u-boot/drivers/spi/fsl_qspi.c

1259 lines
36 KiB
C
Raw Normal View History

/*
* Copyright 2013-2015 Freescale Semiconductor, Inc.
*
* Freescale Quad Serial Peripheral Interface (QSPI) driver
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <dm.h>
#include <errno.h>
#include <watchdog.h>
#include <wait_bit.h>
#include "fsl_qspi.h"
DECLARE_GLOBAL_DATA_PTR;
#define RX_BUFFER_SIZE 0x80
#if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
#define TX_BUFFER_SIZE 0x200
#else
#define TX_BUFFER_SIZE 0x40
#endif
#define OFFSET_BITS_MASK GENMASK(23, 0)
#define FLASH_STATUS_WEL 0x02
/* SEQID */
#define SEQID_WREN 1
#define SEQID_FAST_READ 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
#define SEQID_BE_4K 8
#ifdef CONFIG_SPI_FLASH_BAR
#define SEQID_BRRD 9
#define SEQID_BRWR 10
#define SEQID_RDEAR 11
#define SEQID_WREAR 12
#endif
#define SEQID_WRAR 13
#define SEQID_RDAR 14
/* QSPI CMD */
#define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
#define QSPI_CMD_RDSR 0x05 /* Read status register */
#define QSPI_CMD_WREN 0x06 /* Write enable */
#define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
#define QSPI_CMD_BE_4K 0x20 /* 4K erase */
#define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
#define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
#define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
/* Used for Micron, winbond and Macronix flashes */
#define QSPI_CMD_WREAR 0xc5 /* EAR register write */
#define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
/* Used for Spansion flashes only. */
#define QSPI_CMD_BRRD 0x16 /* Bank register read */
#define QSPI_CMD_BRWR 0x17 /* Bank register write */
/* Used for Spansion S25FS-S family flash only. */
#define QSPI_CMD_RDAR 0x65 /* Read any device register */
#define QSPI_CMD_WRAR 0x71 /* Write any device register */
/* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
#define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
#define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
#define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
/* fsl_qspi_platdata flags */
#define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
/* default SCK frequency, unit: HZ */
#define FSL_QSPI_DEFAULT_SCK_FREQ 50000000
/* QSPI max chipselect signals number */
#define FSL_QSPI_MAX_CHIPSELECT_NUM 4
#ifdef CONFIG_DM_SPI
/**
* struct fsl_qspi_platdata - platform data for Freescale QSPI
*
* @flags: Flags for QSPI QSPI_FLAG_...
* @speed_hz: Default SCK frequency
* @reg_base: Base address of QSPI registers
* @amba_base: Base address of QSPI memory mapping
* @amba_total_size: size of QSPI memory mapping
* @flash_num: Number of active slave devices
* @num_chipselect: Number of QSPI chipselect signals
*/
struct fsl_qspi_platdata {
u32 flags;
u32 speed_hz;
fdt_addr_t reg_base;
fdt_addr_t amba_base;
fdt_size_t amba_total_size;
u32 flash_num;
u32 num_chipselect;
};
#endif
/**
* struct fsl_qspi_priv - private data for Freescale QSPI
*
* @flags: Flags for QSPI QSPI_FLAG_...
