u-boot/drivers/net/macb.c

1351 lines
32 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2005-2006 Atmel Corporation
*/
#include <common.h>
#include <clk.h>
#include <cpu_func.h>
#include <dm.h>
#include <log.h>
#include <asm/global_data.h>
#include <linux/delay.h>
/*
* The u-boot networking stack is a little weird. It seems like the
* networking core allocates receive buffers up front without any
* regard to the hardware that's supposed to actually receive those
* packets.
*
* The MACB receives packets into 128-byte receive buffers, so the
* buffers allocated by the core isn't very practical to use. We'll
* allocate our own, but we need one such buffer in case a packet
* wraps around the DMA ring so that we have to copy it.
*
* Therefore, define CONFIG_SYS_RX_ETH_BUFFER to 1 in the board-specific
* configuration header. This way, the core allocates one RX buffer
* and one TX buffer, each of which can hold a ethernet packet of
* maximum size.
*
* For some reason, the networking core unconditionally specifies a
* 32-byte packet "alignment" (which really should be called
* "padding"). MACB shouldn't need that, but we'll refrain from any
* core modifications here...
*/
#include <net.h>
#include <malloc.h>
#include <miiphy.h>
#include <linux/mii.h>
#include <asm/io.h>
#include <linux/dma-mapping.h>
#include <asm/arch/clk.h>
#include <linux/errno.h>
#include "macb.h"
DECLARE_GLOBAL_DATA_PTR;
/*
* These buffer sizes must be power of 2 and divisible
* by RX_BUFFER_MULTIPLE
*/
#define MACB_RX_BUFFER_SIZE 128
#define GEM_RX_BUFFER_SIZE 2048
#define RX_BUFFER_MULTIPLE 64
#define MACB_RX_RING_SIZE 32
#define MACB_TX_RING_SIZE 16
#define MACB_TX_TIMEOUT 1000
#define MACB_AUTONEG_TIMEOUT 5000000
#ifdef CONFIG_MACB_ZYNQ
/* INCR4 AHB bursts */
#define MACB_ZYNQ_GEM_DMACR_BLENGTH 0x00000004
/* Use full configured addressable space (8 Kb) */
#define MACB_ZYNQ_GEM_DMACR_RXSIZE 0x00000300
/* Use full configured addressable space (4 Kb) */
#define MACB_ZYNQ_GEM_DMACR_TXSIZE 0x00000400
/* Set RXBUF with use of 128 byte */
#define MACB_ZYNQ_GEM_DMACR_RXBUF 0x00020000
#define MACB_ZYNQ_GEM_DMACR_INIT \
(MACB_ZYNQ_GEM_DMACR_BLENGTH | \
MACB_ZYNQ_GEM_DMACR_RXSIZE | \
MACB_ZYNQ_GEM_DMACR_TXSIZE | \
MACB_ZYNQ_GEM_DMACR_RXBUF)
#endif
struct macb_dma_desc {
u32 addr;
u32 ctrl;
};
struct macb_dma_desc_64 {
u32 addrh;
u32 unused;
};
#define HW_DMA_CAP_32B 0
#define HW_DMA_CAP_64B 1
#define DMA_DESC_SIZE 16
#define DMA_DESC_BYTES(n) ((n) * DMA_DESC_SIZE)
#define MACB_TX_DMA_DESC_SIZE (DMA_DESC_BYTES(MACB_TX_RING_SIZE))
#define MACB_RX_DMA_DESC_SIZE (DMA_DESC_BYTES(MACB_RX_RING_SIZE))
#define MACB_TX_DUMMY_DMA_DESC_SIZE (DMA_DESC_BYTES(1))
#define DESC_PER_CACHELINE_32 (ARCH_DMA_MINALIGN/sizeof(struct macb_dma_desc))
#define DESC_PER_CACHELINE_64 (ARCH_DMA_MINALIGN/DMA_DESC_SIZE)
#define RXBUF_FRMLEN_MASK 0x00000fff
#define TXBUF_FRMLEN_MASK 0x000007ff
struct macb_device {
void *regs;
bool is_big_endian;
const struct macb_config *config;
unsigned int rx_tail;
unsigned int tx_head;
unsigned int tx_tail;
unsigned int next_rx_tail;
bool wrapped;
void *rx_buffer;
void *tx_buffer;
struct macb_dma_desc *rx_ring;
struct macb_dma_desc *tx_ring;
size_t rx_buffer_size;
unsigned long rx_buffer_dma;
unsigned long rx_ring_dma;
unsigned long tx_ring_dma;
struct macb_dma_desc *dummy_desc;
unsigned long dummy_desc_dma;
const struct device *dev;
unsigned short phy_addr;
struct mii_dev *bus;
#ifdef CONFIG_PHYLIB
struct phy_device *phydev;
#endif
#ifdef CONFIG_CLK
unsigned long pclk_rate;
#endif
phy_interface_t phy_interface;
};
struct macb_usrio_cfg {
unsigned int mii;
unsigned int rmii;
unsigned int rgmii;
unsigned int clken;
};
struct macb_config {
unsigned int dma_burst_length;
unsigned int hw_dma_cap;
unsigned int caps;
int (*clk_init)(struct udevice *dev, ulong rate);
const struct macb_usrio_cfg *usrio;
};
static int macb_is_gem(struct macb_device *macb)
{
return MACB_BFEXT(IDNUM, macb_readl(macb, MID)) >= 0x2;
}
#ifndef cpu_is_sama5d2
#define cpu_is_sama5d2() 0
#endif
#ifndef cpu_is_sama5d4
#define cpu_is_sama5d4() 0
#endif
static int gem_is_gigabit_capable(struct macb_device *macb)
{
/*
* The GEM controllers embedded in SAMA5D2 and SAMA5D4 are
* configured to support only 10/100.
