPE_ASPTE,
CLOCK_TYPE_PMDACD2T,
CLOCK_TYPE_PCST,
CLOCK_TYPE_COUNT,
CLOCK_TYPE_NONE = -1, /* invalid clock type */
};
enum {
CLOCK_MAX_MUX = 8 /* number of source options for each clock */
};
/*
* Clock source mux for each clock type. This just converts our enum into
* a list of mux sources for use by the code.
*
* Note:
* The extra column in each clock source array is used to store the mask
* bits in its register for the source.
*/
#define CLK(x) CLOCK_ID_ ## x
static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
{ CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_29},
{ CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
MASK_BITS_31_29},
{ CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_28}
};
/*
* Clock type for each peripheral clock source. We put the name in each
* record just so it is easy to match things up
*/
#define TYPE(name, type) type
static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
/* 0x00 */
TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
TYPE(PERIPHC_PWM, CLOCK_TYPE_PCST), /* only PWM uses b29:28 */
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SBC2, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SBC3, CLOCK_TYPE_PCMT),
/* 0x08 */
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SBC1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
/* 0x10 */
TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
/* 0x18 */
TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT), /* MIPI base-band HSI */
TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
/* 0x20 */
TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
/* 0x28 */
TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SBC4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
/* 0x30 */
TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
/* 0x38h */ /* Jumps to reg offset 0x3B0h - new for T30 */
TYPE(PERIPHC_G3D2, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PCST), /* s/b PCTS */
TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_I2C4, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_SBC5, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SBC6, CLOCK_TYPE_PCMT),
/* 0x40 */
TYPE(PERIPHC_AUDIO, CLOCK_TYPE_ACPT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_DAM0, CLOCK_TYPE_ACPT),
TYPE(PERIPHC_DAM1, CLOCK_TYPE_ACPT),
TYPE(PERIPHC_DAM2, CLOCK_TYPE_ACPT),
TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PCST), /* MASK 31:30 */
TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
/* 0x48 */
TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
TYPE(PERIPHC_NANDSPEED, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PCST), /* MASK 31:30 */
TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SPEEDO, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
/* 0x50 */
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT), /* offset 0x420h */
TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_HDA, CLOCK_TYPE_PCMT),
};
/*
* This array translates a periph_id to a periphc_internal_id
*
* Not present/matched up:
* uint vi_sensor; _VI_SENSOR_0, 0x1A8
* SPDIF - which is both 0x08 and 0x0c
*
*/
#define NONE(name) (-1)
#define OFFSET(name, value) PERIPHC_ ## name
static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
/* Low word: 31:0 */
NONE(CPU),
NONE(COP),
NONE(TRIGSYS),
NONE(RESERVED3),
NONE(RESERVED4),
NONE(TMR),
PERIPHC_UART1,
PERIPHC_UART2, /* and vfir 0x68 */
/* 8 */
NONE(GPIO),
PERIPHC_SDMMC2,
NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
PERIPHC_I2S1,
PERIPHC_I2C1,
PERIPHC_NDFLASH,