* @bus_clk: QSPI input clk frequency
* @speed_hz: Default SCK frequency
* @cur_seqid: current LUT table sequence id
* @sf_addr: flash access offset
* @amba_base: Base address of QSPI memory mapping of every CS
* @amba_total_size: size of QSPI memory mapping
* @cur_amba_base: Base address of QSPI memory mapping of current CS
* @flash_num: Number of active slave devices
* @num_chipselect: Number of QSPI chipselect signals
* @regs: Point to QSPI register structure for I/O access
*/
struct fsl_qspi_priv {
u32 flags;
u32 bus_clk;
u32 speed_hz;
u32 cur_seqid;
u32 sf_addr;
u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
u32 amba_total_size;
u32 cur_amba_base;
u32 flash_num;
u32 num_chipselect;
struct fsl_qspi_regs *regs;
};
#ifndef CONFIG_DM_SPI
struct fsl_qspi {
struct spi_slave slave;
struct fsl_qspi_priv priv;
};
#endif
static u32 qspi_read32(u32 flags, u32 *addr)
{
return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
in_be32(addr) : in_le32(addr);
}
static void qspi_write32(u32 flags, u32 *addr, u32 val)
{
flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
out_be32(addr, val) : out_le32(addr, val);
}
/* QSPI support swapping the flash read/write data
* in hardware for LS102xA, but not for VF610 */
static inline u32 qspi_endian_xchg(u32 data)
{
#ifdef CONFIG_VF610
return swab32(data);
#else
return data;
#endif
}
static void qspi_set_lut(struct fsl_qspi_priv *priv)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 lut_base;
/* Unlock the LUT */
qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
/* Write Enable */
lut_base = SEQID_WREN * 4;
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Fast Read */
lut_base = SEQID_FAST_READ * 4;
#ifdef CONFIG_SPI_FLASH_BAR
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_FAST_READ_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
INSTR1(LUT_ADDR));
#endif
qspi_write32(priv->flags, &regs->lut[lut_base + 1],
OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
INSTR1(LUT_READ));
qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Read Status */
lut_base = SEQID_RDSR * 4;
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Erase a sector */
lut_base = SEQID_SE * 4;
#ifdef CONFIG_SPI_FLASH_BAR
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_CHIP_ERASE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Page Program */
lut_base = SEQID_PP * 4;
#ifdef CONFIG_SPI_FLASH_BAR
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
#if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
/*
* To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
* So, Use IDATSZ in IPCR to determine the size and here set 0.
*/
qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
#else
qspi_write32(priv->flags, &regs->lut[lut_base + 1],
OPRND0(TX_BUFFER_SIZE) |
PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
#endif
qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* READ ID */
lut_base = SEQID_RDID * 4;
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* SUB SECTOR 4K ERASE */
lut_base = SEQID_BE_4K * 4;
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#ifdef CONFIG_SPI_FLASH_BAR
/*
* BRRD BRWR RDEAR WREAR are all supported, because it is hard to
* dynamically check whether to set BRRD BRWR or RDEAR WREAR during
* initialization.
*/
lut_base = SEQID_BRRD * 4;
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
lut_base = SEQID_BRWR * 4;
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
lut_base = SEQID_RDEAR * 4;
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
lut_base = SEQID_WREAR * 4;
qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
#endif
/*
* Read any device register.
* Used for Spansion S25FS-S family flash only.
*/
lut_base = SEQID_RDAR * 4;
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
qspi_write32(priv->flags, &regs->lut[lut_base + 1],
OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
OPRND1(1) | PAD1(LUT_PAD1) |
INSTR1(LUT_READ));
/*
* Write any device register.
* Used for Spansion S25FS-S family flash only.
*/
lut_base = SEQID_WRAR * 4;
qspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
qspi_write32(priv->flags, &regs->lut[lut_base + 1],
OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
/* Lock the LUT */
qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
}
#if defined(CONFIG_SYS_FSL_QSPI_AHB)
/*
* If we have changed the content of the flash by writing or erasing,
* we need to invalidate the AHB buffer. If we do not do so, we may read out
* the wrong data. The spec tells us reset the AHB domain and Serial Flash
* domain at the same time.
*/
static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 reg;
reg = qspi_read32(priv->flags, &regs->mcr);
reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
qspi_write32(priv->flags, &regs->mcr, reg);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
udelay(1);
reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
qspi_write32(priv->flags, &regs->mcr, reg);
}
/* Read out the data from the AHB buffer. */
static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 mcr_reg;
void *rx_addr = NULL;
mcr_reg = qspi_read32(priv->flags, &regs->mcr);
qspi_write32(priv->flags, &regs->mcr,
QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
/* Read out the data directly from the AHB buffer. */
memcpy(rxbuf, rx_addr, len);
qspi_write32(priv->flags, &regs->mcr, mcr_reg);
}
static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
{
u32 reg, reg2;
struct fsl_qspi_regs *regs = priv->regs;
reg = qspi_read32(priv->flags, &regs->mcr);
/* Disable the module */
qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
/* Set the Sampling Register for DDR */
reg2 = qspi_read32(priv->flags, &regs->smpr);
reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
qspi_write32(priv->flags, &regs->smpr, reg2);
/* Enable the module again (enable the DDR too) */
reg |= QSPI_MCR_DDR_EN_MASK;
/* Enable bit 29 for imx6sx */
reg |= BIT(29);
qspi_write32(priv->flags, &regs->mcr, reg);
}
/*
* There are two different ways to read out the data from the flash:
* the "IP Command Read" and the "AHB Command Read".