*/
return macb_is_gem(macb) && !cpu_is_sama5d2() && !cpu_is_sama5d4();
}
static void macb_mdio_write(struct macb_device *macb, u8 phy_adr, u8 reg,
u16 value)
{
unsigned long netctl;
unsigned long netstat;
unsigned long frame;
netctl = macb_readl(macb, NCR);
netctl |= MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
frame = (MACB_BF(SOF, 1)
| MACB_BF(RW, 1)
| MACB_BF(PHYA, phy_adr)
| MACB_BF(REGA, reg)
| MACB_BF(CODE, 2)
| MACB_BF(DATA, value));
macb_writel(macb, MAN, frame);
do {
netstat = macb_readl(macb, NSR);
} while (!(netstat & MACB_BIT(IDLE)));
netctl = macb_readl(macb, NCR);
netctl &= ~MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
}
static u16 macb_mdio_read(struct macb_device *macb, u8 phy_adr, u8 reg)
{
unsigned long netctl;
unsigned long netstat;
unsigned long frame;
netctl = macb_readl(macb, NCR);
netctl |= MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
frame = (MACB_BF(SOF, 1)
| MACB_BF(RW, 2)
| MACB_BF(PHYA, phy_adr)
| MACB_BF(REGA, reg)
| MACB_BF(CODE, 2));
macb_writel(macb, MAN, frame);
do {
netstat = macb_readl(macb, NSR);
} while (!(netstat & MACB_BIT(IDLE)));
frame = macb_readl(macb, MAN);
netctl = macb_readl(macb, NCR);
netctl &= ~MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
return MACB_BFEXT(DATA, frame);
}
void __weak arch_get_mdio_control(const char *name)
{
return;
}
#if defined(CONFIG_CMD_MII) || defined(CONFIG_PHYLIB)
int macb_miiphy_read(struct mii_dev *bus, int phy_adr, int devad, int reg)
{
u16 value = 0;
struct udevice *dev = eth_get_dev_by_name(bus->name);
struct macb_device *macb = dev_get_priv(dev);
arch_get_mdio_control(bus->name);
value = macb_mdio_read(macb, phy_adr, reg);
return value;
}
int macb_miiphy_write(struct mii_dev *bus, int phy_adr, int devad, int reg,
u16 value)
{
struct udevice *dev = eth_get_dev_by_name(bus->name);
struct macb_device *macb = dev_get_priv(dev);
arch_get_mdio_control(bus->name);
macb_mdio_write(macb, phy_adr, reg, value);
return 0;
}
#endif
#define RX 1
#define TX 0
static inline void macb_invalidate_ring_desc(struct macb_device *macb, bool rx)
{
if (rx)
invalidate_dcache_range(macb->rx_ring_dma,
ALIGN(macb->rx_ring_dma + MACB_RX_DMA_DESC_SIZE,
PKTALIGN));
else
invalidate_dcache_range(macb->tx_ring_dma,
ALIGN(macb->tx_ring_dma + MACB_TX_DMA_DESC_SIZE,
PKTALIGN));
}
static inline void macb_flush_ring_desc(struct macb_device *macb, bool rx)
{
if (rx)
flush_dcache_range(macb->rx_ring_dma, macb->rx_ring_dma +
ALIGN(MACB_RX_DMA_DESC_SIZE, PKTALIGN));
else
flush_dcache_range(macb->tx_ring_dma, macb->tx_ring_dma +
ALIGN(MACB_TX_DMA_DESC_SIZE, PKTALIGN));
}
static inline void macb_flush_rx_buffer(struct macb_device *macb)
{
flush_dcache_range(macb->rx_buffer_dma, macb->rx_buffer_dma +
ALIGN(macb->rx_buffer_size * MACB_RX_RING_SIZE,
PKTALIGN));
}
static inline void macb_invalidate_rx_buffer(struct macb_device *macb)
{
invalidate_dcache_range(macb->rx_buffer_dma, macb->rx_buffer_dma +
ALIGN(macb->rx_buffer_size * MACB_RX_RING_SIZE,
PKTALIGN));
}
#if defined(CONFIG_CMD_NET)
static struct macb_dma_desc_64 *macb_64b_desc(struct macb_dma_desc *desc)
{
return (struct macb_dma_desc_64 *)((void *)desc
+ sizeof(struct macb_dma_desc));
}
static void macb_set_addr(struct macb_device *macb, struct macb_dma_desc *desc,
ulong addr)
{
struct macb_dma_desc_64 *desc_64;
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B) {
desc_64 = macb_64b_desc(desc);
desc_64->addrh = upper_32_bits(addr);
}
desc->addr = lower_32_bits(addr);
}
static int _macb_send(struct macb_device *macb, const char *name, void *packet,
int length)
{
unsigned long paddr, ctrl;
unsigned int tx_head = macb->tx_head;
int i;
paddr = dma_map_single(packet, length, DMA_TO_DEVICE);
ctrl = length & TXBUF_FRMLEN_MASK;
ctrl |= MACB_BIT(TX_LAST);
if (tx_head == (MACB_TX_RING_SIZE - 1)) {
ctrl |= MACB_BIT(TX_WRAP);
macb->tx_head = 0;
} else {
macb->tx_head++;
}
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B)
tx_head = tx_head * 2;
macb->tx_ring[tx_head].ctrl = ctrl;
macb_set_addr(macb, &macb->tx_ring[tx_head], paddr);
barrier();
macb_flush_ring_desc(macb, TX);
macb_writel(macb, NCR, MACB_BIT(TE) | MACB_BIT(RE) | MACB_BIT(TSTART));
/*
* I guess this is necessary because the networking core may
* re-use the transmit buffer as soon as we return...