PERIPHC_SDMMC1,
PERIPHC_SDMMC4,
/* 16 */
NONE(RESERVED16),
PERIPHC_PWM,
PERIPHC_I2S2,
PERIPHC_EPP,
PERIPHC_VI,
PERIPHC_G2D,
NONE(USBD),
NONE(ISP),
/* 24 */
PERIPHC_G3D,
NONE(RESERVED25),
PERIPHC_DISP2,
PERIPHC_DISP1,
PERIPHC_HOST1X,
NONE(VCP),
PERIPHC_I2S0,
NONE(CACHE2),
/* Middle word: 63:32 */
NONE(MEM),
NONE(AHBDMA),
NONE(APBDMA),
NONE(RESERVED35),
NONE(RESERVED36),
NONE(STAT_MON),
NONE(RESERVED38),
NONE(RESERVED39),
/* 40 */
NONE(KFUSE),
PERIPHC_SBC1,
PERIPHC_NOR,
NONE(RESERVED43),
PERIPHC_SBC2,
NONE(RESERVED45),
PERIPHC_SBC3,
PERIPHC_DVC_I2C,
/* 48 */
NONE(DSI),
PERIPHC_TVO, /* also CVE 0x40 */
PERIPHC_MIPI,
PERIPHC_HDMI,
NONE(CSI),
PERIPHC_TVDAC,
PERIPHC_I2C2,
PERIPHC_UART3,
/* 56 */
NONE(RESERVED56),
PERIPHC_EMC,
NONE(USB2),
NONE(USB3),
PERIPHC_MPE,
PERIPHC_VDE,
NONE(BSEA),
NONE(BSEV),
/* Upper word 95:64 */
PERIPHC_SPEEDO,
PERIPHC_UART4,
PERIPHC_UART5,
PERIPHC_I2C3,
PERIPHC_SBC4,
PERIPHC_SDMMC3,
NONE(PCIE),
PERIPHC_OWR,
/* 72 */
NONE(AFI),
PERIPHC_CSITE,
NONE(PCIEXCLK),
NONE(AVPUCQ),
NONE(RESERVED76),
NONE(RESERVED77),
NONE(RESERVED78),
NONE(DTV),
/* 80 */
PERIPHC_NANDSPEED,
PERIPHC_I2CSLOW,
NONE(DSIB),
NONE(RESERVED83),
NONE(IRAMA),
NONE(IRAMB),
NONE(IRAMC),
NONE(IRAMD),
/* 88 */
NONE(CRAM2),
NONE(RESERVED89),
NONE(MDOUBLER),
NONE(RESERVED91),
NONE(SUSOUT),
NONE(RESERVED93),
NONE(RESERVED94),
NONE(RESERVED95),
/* V word: 31:0 */
NONE(CPUG),
NONE(CPULP),
PERIPHC_G3D2,
PERIPHC_MSELECT,
PERIPHC_TSENSOR,
PERIPHC_I2S3,
PERIPHC_I2S4,
PERIPHC_I2C4,
/* 08 */
PERIPHC_SBC5,
PERIPHC_SBC6,
PERIPHC_AUDIO,
NONE(APBIF),
PERIPHC_DAM0,
PERIPHC_DAM1,
PERIPHC_DAM2,
PERIPHC_HDA2CODEC2X,
/* 16 */
NONE(ATOMICS),
NONE(RESERVED17),
NONE(RESERVED18),
NONE(RESERVED19),
NONE(RESERVED20),
NONE(RESERVED21),
NONE(RESERVED22),
PERIPHC_ACTMON,
/* 24 */
NONE(RESERVED24),
NONE(RESERVED25),
NONE(RESERVED26),
NONE(RESERVED27),
PERIPHC_SATA,
PERIPHC_HDA,
NONE(RESERVED30),
NONE(RESERVED31),
/* W word: 31:0 */
NONE(HDA2HDMICODEC),
NONE(SATACOLD),
NONE(RESERVED0_PCIERX0),
NONE(RESERVED1_PCIERX1),
NONE(RESERVED2_PCIERX2),
NONE(RESERVED3_PCIERX3),
NONE(RESERVED4_PCIERX4),
NONE(RESERVED5_PCIERX5),
/* 40 */
NONE(CEC),
NONE(RESERVED6_PCIE2),
NONE(RESERVED7_EMC),
NONE(RESERVED8_HDMI),
NONE(RESERVED9_SATA),
NONE(RESERVED10_MIPI),
NONE(EX_RESERVED46),
NONE(EX_RESERVED47),
};
/*
* PLL divider shift/mask tables for all PLL IDs.
*/
struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
/*
* T30: some deviations from T2x.
* NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
* If lock_ena or lock_det are >31, they're not used in that PLL.
*/
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x0F,
.lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 }, /* PLLC */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 0, .p_mask = 0,
.lock_ena = 0, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
.lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
.lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
.lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
.lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
.lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLX */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
.lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
.lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS (RESERVED) */
};
/*
* Get the oscillator frequency, from the corresponding hardware configuration
* field. Note that T30 supports 3 new higher freqs, but we map back
* to the old T20 freqs. Support for the higher oscillators is TBD.