*
* The IC guy suggests we use the "AHB Command Read" which is faster
* then the "IP Command Read". (What's more is that there is a bug in
* the "IP Command Read" in the Vybrid.)
*
* After we set up the registers for the "AHB Command Read", we can use
* the memcpy to read the data directly. A "missed" access to the buffer
* causes the controller to clear the buffer, and use the sequence pointed
* by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
*/
static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
{
struct fsl_qspi_regs *regs = priv->regs;
/* AHB configuration for access buffer 0/1/2 .*/
qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
(0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
/* We only use the buffer3 */
qspi_write32(priv->flags, &regs->buf0ind, 0);
qspi_write32(priv->flags, &regs->buf1ind, 0);
qspi_write32(priv->flags, &regs->buf2ind, 0);
/*
* Set the default lut sequence for AHB Read.
* Parallel mode is disabled.
*/
qspi_write32(priv->flags, &regs->bfgencr,
SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
/*Enable DDR Mode*/
qspi_enable_ddr_mode(priv);
}
#endif
#ifdef CONFIG_SPI_FLASH_BAR
/* Bank register read/write, EAR register read/write */
static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 reg, mcr_reg, data, seqid;
mcr_reg = qspi_read32(priv->flags, &regs->mcr);
qspi_write32(priv->flags, &regs->mcr,
QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
if (priv->cur_seqid == QSPI_CMD_BRRD)
seqid = SEQID_BRRD;
else
seqid = SEQID_RDEAR;
qspi_write32(priv->flags, &regs->ipcr,
(seqid << QSPI_IPCR_SEQID_SHIFT) | len);
/* Wait previous command complete */
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
while (1) {
WATCHDOG_RESET();
reg = qspi_read32(priv->flags, &regs->rbsr);
if (reg & QSPI_RBSR_RDBFL_MASK) {
data = qspi_read32(priv->flags, &regs->rbdr[0]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, len);
qspi_write32(priv->flags, &regs->mcr,
qspi_read32(priv->flags, &regs->mcr) |
QSPI_MCR_CLR_RXF_MASK);
break;
}
}
qspi_write32(priv->flags, &regs->mcr, mcr_reg);
}
#endif
static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 mcr_reg, rbsr_reg, data, size;
int i;
mcr_reg = qspi_read32(priv->flags, &regs->mcr);
qspi_write32(priv->flags, &regs->mcr,
QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
qspi_write32(priv->flags, &regs->ipcr,
(SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
i = 0;
while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
WATCHDOG_RESET();
rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
data = qspi_read32(priv->flags, &regs->rbdr[i]);
data = qspi_endian_xchg(data);
size = (len < 4) ? len : 4;
memcpy(rxbuf, &data, size);
len -= size;
rxbuf++;
i++;
}
}
qspi_write32(priv->flags, &regs->mcr, mcr_reg);
}
/* If not use AHB read, read data from ip interface */
static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 mcr_reg, data;
int i, size;
u32 to_or_from;
u32 seqid;
if (priv->cur_seqid == QSPI_CMD_RDAR)
seqid = SEQID_RDAR;
else
seqid = SEQID_FAST_READ;
mcr_reg = qspi_read32(priv->flags, &regs->mcr);
qspi_write32(priv->flags, &regs->mcr,
QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
to_or_from = priv->sf_addr + priv->cur_amba_base;
while (len > 0) {
WATCHDOG_RESET();
qspi_write32(priv->flags, &regs->sfar, to_or_from);
size = (len > RX_BUFFER_SIZE) ?