*/
for (i = 0; i <= MACB_TX_TIMEOUT; i++) {
barrier();
macb_invalidate_ring_desc(macb, TX);
ctrl = macb->tx_ring[tx_head].ctrl;
if (ctrl & MACB_BIT(TX_USED))
break;
udelay(1);
}
dma_unmap_single(paddr, length, DMA_TO_DEVICE);
if (i <= MACB_TX_TIMEOUT) {
if (ctrl & MACB_BIT(TX_UNDERRUN))
printf("%s: TX underrun\n", name);
if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
printf("%s: TX buffers exhausted in mid frame\n", name);
} else {
printf("%s: TX timeout\n", name);
}
/* No one cares anyway */
return 0;
}
static void reclaim_rx_buffer(struct macb_device *macb,
unsigned int idx)
{
unsigned int mask;
unsigned int shift;
unsigned int i;
/*
* There may be multiple descriptors per CPU cacheline,
* so a cache flush would flush the whole line, meaning the content of other descriptors
* in the cacheline would also flush. If one of the other descriptors had been
* written to by the controller, the flush would cause those changes to be lost.
*
* To circumvent this issue, we do the actual freeing only when we need to free
* the last descriptor in the current cacheline. When the current descriptor is the
* last in the cacheline, we free all the descriptors that belong to that cacheline.
*/
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B) {
mask = DESC_PER_CACHELINE_64 - 1;
shift = 1;
} else {
mask = DESC_PER_CACHELINE_32 - 1;
shift = 0;
}
/* we exit without freeing if idx is not the last descriptor in the cacheline */
if ((idx & mask) != mask)
return;
for (i = idx & (~mask); i <= idx; i++)
macb->rx_ring[i << shift].addr &= ~MACB_BIT(RX_USED);
}
static void reclaim_rx_buffers(struct macb_device *macb,
unsigned int new_tail)
{
unsigned int i;
i = macb->rx_tail;
macb_invalidate_ring_desc(macb, RX);
while (i > new_tail) {
reclaim_rx_buffer(macb, i);
i++;
if (i >= MACB_RX_RING_SIZE)
i = 0;
}
while (i < new_tail) {
reclaim_rx_buffer(macb, i);
i++;
}
barrier();
macb_flush_ring_desc(macb, RX);
macb->rx_tail = new_tail;
}
static int _macb_recv(struct macb_device *macb, uchar **packetp)
{
unsigned int next_rx_tail = macb->next_rx_tail;
void *buffer;
int length;
u32 status;
u8 flag = false;
macb->wrapped = false;
for (;;) {
macb_invalidate_ring_desc(macb, RX);
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B)
next_rx_tail = next_rx_tail * 2;
if (!(macb->rx_ring[next_rx_tail].addr & MACB_BIT(RX_USED)))
return -EAGAIN;
status = macb->rx_ring[next_rx_tail].ctrl;
if (status & MACB_BIT(RX_SOF)) {
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B) {
next_rx_tail = next_rx_tail / 2;
flag = true;
}
if (next_rx_tail != macb->rx_tail)
reclaim_rx_buffers(macb, next_rx_tail);
macb->wrapped = false;
}
if (status & MACB_BIT(RX_EOF)) {
buffer = macb->rx_buffer +
macb->rx_buffer_size * macb->rx_tail;
length = status & RXBUF_FRMLEN_MASK;
macb_invalidate_rx_buffer(macb);
if (macb->wrapped) {
unsigned int headlen, taillen;
headlen = macb->rx_buffer_size *
(MACB_RX_RING_SIZE - macb->rx_tail);
taillen = length - headlen;
memcpy((void *)net_rx_packets[0],
buffer, headlen);
memcpy((void *)net_rx_packets[0] + headlen,
macb->rx_buffer, taillen);
*packetp = (void *)net_rx_packets[0];
} else {
*packetp = buffer;
}
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B) {
if (!flag)
next_rx_tail = next_rx_tail / 2;
}
if (++next_rx_tail >= MACB_RX_RING_SIZE)
next_rx_tail = 0;
macb->next_rx_tail = next_rx_tail;
return length;
} else {
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B) {
if (!flag)
next_rx_tail = next_rx_tail / 2;
flag = false;
}
if (++next_rx_tail >= MACB_RX_RING_SIZE) {
macb->wrapped = true;
next_rx_tail = 0;
}
}
barrier();
}
}
static void macb_phy_reset(struct macb_device *macb, const char *name)
{
int i;
u16 status, adv;
adv = ADVERTISE_CSMA | ADVERTISE_ALL;
macb_mdio_write(macb, macb->phy_addr, MII_ADVERTISE, adv);
printf("%s: Starting autonegotiation...\n", name);
macb_mdio_write(macb, macb->phy_addr, MII_BMCR, (BMCR_ANENABLE
| BMCR_ANRESTART));
for (i = 0; i < MACB_AUTONEG_TIMEOUT / 100; i++) {
status = macb_mdio_read(macb, macb->phy_addr, MII_BMSR);
if (status & BMSR_ANEGCOMPLETE)