*/
enum clock_osc_freq clock_get_osc_freq(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
reg = readl(&clkrst->crc_osc_ctrl);
reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
if (reg & 1) /* one of the newer freqs */
printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
return reg >> 2; /* Map to most common (T20) freqs */
}
/* Returns a pointer to the clock source register for a peripheral */
u32 *get_periph_source_reg(enum periph_id periph_id)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
enum periphc_internal_id internal_id;
/* Coresight is a special case */
if (periph_id == PERIPH_ID_CSI)
return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
internal_id = periph_id_to_internal_id[periph_id];
assert(internal_id != -1);
if (internal_id >= PERIPHC_VW_FIRST) {
internal_id -= PERIPHC_VW_FIRST;
return &clkrst->crc_clk_src_vw[internal_id];
} else
return &clkrst->crc_clk_src[internal_id];
}
int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
int *divider_bits, int *type)
{
enum periphc_internal_id internal_id;
if (!clock_periph_id_isvalid(periph_id))
return -1;
internal_id = periph_id_to_internal_id[periph_id];
if (!periphc_internal_id_isvalid(internal_id))
return -1;
*type = clock_periph_type[internal_id];
if (!clock_type_id_isvalid(*type))
return -1;
*mux_bits = clock_source[*type][CLOCK_MAX_MUX];
if (*type == CLOCK_TYPE_PCMT16)
*divider_bits = 16;
else
*divider_bits = 8;
return 0;
}
enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
{
enum periphc_internal_id internal_id;
int type;
if (!clock_periph_id_isvalid(periph_id))
return CLOCK_ID_NONE;
internal_id = periph_id_to_internal_id[periph_id];
if (!periphc_internal_id_isvalid(internal_id))
return CLOCK_ID_NONE;
type = clock_periph_type[internal_id];
if (!clock_type_id_isvalid(type))
return CLOCK_ID_NONE;
return clock_source[type][source];
}
/**
* Given a peripheral ID and the required source clock, this returns which
* value should be programmed into the source mux for that peripheral.
*
* There is special code here to handle the one source type with 5 sources.
*
* @param periph_id peripheral to start
* @param source PLL id of required parent clock
* @param mux_bits Set to number of bits in mux register: 2 or 4
* @param divider_bits Set to number of divider bits (8 or 16)
* @return mux value (0-4, or -1 if not found)
*/
int get_periph_clock_source(enum periph_id periph_id,
enum clock_id parent, int *mux_bits, int *divider_bits)
{
enum clock_type_id type;
int mux, err;
err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
assert(!err);
for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
if (clock_source[type][mux] == parent)
return mux;
/* if we get here, either us or the caller has made a mistake */
printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
parent);
return -1;
}
void clock_set_enable(enum periph_id periph_id, int enable)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 *clk;
u32 reg;
/* Enable/disable the clock to this peripheral */
assert(clock_periph_id_isvalid(periph_id));
if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
else
clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
reg = readl(clk);
if (enable)
reg |= PERIPH_MASK(periph_id);
else
reg &= ~PERIPH_MASK(periph_id);
writel(reg, clk);
}
void reset_set_enable(enum periph_id periph_id, int enable)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 *reset;
u32 reg;
/* Enable/disable reset to the peripheral */
assert(clock_periph_id_isvalid(periph_id));
if (periph_id < PERIPH_ID_VW_FIRST)
reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
else
reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
reg = readl(reset);
if (enable)
reg |= PERIPH_MASK(periph_id);
else
reg &= ~PERIPH_MASK(periph_id);
writel(reg, reset);
}
#if CONFIG_IS_ENABLED(OF_CONTROL)
/*
* Convert a device tree clock ID to our peripheral ID. They are mostly
* the same but we are very cautious so we check that a valid clock ID is
* provided.
*
* @param clk_id Clock ID according to tegra30 device tree binding
* @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
*/
enum periph_id clk_id_to_periph_id(int clk_id)
{
if (clk_id > PERIPH_ID_COUNT)
return PERIPH_ID_NONE;
switch (clk_id) {
case PERIPH_ID_RESERVED3:
case PERIPH_ID_RESERVED4:
case PERIPH_ID_RESERVED16:
case PERIPH_ID_RESERVED24:
case PERIPH_ID_RESERVED35:
case PERIPH_ID_RESERVED43:
case PERIPH_ID_RESERVED45:
case PERIPH_ID_RESERVED56:
case PERIPH_ID_PCIEXCLK:
case PERIPH_ID_RESERVED76:
case PERIPH_ID_RESERVED77:
case PERIPH_ID_RESERVED78:
case PERIPH_ID_RESERVED83:
case PERIPH_ID_RESERVED89:
case PERIPH_ID_RESERVED91:
case PERIPH_ID_RESERVED93:
case PERIPH_ID_RESERVED94:
case PERIPH_ID_RESERVED95:
return PERIPH_ID_NONE;
default:
return clk_id;
}
}
#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
void clock_early_init(void)
{
tegra30_set_up_pllp();
}
void arch_timer_init(void)
{
}
#define PMC_SATA_PWRGT 0x1ac
#define PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
#define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
#define PLLE_SS_CNTL 0x68
#define PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
#define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
#define PLLE_SS_CNTL_SSCBYP (1 << 12)