RX_BUFFER_SIZE : len;
qspi_write32(priv->flags, &regs->ipcr,
(seqid << QSPI_IPCR_SEQID_SHIFT) |
size);
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
to_or_from += size;
len -= size;
i = 0;
while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
data = qspi_read32(priv->flags, &regs->rbdr[i]);
data = qspi_endian_xchg(data);
if (size < 4)
memcpy(rxbuf, &data, size);
else
memcpy(rxbuf, &data, 4);
rxbuf++;
size -= 4;
i++;
}
qspi_write32(priv->flags, &regs->mcr,
qspi_read32(priv->flags, &regs->mcr) |
QSPI_MCR_CLR_RXF_MASK);
}
qspi_write32(priv->flags, &regs->mcr, mcr_reg);
}
static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 mcr_reg, data, reg, status_reg, seqid;
int i, size, tx_size;
u32 to_or_from = 0;
mcr_reg = qspi_read32(priv->flags, &regs->mcr);
qspi_write32(priv->flags, &regs->mcr,
QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
status_reg = 0;
while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
WATCHDOG_RESET();
qspi_write32(priv->flags, &regs->ipcr,
(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(priv->flags, &regs->ipcr,
(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
reg = qspi_read32(priv->flags, &regs->rbsr);
if (reg & QSPI_RBSR_RDBFL_MASK) {
status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
status_reg = qspi_endian_xchg(status_reg);
}
qspi_write32(priv->flags, &regs->mcr,
qspi_read32(priv->flags, &regs->mcr) |
QSPI_MCR_CLR_RXF_MASK);
}
/* Default is page programming */
seqid = SEQID_PP;
if (priv->cur_seqid == QSPI_CMD_WRAR)
seqid = SEQID_WRAR;
#ifdef CONFIG_SPI_FLASH_BAR
if (priv->cur_seqid == QSPI_CMD_BRWR)
seqid = SEQID_BRWR;
else if (priv->cur_seqid == QSPI_CMD_WREAR)
seqid = SEQID_WREAR;
#endif
to_or_from = priv->sf_addr + priv->cur_amba_base;
qspi_write32(priv->flags, &regs->sfar, to_or_from);
tx_size = (len > TX_BUFFER_SIZE) ?
TX_BUFFER_SIZE : len;
size = tx_size / 16;
/*
* There must be atleast 128bit data
* available in TX FIFO for any pop operation
*/
if (tx_size % 16)
size++;
for (i = 0; i < size * 4; i++) {
memcpy(&data, txbuf, 4);
data = qspi_endian_xchg(data);
qspi_write32(priv->flags, &regs->tbdr, data);
txbuf += 4;
}
qspi_write32(priv->flags, &regs->ipcr,
(seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(priv->flags, &regs->mcr, mcr_reg);
}
static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 mcr_reg, reg, data;
mcr_reg = qspi_read32(priv->flags, &regs->mcr);
qspi_write32(priv->flags, &regs->mcr,
QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
qspi_write32(priv->flags, &regs->ipcr,
(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
while (1) {
WATCHDOG_RESET();
reg = qspi_read32(priv->flags, &regs->rbsr);
if (reg & QSPI_RBSR_RDBFL_MASK) {
data = qspi_read32(priv->flags, &regs->rbdr[0]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, len);
qspi_write32(priv->flags, &regs->mcr,
qspi_read32(priv->flags, &regs->mcr) |
QSPI_MCR_CLR_RXF_MASK);
break;
}
}
qspi_write32(priv->flags, &regs->mcr, mcr_reg);
}
static void qspi_op_erase(struct fsl_qspi_priv *priv)
{
struct fsl_qspi_regs *regs = priv->regs;
u32 mcr_reg;
u32 to_or_from = 0;
mcr_reg = qspi_read32(priv->flags, &regs->mcr);
qspi_write32(priv->flags, &regs->mcr,
QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
to_or_from = priv->sf_addr + priv->cur_amba_base;
qspi_write32(priv->flags, &regs->sfar, to_or_from);
qspi_write32(priv->flags, &regs->ipcr,
(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
if (priv->cur_seqid == QSPI_CMD_SE) {
qspi_write32(priv->flags, &regs->ipcr,
(SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
} else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
qspi_write32(priv->flags, &regs->ipcr,
(SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
}
while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(priv->flags, &regs->mcr, mcr_reg);
}
int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