break;
udelay(100);
}
if (status & BMSR_ANEGCOMPLETE)
printf("%s: Autonegotiation complete\n", name);
else
printf("%s: Autonegotiation timed out (status=0x%04x)\n",
name, status);
}
static int macb_phy_find(struct macb_device *macb, const char *name)
{
int i;
u16 phy_id;
phy_id = macb_mdio_read(macb, macb->phy_addr, MII_PHYSID1);
if (phy_id != 0xffff) {
printf("%s: PHY present at %d\n", name, macb->phy_addr);
return 0;
}
/* Search for PHY... */
for (i = 0; i < 32; i++) {
macb->phy_addr = i;
phy_id = macb_mdio_read(macb, macb->phy_addr, MII_PHYSID1);
if (phy_id != 0xffff) {
printf("%s: PHY present at %d\n", name, i);
return 0;
}
}
/* PHY isn't up to snuff */
printf("%s: PHY not found\n", name);
return -ENODEV;
}
/**
* macb_linkspd_cb - Linkspeed change callback function
* @dev/@regs: MACB udevice (DM version) or
* Base Register of MACB devices (non-DM version)
* @speed: Linkspeed
* Returns 0 when operation success and negative errno number
* when operation failed.
*/
static int macb_sifive_clk_init(struct udevice *dev, ulong rate)
{
void *gemgxl_regs;
gemgxl_regs = dev_read_addr_index_ptr(dev, 1);
if (!gemgxl_regs)
return -ENODEV;
/*
* SiFive GEMGXL TX clock operation mode:
*
* 0 = GMII mode. Use 125 MHz gemgxlclk from PRCI in TX logic
* and output clock on GMII output signal GTX_CLK
* 1 = MII mode. Use MII input signal TX_CLK in TX logic
*/
writel(rate != 125000000, gemgxl_regs);
return 0;
}
static int macb_sama7g5_clk_init(struct udevice *dev, ulong rate)
{
struct clk clk;
int ret;
ret = clk_get_by_name(dev, "tx_clk", &clk);
if (ret)
return ret;
/*
* This is for using GCK. Clock rate is addressed via assigned-clock
* property, so only clock enable is needed here. The switching to
* proper clock rate depending on link speed is managed by IP logic.
*/
return clk_enable(&clk);
}
int __weak macb_linkspd_cb(struct udevice *dev, unsigned int speed)
{
#ifdef CONFIG_CLK
struct macb_device *macb = dev_get_priv(dev);
struct clk tx_clk;
ulong rate;
int ret;
switch (speed) {
case _10BASET:
rate = 2500000; /* 2.5 MHz */
break;
case _100BASET:
rate = 25000000; /* 25 MHz */
break;
case _1000BASET:
rate = 125000000; /* 125 MHz */
break;
default:
/* does not change anything */
return 0;
}
if (macb->config->clk_init)
return macb->config->clk_init(dev, rate);
/*
* "tx_clk" is an optional clock source for MACB.
* Ignore if it does not exist in DT.
*/
ret = clk_get_by_name(dev, "tx_clk", &tx_clk);
if (ret)
return 0;
if (tx_clk.dev) {
ret = clk_set_rate(&tx_clk, rate);
if (ret < 0)
return ret;
}
#endif
return 0;
}
static int macb_phy_init(struct udevice *dev, const char *name)
{
struct macb_device *macb = dev_get_priv(dev);
u32 ncfgr;
u16 phy_id, status, adv, lpa;
int media, speed, duplex;
int ret;
int i;
arch_get_mdio_control(name);
/* Auto-detect phy_addr */
ret = macb_phy_find(macb, name);
if (ret)
return ret;
/* Check if the PHY is up to snuff... */
phy_id = macb_mdio_read(macb, macb->phy_addr, MII_PHYSID1);
if (phy_id == 0xffff) {
printf("%s: No PHY present\n", name);
return -ENODEV;
}
#ifdef CONFIG_PHYLIB
macb->phydev = phy_connect(macb->bus, macb->phy_addr, dev,
macb->phy_interface);
if (!macb->phydev) {
printf("phy_connect failed\n");
return -ENODEV;
}
phy_config(macb->phydev);
#endif
status = macb_mdio_read(macb, macb->phy_addr, MII_BMSR);
if (!(status & BMSR_LSTATUS)) {
/* Try to re-negotiate if we don't have link already. */
macb_phy_reset(macb, name);
for (i = 0; i < MACB_AUTONEG_TIMEOUT / 100; i++) {
status = macb_mdio_read(macb, macb->phy_addr, MII_BMSR);
if (status & BMSR_LSTATUS) {
/*
* Delay a bit after the link is established,
* so that the next xfer does not fail
*/
mdelay(10);
break;
}
udelay(100);
}
}
if (!(status & BMSR_LSTATUS)) {
printf("%s: link down (status: 0x%04x)\n",
name, status);
return -ENETDOWN;
}
/* First check for GMAC and that it is GiB capable */
if (gem_is_gigabit_capable(macb)) {
lpa = macb_mdio_read(macb, macb->phy_addr, MII_STAT1000);
if (lpa & (LPA_1000FULL | LPA_1000HALF | LPA_1000XFULL |
LPA_1000XHALF)) {
duplex = ((lpa & (LPA_1000FULL | LPA_1000XFULL)) ?
