net: macb: Fix race caused by flushing unwanted descriptors

The rx descriptor list is in cached memory, and there may be multiple
descriptors per cache-line. After reclaim_rx_buffers marks a descriptor
as unused it does a cache flush, which causes the entire cache-line to
be written to memory, which may override other descriptors in the same
cache-line that the controller may have written to.

The fix skips freeing descriptors that are not the last in a cache-line,
and if the freed descriptor is the last one in a cache-line, it marks
all the descriptors in the cache-line as unused.
This is similarly to what is done in drivers/net/fec_mxc.c

In my case this bug caused tftpboot to fail some times when other
packets are sent to u-boot in addition to the ongoing tftp (e.g. ping).
The driver would stop receiving new packets because it is waiting
on a descriptor that is marked unused, when in reality the descriptor
contains a new unprocessed packet but while freeing the previous buffer
descriptor & flushing the cache, the driver accidentally marked the
descriptor as unused.

Signed-off-by: Yaron Micher <yaronm@hailo.ai>
This commit is contained in:
Yaron Micher 2022-11-10 19:31:34 +02:00 committed by Tom Rini
parent d6abc7e2e0
commit d1559435d7

View file

@ -98,6 +98,9 @@ struct macb_dma_desc_64 {
#define MACB_RX_DMA_DESC_SIZE (DMA_DESC_BYTES(MACB_RX_RING_SIZE))
#define MACB_TX_DUMMY_DMA_DESC_SIZE (DMA_DESC_BYTES(1))
#define DESC_PER_CACHELINE_32 (ARCH_DMA_MINALIGN/sizeof(struct macb_dma_desc))
#define DESC_PER_CACHELINE_64 (ARCH_DMA_MINALIGN/DMA_DESC_SIZE)
#define RXBUF_FRMLEN_MASK 0x00000fff
#define TXBUF_FRMLEN_MASK 0x000007ff
@ -401,32 +404,56 @@ static int _macb_send(struct macb_device *macb, const char *name, void *packet,
return 0;
}
static void reclaim_rx_buffer(struct macb_device *macb,
unsigned int idx)
{
unsigned int mask;
unsigned int shift;
unsigned int i;
/*
* There may be multiple descriptors per CPU cacheline,
* so a cache flush would flush the whole line, meaning the content of other descriptors
* in the cacheline would also flush. If one of the other descriptors had been
* written to by the controller, the flush would cause those changes to be lost.
*
* To circumvent this issue, we do the actual freeing only when we need to free
* the last descriptor in the current cacheline. When the current descriptor is the
* last in the cacheline, we free all the descriptors that belong to that cacheline.
*/
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B) {
mask = DESC_PER_CACHELINE_64 - 1;
shift = 1;
} else {
mask = DESC_PER_CACHELINE_32 - 1;
shift = 0;
}
/* we exit without freeing if idx is not the last descriptor in the cacheline */
if ((idx & mask) != mask)
return;
for (i = idx & (~mask); i <= idx; i++)
macb->rx_ring[i << shift].addr &= ~MACB_BIT(RX_USED);
}
static void reclaim_rx_buffers(struct macb_device *macb,
unsigned int new_tail)
{
unsigned int i;
unsigned int count;
i = macb->rx_tail;
macb_invalidate_ring_desc(macb, RX);
while (i > new_tail) {
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B)
count = i * 2;
else
count = i;
macb->rx_ring[count].addr &= ~MACB_BIT(RX_USED);
reclaim_rx_buffer(macb, i);
i++;
if (i > MACB_RX_RING_SIZE)
if (i >= MACB_RX_RING_SIZE)
i = 0;
}
while (i < new_tail) {
if (macb->config->hw_dma_cap & HW_DMA_CAP_64B)
count = i * 2;
else
count = i;
macb->rx_ring[count].addr &= ~MACB_BIT(RX_USED);
reclaim_rx_buffer(macb, i);
i++;
}