u32 bytes = DIV_ROUND_UP(bitlen, 8);
static u32 wr_sfaddr;
u32 txbuf;
WATCHDOG_RESET();
if (dout) {
if (flags & SPI_XFER_BEGIN) {
priv->cur_seqid = *(u8 *)dout;
memcpy(&txbuf, dout, 4);
}
if (flags == SPI_XFER_END) {
priv->sf_addr = wr_sfaddr;
qspi_op_write(priv, (u8 *)dout, bytes);
return 0;
}
if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
priv->cur_seqid == QSPI_CMD_RDAR) {
priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
} else if ((priv->cur_seqid == QSPI_CMD_SE) ||
(priv->cur_seqid == QSPI_CMD_BE_4K)) {
priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
qspi_op_erase(priv);
} else if (priv->cur_seqid == QSPI_CMD_PP ||
priv->cur_seqid == QSPI_CMD_WRAR) {
wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
} else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
(priv->cur_seqid == QSPI_CMD_WREAR)) {
#ifdef CONFIG_SPI_FLASH_BAR
wr_sfaddr = 0;
#endif
}
}
if (din) {
if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
#ifdef CONFIG_SYS_FSL_QSPI_AHB
qspi_ahb_read(priv, din, bytes);
#else
qspi_op_read(priv, din, bytes);
#endif
} else if (priv->cur_seqid == QSPI_CMD_RDAR) {
qspi_op_read(priv, din, bytes);
} else if (priv->cur_seqid == QSPI_CMD_RDID)
qspi_op_rdid(priv, din, bytes);
else if (priv->cur_seqid == QSPI_CMD_RDSR)
qspi_op_rdsr(priv, din, bytes);
#ifdef CONFIG_SPI_FLASH_BAR
else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
(priv->cur_seqid == QSPI_CMD_RDEAR)) {
priv->sf_addr = 0;
qspi_op_rdbank(priv, din, bytes);
}
#endif
}
#ifdef CONFIG_SYS_FSL_QSPI_AHB
if ((priv->cur_seqid == QSPI_CMD_SE) ||
(priv->cur_seqid == QSPI_CMD_PP) ||
(priv->cur_seqid == QSPI_CMD_BE_4K) ||
(priv->cur_seqid == QSPI_CMD_WREAR) ||
(priv->cur_seqid == QSPI_CMD_BRWR))
qspi_ahb_invalid(priv);
#endif
return 0;
}
void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
{
u32 mcr_val;
mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
if (disable)
mcr_val |= QSPI_MCR_MDIS_MASK;
else
mcr_val &= ~QSPI_MCR_MDIS_MASK;
qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
}
void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
{
u32 smpr_val;
smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
smpr_val &= ~clear_bits;
smpr_val |= set_bits;
qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
}
#ifndef CONFIG_DM_SPI
static unsigned long spi_bases[] = {
QSPI0_BASE_ADDR,
#ifdef CONFIG_MX6SX
QSPI1_BASE_ADDR,
#endif
};
static unsigned long amba_bases[] = {
QSPI0_AMBA_BASE,
#ifdef CONFIG_MX6SX
QSPI1_AMBA_BASE,
#endif
};
static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
{
return container_of(slave, struct fsl_qspi, slave);
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
u32 mcr_val;
struct fsl_qspi *qspi;
struct fsl_qspi_regs *regs;
u32 total_size;
if (bus >= ARRAY_SIZE(spi_bases))
return NULL;
if (cs >= FSL_QSPI_FLASH_NUM)
return NULL;
qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
if (!qspi)
return NULL;
#ifdef CONFIG_SYS_FSL_QSPI_BE
qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
#endif
regs = (struct fsl_qspi_regs *)spi_bases[bus];
qspi->priv.regs = regs;
/*
* According cs, use different amba_base to choose the
* corresponding flash devices.
*
* If not, only one flash device is used even if passing
* different cs using `sf probe`
*/
qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
qspi->slave.max_write_size = TX_BUFFER_SIZE;
mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
/* Set endianness to LE for i.mx */
if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
mcr_val = QSPI_MCR_END_CFD_LE;
qspi_write32(qspi->priv.flags, &regs->mcr,
QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
(mcr_val & QSPI_MCR_END_CFD_MASK));
qspi_cfg_smpr(&qspi->priv,
~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
/*
* Any read access to non-implemented addresses will provide
* undefined results.