1 : 0);
printf("%s: link up, 1000Mbps %s-duplex (lpa: 0x%04x)\n",
name,
duplex ? "full" : "half",
lpa);
ncfgr = macb_readl(macb, NCFGR);
ncfgr &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
ncfgr |= GEM_BIT(GBE);
if (duplex)
ncfgr |= MACB_BIT(FD);
macb_writel(macb, NCFGR, ncfgr);
ret = macb_linkspd_cb(dev, _1000BASET);
if (ret)
return ret;
return 0;
}
}
/* fall back for EMAC checking */
adv = macb_mdio_read(macb, macb->phy_addr, MII_ADVERTISE);
lpa = macb_mdio_read(macb, macb->phy_addr, MII_LPA);
media = mii_nway_result(lpa & adv);
speed = (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)
? 1 : 0);
duplex = (media & ADVERTISE_FULL) ? 1 : 0;
printf("%s: link up, %sMbps %s-duplex (lpa: 0x%04x)\n",
name,
speed ? "100" : "10",
duplex ? "full" : "half",
lpa);
ncfgr = macb_readl(macb, NCFGR);
ncfgr &= ~(MACB_BIT(SPD) | MACB_BIT(FD) | GEM_BIT(GBE));
if (speed) {
ncfgr |= MACB_BIT(SPD);
ret = macb_linkspd_cb(dev, _100BASET);
} else {
ret = macb_linkspd_cb(dev, _10BASET);
}
if (ret)
return ret;
if (duplex)
ncfgr |= MACB_BIT(FD);
macb_writel(macb, NCFGR, ncfgr);
return 0;
}
static int gmac_init_multi_queues(struct macb_device *macb)
{
int i, num_queues = 1;
u32 queue_mask;
unsigned long paddr;
/* bit 0 is never set but queue 0 always exists */
queue_mask = gem_readl(macb, DCFG6) & 0xff;
queue_mask |= 0x1;
for (i = 1; i < MACB_MAX_QUEUES; i++)
if (queue_mask & (1 << i))
num_queues++;
macb->dummy_desc->ctrl = MACB_BIT(TX_USED);
macb->dummy_desc->addr = 0;
flush_dcache_range(macb->dummy_desc_dma, macb->dummy_desc_dma +
ALIGN(MACB_TX_DUMMY_DMA_DESC_SIZE, PKTALIGN));
paddr = macb->dummy_desc_dma;
for (i = 1; i < num_queues; i++) {
gem_writel_queue_TBQP(macb, lower_32_bits(paddr), i - 1);
gem_writel_queue_RBQP(macb, lower_32_bits(paddr), i - 1);
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B) {
gem_writel_queue_TBQPH(macb, upper_32_bits(paddr),
i - 1);
gem_writel_queue_RBQPH(macb, upper_32_bits(paddr),
i - 1);
}
}
return 0;
}
static void gmac_configure_dma(struct macb_device *macb)
{
u32 buffer_size;
u32 dmacfg;
buffer_size = macb->rx_buffer_size / RX_BUFFER_MULTIPLE;
dmacfg = gem_readl(macb, DMACFG) & ~GEM_BF(RXBS, -1L);
dmacfg |= GEM_BF(RXBS, buffer_size);
if (macb->config->dma_burst_length)
dmacfg = GEM_BFINS(FBLDO,
macb->config->dma_burst_length, dmacfg);
dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
dmacfg &= ~GEM_BIT(ENDIA_PKT);
if (macb->is_big_endian)
dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
else
dmacfg &= ~GEM_BIT(ENDIA_DESC);
dmacfg &= ~GEM_BIT(ADDR64);
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B)
dmacfg |= GEM_BIT(ADDR64);
gem_writel(macb, DMACFG, dmacfg);
}
static int _macb_init(struct udevice *dev, const char *name)
{
struct macb_device *macb = dev_get_priv(dev);
unsigned int val = 0;
unsigned long paddr;
int ret;
int i;
int count;
/*
* macb_halt should have been called at some point before now,
* so we'll assume the controller is idle.