#define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
#define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
#define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
#define PLLE_BASE 0x0e8
#define PLLE_BASE_ENABLE_CML (1 << 31)
#define PLLE_BASE_ENABLE (1 << 30)
#define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
#define PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
#define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
#define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
#define PLLE_MISC 0x0ec
#define PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
#define PLLE_MISC_PLL_READY (1 << 15)
#define PLLE_MISC_LOCK (1 << 11)
#define PLLE_MISC_LOCK_ENABLE (1 << 9)
#define PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
static int tegra_plle_train(void)
{
unsigned int timeout = 2000;
unsigned long value;
value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
do {
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
if (value & PLLE_MISC_PLL_READY)
break;
udelay(100);
} while (--timeout);
if (timeout == 0) {
error("timeout waiting for PLLE to become ready");
return -ETIMEDOUT;
}
return 0;
}
int tegra_plle_enable(void)
{
unsigned int cpcon = 11, p = 18, n = 150, m = 1, timeout = 1000;
u32 value;
int err;
/* disable PLLE clock */
value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
value &= ~PLLE_BASE_ENABLE_CML;
value &= ~PLLE_BASE_ENABLE;
writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
/* clear lock enable and setup field */
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
value &= ~PLLE_MISC_LOCK_ENABLE;
value &= ~PLLE_MISC_SETUP_BASE(0xffff);
value &= ~PLLE_MISC_SETUP_EXT(0x3);
writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
if ((value & PLLE_MISC_PLL_READY) == 0) {
err = tegra_plle_train();
if (err < 0) {
error("failed to train PLLE: %d", err);
return err;
}
}
/* configure PLLE */
value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
value &= ~PLLE_BASE_PLDIV_CML(0x0f);
value |= PLLE_BASE_PLDIV_CML(cpcon);
value &= ~PLLE_BASE_PLDIV(0x3f);
value |= PLLE_BASE_PLDIV(p);
value &= ~PLLE_BASE_NDIV(0xff);
value |= PLLE_BASE_NDIV(n);
value &= ~PLLE_BASE_MDIV(0xff);
value |= PLLE_BASE_MDIV(m);
writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
value |= PLLE_MISC_SETUP_BASE(0x7);
value |= PLLE_MISC_LOCK_ENABLE;
value |= PLLE_MISC_SETUP_EXT(0);
writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
PLLE_SS_CNTL_BYPASS_SS;
writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
do {
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
if (value & PLLE_MISC_LOCK)
break;
udelay(2);
} while (--timeout);
if (timeout == 0) {
error("timeout waiting for PLLE to lock");
return -ETIMEDOUT;
}
udelay(50);
value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
value &= ~PLLE_SS_CNTL_SSCINC(0xff);
value |= PLLE_SS_CNTL_SSCINC(0x01);
value &= ~PLLE_SS_CNTL_SSCBYP;
value &= ~PLLE_SS_CNTL_INTERP_RESET;
value &= ~PLLE_SS_CNTL_BYPASS_SS;
value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
value |= PLLE_SS_CNTL_SSCMAX(0x24);
writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
return 0;
}
ARM: tegra: add peripheral clock init table Currently, Tegra peripheral drivers control two aspects of their HW module clock(s): 1) The clock enable/rate for the peripheral clock itself. 2) The system-level clock tree setup, i.e. the clock parent. Aspect 1 is reasonable, but aspect 2 is a system-level decision, not something that an individual peripheral driver should in general know about or influence. Such system-level knowledge ties the driver to a specific SoC implementation, even when they use generic APIs for clock manipulation, since they must have SoC-specific knowledge such as parent clock IDs. Limited exceptions exist, such as where peripheral HW is expected to dynamically switch between clock sources at run-time, such as CPU clock scaling or display clock conflict management in a multi-head scenario. This patch enhances the Tegra core code to perform system-level clock tree setup, in a similar fashion to the Linux kernel Tegra clock driver. This will allow future patches to simplify peripheral drivers by removing the clock parent setup logic. This change is required prior to converting peripheral drivers to use the standard clock APIs, since: 1) The clock uclass doesn't currently support a set_parent() operation. Adding one is possible, but not necessary at the moment. 2) The clock APIs retrieve all clock IDs from device tree, and the DT bindings for almost all peripherals only includes information about the relevant peripheral clocks, and not any potential parent clocks. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2016-09-13 16:45:55 +00:00
struct periph_clk_init periph_clk_init_table[] = {
{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
{ PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
{ PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
{ PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH },
{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
{ PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
{ PERIPH_ID_DVC_I2C, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
{ -1, },
};