*
* In case single die flash devices, TOP_ADDR_MEMA2 and
* TOP_ADDR_MEMB2 should be initialized/programmed to
* TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
* setting the size of these devices to 0. This would ensure
* that the complete memory map is assigned to only one flash device.
*/
qspi_write32(qspi->priv.flags, &regs->sfa1ad,
FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
qspi_write32(qspi->priv.flags, &regs->sfa2ad,
FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
qspi_write32(qspi->priv.flags, &regs->sfb1ad,
total_size | amba_bases[bus]);
qspi_write32(qspi->priv.flags, &regs->sfb2ad,
total_size | amba_bases[bus]);
qspi_set_lut(&qspi->priv);
#ifdef CONFIG_SYS_FSL_QSPI_AHB
qspi_init_ahb_read(&qspi->priv);
#endif
qspi_module_disable(&qspi->priv, 0);
return &qspi->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct fsl_qspi *qspi = to_qspi_spi(slave);
free(qspi);
}
int spi_claim_bus(struct spi_slave *slave)
{
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Nothing to do */
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct fsl_qspi *qspi = to_qspi_spi(slave);
return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
}
void spi_init(void)
{
/* Nothing to do */
}
#else
static int fsl_qspi_child_pre_probe(struct udevice *dev)
{
struct spi_slave *slave = dev_get_parent_priv(dev);
slave->max_write_size = TX_BUFFER_SIZE;
return 0;
}
static int fsl_qspi_probe(struct udevice *bus)
{
u32 mcr_val;
u32 amba_size_per_chip;
struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
struct fsl_qspi_priv *priv = dev_get_priv(bus);
struct dm_spi_bus *dm_spi_bus;
int i, ret;
dm_spi_bus = bus->uclass_priv;
dm_spi_bus->max_hz = plat->speed_hz;
priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
priv->flags = plat->flags;
priv->speed_hz = plat->speed_hz;
/*
* QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
* AMBA memory zone should be located on the 0~4GB space
* even on a 64bits cpu.
*/
priv->amba_base[0] = (u32)plat->amba_base;
priv->amba_total_size = (u32)plat->amba_total_size;
priv->flash_num = plat->flash_num;
priv->num_chipselect = plat->num_chipselect;
/* make sure controller is not busy anywhere */
ret = wait_for_bit(__func__, &priv->regs->sr,
QSPI_SR_BUSY_MASK |
QSPI_SR_AHB_ACC_MASK |
QSPI_SR_IP_ACC_MASK,
false, 100, false);
if (ret) {
debug("ERROR : The controller is busy\n");
return ret;
}
mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
/* Set endianness to LE for i.mx */
if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
mcr_val = QSPI_MCR_END_CFD_LE;
qspi_write32(priv->flags, &priv->regs->mcr,
QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
(mcr_val & QSPI_MCR_END_CFD_MASK));
qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
/*
* Assign AMBA memory zone for every chipselect
* QuadSPI has two channels, every channel has two chipselects.
* If the property 'num-cs' in dts is 2, the AMBA memory will be divided
* into two parts and assign to every channel. This indicate that every
* channel only has one valid chipselect.
* If the property 'num-cs' in dts is 4, the AMBA memory will be divided
* into four parts and assign to every chipselect.
* Every channel will has two valid chipselects.
*/
amba_size_per_chip = priv->amba_total_size >>
(priv->num_chipselect >> 1);
for (i = 1 ; i < priv->num_chipselect ; i++)
priv->amba_base[i] =
amba_size_per_chip + priv->amba_base[i - 1];
/*
* Any read access to non-implemented addresses will provide
* undefined results.
*
* In case single die flash devices, TOP_ADDR_MEMA2 and
* TOP_ADDR_MEMB2 should be initialized/programmed to
* TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
* setting the size of these devices to 0. This would ensure
* that the complete memory map is assigned to only one flash device.