*/
/* initialize DMA descriptors */
paddr = macb->rx_buffer_dma;
for (i = 0; i < MACB_RX_RING_SIZE; i++) {
if (i == (MACB_RX_RING_SIZE - 1))
paddr |= MACB_BIT(RX_WRAP);
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B)
count = i * 2;
else
count = i;
macb->rx_ring[count].ctrl = 0;
macb_set_addr(macb, &macb->rx_ring[count], paddr);
paddr += macb->rx_buffer_size;
}
macb_flush_ring_desc(macb, RX);
macb_flush_rx_buffer(macb);
for (i = 0; i < MACB_TX_RING_SIZE; i++) {
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B)
count = i * 2;
else
count = i;
macb_set_addr(macb, &macb->tx_ring[count], 0);
if (i == (MACB_TX_RING_SIZE - 1))
macb->tx_ring[count].ctrl = MACB_BIT(TX_USED) |
MACB_BIT(TX_WRAP);
else
macb->tx_ring[count].ctrl = MACB_BIT(TX_USED);
}
macb_flush_ring_desc(macb, TX);
macb->rx_tail = 0;
macb->tx_head = 0;
macb->tx_tail = 0;
macb->next_rx_tail = 0;
#ifdef CONFIG_MACB_ZYNQ
gem_writel(macb, DMACFG, MACB_ZYNQ_GEM_DMACR_INIT);
#endif
macb_writel(macb, RBQP, lower_32_bits(macb->rx_ring_dma));
macb_writel(macb, TBQP, lower_32_bits(macb->tx_ring_dma));
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B) {
macb_writel(macb, RBQPH, upper_32_bits(macb->rx_ring_dma));
macb_writel(macb, TBQPH, upper_32_bits(macb->tx_ring_dma));
}
if (macb_is_gem(macb)) {
/* Initialize DMA properties */
gmac_configure_dma(macb);
/* Check the multi queue and initialize the queue for tx */
gmac_init_multi_queues(macb);
/*
* When the GMAC IP with GE feature, this bit is used to
* select interface between RGMII and GMII.
* When the GMAC IP without GE feature, this bit is used
* to select interface between RMII and MII.
*/
if (macb->phy_interface == PHY_INTERFACE_MODE_RGMII ||
macb->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
macb->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
macb->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
val = macb->config->usrio->rgmii;
else if (macb->phy_interface == PHY_INTERFACE_MODE_RMII)
val = macb->config->usrio->rmii;
else if (macb->phy_interface == PHY_INTERFACE_MODE_MII)
val = macb->config->usrio->mii;
if (macb->config->caps & MACB_CAPS_USRIO_HAS_CLKEN)
val |= macb->config->usrio->clken;
gem_writel(macb, USRIO, val);
if (macb->phy_interface == PHY_INTERFACE_MODE_SGMII) {
unsigned int ncfgr = macb_readl(macb, NCFGR);
ncfgr |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
macb_writel(macb, NCFGR, ncfgr);
}
} else {
/* choose RMII or MII mode. This depends on the board */
#ifdef CONFIG_AT91FAMILY
if (macb->phy_interface == PHY_INTERFACE_MODE_RMII) {
macb_writel(macb, USRIO,
macb->config->usrio->rmii |
macb->config->usrio->clken);
} else {
macb_writel(macb, USRIO, macb->config->usrio->clken);
}
#else
if (macb->phy_interface == PHY_INTERFACE_MODE_RMII)
macb_writel(macb, USRIO, 0);
else
macb_writel(macb, USRIO, macb->config->usrio->mii);
#endif
}
ret = macb_phy_init(dev, name);
if (ret)
return ret;
/* Enable TX and RX */
macb_writel(macb, NCR, MACB_BIT(TE) | MACB_BIT(RE));
return 0;
}
static void _macb_halt(struct macb_device *macb)
{
u32 ncr, tsr;
/* Halt the controller and wait for any ongoing transmission to end. */
ncr = macb_readl(macb, NCR);
ncr |= MACB_BIT(THALT);
macb_writel(macb, NCR, ncr);
do {
tsr = macb_readl(macb, TSR);
} while (tsr & MACB_BIT(TGO));
/* Disable TX and RX, and clear statistics */
macb_writel(macb, NCR, MACB_BIT(CLRSTAT));
}
static int _macb_write_hwaddr(struct macb_device *macb, unsigned char *enetaddr)
{
u32 hwaddr_bottom;
u16 hwaddr_top;
/* set hardware address */
hwaddr_bottom = enetaddr[0] | enetaddr[1] << 8 |
enetaddr[2] << 16 | enetaddr[3] << 24;
macb_writel(macb, SA1B, hwaddr_bottom);
hwaddr_top = enetaddr[4] | enetaddr[5] << 8;
macb_writel(macb, SA1T, hwaddr_top);
return 0;
}
static u32 macb_mdc_clk_div(int id, struct macb_device *macb)
{
u32 config;
#if defined(CONFIG_CLK)
unsigned long macb_hz = macb->pclk_rate;
#else
unsigned long macb_hz = get_macb_pclk_rate(id);
#endif
if (macb_hz < 20000000)
config = MACB_BF(CLK, MACB_CLK_DIV8);
else if (macb_hz < 40000000)
config = MACB_BF(CLK, MACB_CLK_DIV16);
else if (macb_hz < 80000000)
config = MACB_BF(CLK, MACB_CLK_DIV32);
else
config = MACB_BF(CLK, MACB_CLK_DIV64);
return config;
}
static u32 gem_mdc_clk_div(int id, struct macb_device *macb)
{
u32 config;
#if defined(CONFIG_CLK)
unsigned long macb_hz = macb->pclk_rate;
#else
unsigned long macb_hz = get_macb_pclk_rate(id);
#endif
if (macb_hz < 20000000)
config = GEM_BF(CLK, GEM_CLK_DIV8);
else if (macb_hz < 40000000)
config = GEM_BF(CLK, GEM_CLK_DIV16);
else if (macb_hz < 80000000)
config = GEM_BF(CLK, GEM_CLK_DIV32);
else if (macb_hz < 120000000)
config = GEM_BF(CLK, GEM_CLK_DIV48);
else if (macb_hz < 160000000)
config = GEM_BF(CLK, GEM_CLK_DIV64);
else if (macb_hz < 240000000)
config = GEM_BF(CLK, GEM_CLK_DIV96);
else if (macb_hz < 320000000)
config = GEM_BF(CLK, GEM_CLK_DIV128);
else
config = GEM_BF(CLK, GEM_CLK_DIV224);
return config;
}
/*
* Get the DMA bus width field of the network configuration register that we
* should program. We find the width from decoding the design configuration
* register to find the maximum supported data bus width.
*/
static u32 macb_dbw(struct macb_device *macb)
{
switch (GEM_BFEXT(DBWDEF, gem_readl(macb, DCFG1))) {
case 4:
return GEM_BF(DBW, GEM_DBW128);
case 2:
return GEM_BF(DBW, GEM_DBW64);
case 1:
default:
return GEM_BF(DBW, GEM_DBW32);
}
}
static void _macb_eth_initialize(struct macb_device *macb)
{
int id = 0; /* This is not used by functions we call */
u32 ncfgr;
if (macb_is_gem(macb))
macb->rx_buffer_size = GEM_RX_BUFFER_SIZE;
else
macb->rx_buffer_size = MACB_RX_BUFFER_SIZE;
/* TODO: we need check the rx/tx_ring_dma is dcache line aligned */
macb->rx_buffer = dma_alloc_coherent(macb->rx_buffer_size *
MACB_RX_RING_SIZE,
&macb->rx_buffer_dma);
macb->rx_ring = dma_alloc_coherent(MACB_RX_DMA_DESC_SIZE,
&macb->rx_ring_dma);
macb->tx_ring = dma_alloc_coherent(MACB_TX_DMA_DESC_SIZE,
&macb->tx_ring_dma);
macb->dummy_desc = dma_alloc_coherent(MACB_TX_DUMMY_DMA_DESC_SIZE,
&macb->dummy_desc_dma);
/*
* Do some basic initialization so that we at least can talk
* to the PHY
*/
if (macb_is_gem(macb)) {
ncfgr = gem_mdc_clk_div(id, macb);
ncfgr |= macb_dbw(macb);
} else {
ncfgr = macb_mdc_clk_div(id, macb);
}
macb_writel(macb, NCFGR, ncfgr);
}
static int macb_start(struct udevice *dev)
{
return _macb_init(dev, dev->name);
}
static int macb_send(struct udevice *dev, void *packet, int length)
{
struct macb_device *macb = dev_get_priv(dev);
return _macb_send(macb, dev->name, packet, length);
}
static int macb_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct macb_device *macb = dev_get_priv(dev);
macb->next_rx_tail = macb->rx_tail;
macb->wrapped = false;
return _macb_recv(macb, packetp);
}
static int macb_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct macb_device *macb = dev_get_priv(dev);
reclaim_rx_buffers(macb, macb->next_rx_tail);
return 0;
}
static void macb_stop(struct udevice *dev)
{
struct macb_device *macb = dev_get_priv(dev);
_macb_halt(macb);
}
static int macb_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_plat(dev);
struct macb_device *macb = dev_get_priv(dev);
return _macb_write_hwaddr(macb, plat->enetaddr);
}
static const struct eth_ops macb_eth_ops = {
.start = macb_start,
.send = macb_send,
.recv = macb_recv,
.stop = macb_stop,
.free_pkt = macb_free_pkt,
.write_hwaddr = macb_write_hwaddr,
};
#ifdef CONFIG_CLK
static int macb_enable_clk(struct udevice *dev)
{
struct macb_device *macb = dev_get_priv(dev);
struct clk clk;
ulong clk_rate;
int ret;
ret = clk_get_by_index(dev, 0, &clk);
if (ret)
return -EINVAL;
/*
* If clock driver didn't support enable or disable then
* we get -ENOSYS from clk_enable(). To handle this, we
* don't fail for ret == -ENOSYS.