*/
qspi_write32(priv->flags, &priv->regs->sfa1ad,
priv->amba_base[0] + amba_size_per_chip);
switch (priv->num_chipselect) {
case 1:
break;
case 2:
qspi_write32(priv->flags, &priv->regs->sfa2ad,
priv->amba_base[1]);
qspi_write32(priv->flags, &priv->regs->sfb1ad,
priv->amba_base[1] + amba_size_per_chip);
qspi_write32(priv->flags, &priv->regs->sfb2ad,
priv->amba_base[1] + amba_size_per_chip);
break;
case 4:
qspi_write32(priv->flags, &priv->regs->sfa2ad,
priv->amba_base[2]);
qspi_write32(priv->flags, &priv->regs->sfb1ad,
priv->amba_base[3]);
qspi_write32(priv->flags, &priv->regs->sfb2ad,
priv->amba_base[3] + amba_size_per_chip);
break;
default:
debug("Error: Unsupported chipselect number %u!\n",
priv->num_chipselect);
qspi_module_disable(priv, 1);
return -EINVAL;
}
qspi_set_lut(priv);
#ifdef CONFIG_SYS_FSL_QSPI_AHB
qspi_init_ahb_read(priv);
#endif
qspi_module_disable(priv, 0);
return 0;
}
static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
{
struct fdt_resource res_regs, res_mem;
struct fsl_qspi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);
int ret, flash_num = 0, subnode;
if (fdtdec_get_bool(blob, node, "big-endian"))
plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
"QuadSPI", &res_regs);
if (ret) {
debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
return -ENOMEM;
}
ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
"QuadSPI-memory", &res_mem);
if (ret) {
debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
return -ENOMEM;
}
/* Count flash numbers */
fdt_for_each_subnode(subnode, blob, node)
++flash_num;
if (flash_num == 0) {
debug("Error: Missing flashes!\n");
return -ENODEV;
}
plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
FSL_QSPI_DEFAULT_SCK_FREQ);
plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
FSL_QSPI_MAX_CHIPSELECT_NUM);
plat->reg_base = res_regs.start;
plat->amba_base = res_mem.start;
plat->amba_total_size = res_mem.end - res_mem.start + 1;
plat->flash_num = flash_num;
debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
__func__,
(u64)plat->reg_base,
(u64)plat->amba_base,
(u64)plat->amba_total_size,
plat->speed_hz,
plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
);
return 0;
}
static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct fsl_qspi_priv *priv;
struct udevice *bus;
bus = dev->parent;
priv = dev_get_priv(bus);
return qspi_xfer(priv, bitlen, dout, din, flags);
}
static int fsl_qspi_claim_bus(struct udevice *dev)
{
struct fsl_qspi_priv *priv;
struct udevice *bus;
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
int ret;
bus = dev->parent;
priv = dev_get_priv(bus);
/* make sure controller is not busy anywhere */
ret = wait_for_bit(__func__, &priv->regs->sr,
QSPI_SR_BUSY_MASK |
QSPI_SR_AHB_ACC_MASK |
QSPI_SR_IP_ACC_MASK,
false, 100, false);
if (ret) {
debug("ERROR : The controller is busy\n");
return ret;
}
priv->cur_amba_base = priv->amba_base[slave_plat->cs];
qspi_module_disable(priv, 0);
return 0;
}
static int fsl_qspi_release_bus(struct udevice *dev)
{
struct fsl_qspi_priv *priv;
struct udevice *bus;
bus = dev->parent;
priv = dev_get_priv(bus);
qspi_module_disable(priv, 1);
return 0;
}
static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
{
/* Nothing to do */
return 0;
}
static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
{
/* Nothing to do */
return 0;
}
static const struct dm_spi_ops fsl_qspi_ops = {
.claim_bus = fsl_qspi_claim_bus,
.release_bus = fsl_qspi_release_bus,
.xfer = fsl_qspi_xfer,
.set_speed = fsl_qspi_set_speed,
.set_mode = fsl_qspi_set_mode,
};
static const struct udevice_id fsl_qspi_ids[] = {
{ .compatible = "fsl,vf610-qspi" },
{ .compatible = "fsl,imx6sx-qspi" },
{ .compatible = "fsl,imx6ul-qspi" },
{ .compatible = "fsl,imx7d-qspi" },
{ }
};
U_BOOT_DRIVER(fsl_qspi) = {
.name = "fsl_qspi",
.id = UCLASS_SPI,
.of_match = fsl_qspi_ids,
.ops = &fsl_qspi_ops,
.ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
.priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
.probe = fsl_qspi_probe,
.child_pre_probe = fsl_qspi_child_pre_probe,
};
#endif