*/
ret = clk_enable(&clk);
if (ret && ret != -ENOSYS)
return ret;
clk_rate = clk_get_rate(&clk);
if (!clk_rate)
return -EINVAL;
macb->pclk_rate = clk_rate;
return 0;
}
#endif
static const struct macb_usrio_cfg macb_default_usrio = {
.mii = MACB_BIT(MII),
.rmii = MACB_BIT(RMII),
.rgmii = GEM_BIT(RGMII),
.clken = MACB_BIT(CLKEN),
};
static struct macb_config default_gem_config = {
.dma_burst_length = 16,
.hw_dma_cap = HW_DMA_CAP_32B,
.clk_init = NULL,
.usrio = &macb_default_usrio,
};
static int macb_eth_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct macb_device *macb = dev_get_priv(dev);
struct ofnode_phandle_args phandle_args;
int ret;
macb->phy_interface = dev_read_phy_mode(dev);
if (macb->phy_interface == PHY_INTERFACE_MODE_NA)
return -EINVAL;
/* Read phyaddr from DT */
if (!dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
&phandle_args))
macb->phy_addr = ofnode_read_u32_default(phandle_args.node,
"reg", -1);
macb->regs = (void *)(uintptr_t)pdata->iobase;
macb->is_big_endian = (cpu_to_be32(0x12345678) == 0x12345678);
macb->config = (struct macb_config *)dev_get_driver_data(dev);
if (!macb->config) {
if (IS_ENABLED(CONFIG_DMA_ADDR_T_64BIT)) {
if (GEM_BFEXT(DAW64, gem_readl(macb, DCFG6)))
default_gem_config.hw_dma_cap = HW_DMA_CAP_64B;
}
macb->config = &default_gem_config;
}
#ifdef CONFIG_CLK
ret = macb_enable_clk(dev);
if (ret)
return ret;
#endif
_macb_eth_initialize(macb);
#if defined(CONFIG_CMD_MII) || defined(CONFIG_PHYLIB)
macb->bus = mdio_alloc();
if (!macb->bus)
return -ENOMEM;
strlcpy(macb->bus->name, dev->name, MDIO_NAME_LEN);
macb->bus->read = macb_miiphy_read;
macb->bus->write = macb_miiphy_write;
ret = mdio_register(macb->bus);
if (ret < 0)
return ret;
macb->bus = miiphy_get_dev_by_name(dev->name);
#endif
return 0;
}
static int macb_eth_remove(struct udevice *dev)
{
struct macb_device *macb = dev_get_priv(dev);
#ifdef CONFIG_PHYLIB
free(macb->phydev);
#endif
mdio_unregister(macb->bus);
mdio_free(macb->bus);
return 0;
}
/**
* macb_late_eth_of_to_plat
* @dev: udevice struct
* Returns 0 when operation success and negative errno number
* when operation failed.
*/
int __weak macb_late_eth_of_to_plat(struct udevice *dev)
{
return 0;
}
static int macb_eth_of_to_plat(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
pdata->iobase = (uintptr_t)dev_remap_addr(dev);
if (!pdata->iobase)
return -EINVAL;
return macb_late_eth_of_to_plat(dev);
}
static const struct macb_usrio_cfg sama7g5_usrio = {
.mii = 0,
.rmii = 1,
.rgmii = 2,
.clken = BIT(2),
};
static const struct macb_config sama5d4_config = {
.dma_burst_length = 4,
.hw_dma_cap = HW_DMA_CAP_32B,
.clk_init = NULL,
.usrio = &macb_default_usrio,
};
static const struct macb_config sifive_config = {
.dma_burst_length = 16,
.hw_dma_cap = HW_DMA_CAP_32B,
.clk_init = macb_sifive_clk_init,
.usrio = &macb_default_usrio,
};
static const struct macb_config sama7g5_gmac_config = {
.dma_burst_length = 16,
.hw_dma_cap = HW_DMA_CAP_32B,
.clk_init = macb_sama7g5_clk_init,
.usrio = &sama7g5_usrio,
};
static const struct macb_config sama7g5_emac_config = {
.caps = MACB_CAPS_USRIO_HAS_CLKEN,
.dma_burst_length = 16,
.hw_dma_cap = HW_DMA_CAP_32B,
.usrio = &sama7g5_usrio,
};
static const struct udevice_id macb_eth_ids[] = {
{ .compatible = "cdns,macb" },
{ .compatible = "cdns,at91sam9260-macb" },
{ .compatible = "cdns,sam9x60-macb" },
{ .compatible = "cdns,sama7g5-gem",
.data = (ulong)&sama7g5_gmac_config },
{ .compatible = "cdns,sama7g5-emac",
.data = (ulong)&sama7g5_emac_config },
{ .compatible = "atmel,sama5d2-gem" },
{ .compatible = "atmel,sama5d3-gem" },
{ .compatible = "atmel,sama5d4-gem", .data = (ulong)&sama5d4_config },
{ .compatible = "cdns,zynq-gem" },
{ .compatible = "sifive,fu540-c000-gem",
.data = (ulong)&sifive_config },
{ }
};
U_BOOT_DRIVER(eth_macb) = {
.name = "eth_macb",
.id = UCLASS_ETH,
.of_match = macb_eth_ids,
.of_to_plat = macb_eth_of_to_plat,
.probe = macb_eth_probe,
.remove = macb_eth_remove,
.ops = &macb_eth_ops,
.priv_auto = sizeof(struct macb_device),
.plat_auto = sizeof(struct eth_pdata),
};
#endif