u-boot/cpu/mpc83xx/spd_sdram.c

913 lines
25 KiB
C
Raw Normal View History

/*
* (C) Copyright 2006 Freescale Semiconductor, Inc.
*
* (C) Copyright 2006
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
2006-04-16 08:51:58 +00:00
*
* Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
* (C) Copyright 2003 Motorola Inc.
* Xianghua Xiao (X.Xiao@motorola.com)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>
#include <spd_sdram.h>
void board_add_ram_info(int use_default)
{
volatile immap_t *immap = (immap_t *) CFG_IMMR;
volatile ddr83xx_t *ddr = &immap->ddr;
printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK)
>> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1);
if (ddr->sdram_cfg & SDRAM_CFG_32_BE)
puts(", 32-bit");
else
puts(", 64-bit");
if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN)
puts(", ECC on)");
else
puts(", ECC off)");
#if defined(CFG_LB_SDRAM) && defined(CFG_LBC_SDRAM_SIZE)
puts("\nSDRAM: ");
print_size (CFG_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)");
#endif
}
#ifdef CONFIG_SPD_EEPROM
DECLARE_GLOBAL_DATA_PTR;
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
extern void dma_init(void);
extern uint dma_check(void);
extern int dma_xfer(void *dest, uint count, void *src);
#endif
#ifndef CFG_READ_SPD
#define CFG_READ_SPD i2c_read
#endif
/*
* Convert picoseconds into clock cycles (rounding up if needed).
*/
int
picos_to_clk(int picos)
{
unsigned int ddr_bus_clk;
int clks;
ddr_bus_clk = gd->ddr_clk >> 1;
clks = picos / (1000000000 / (ddr_bus_clk / 1000));
if (picos % (1000000000 / (ddr_bus_clk / 1000)) != 0)
clks++;
return clks;
}
unsigned int banksize(unsigned char row_dens)
{
return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
}
int read_spd(uint addr)
{
return ((int) addr);
}
#undef SPD_DEBUG
#ifdef SPD_DEBUG
static void spd_debug(spd_eeprom_t *spd)
{
printf ("\nDIMM type: %-18.18s\n", spd->mpart);
printf ("SPD size: %d\n", spd->info_size);
printf ("EEPROM size: %d\n", 1 << spd->chip_size);
printf ("Memory type: %d\n", spd->mem_type);
printf ("Row addr: %d\n", spd->nrow_addr);
printf ("Column addr: %d\n", spd->ncol_addr);
printf ("# of rows: %d\n", spd->nrows);
printf ("Row density: %d\n", spd->row_dens);
printf ("# of banks: %d\n", spd->nbanks);
printf ("Data width: %d\n",
256 * spd->dataw_msb + spd->dataw_lsb);
printf ("Chip width: %d\n", spd->primw);
printf ("Refresh rate: %02X\n", spd->refresh);
printf ("CAS latencies: %02X\n", spd->cas_lat);
printf ("Write latencies: %02X\n", spd->write_lat);
printf ("tRP: %d\n", spd->trp);
printf ("tRCD: %d\n", spd->trcd);
printf ("\n");
}
#endif /* SPD_DEBUG */
long int spd_sdram()
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ddr83xx_t *ddr = &immap->ddr;
volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
spd_eeprom_t spd;
unsigned int n_ranks;
unsigned int odt_rd_cfg, odt_wr_cfg;
unsigned char twr_clk, twtr_clk;
unsigned int sdram_type;
unsigned int memsize;
unsigned int law_size;
unsigned char caslat, caslat_ctrl;
unsigned int trfc, trfc_clk, trfc_low, trfc_high;
unsigned int trcd_clk, trtp_clk;
unsigned char cke_min_clk;
unsigned char add_lat, wr_lat;
unsigned char wr_data_delay;
unsigned char four_act;
unsigned char cpo;
unsigned char burstlen;
unsigned char odt_cfg, mode_odt_enable;
unsigned int max_bus_clk;
unsigned int max_data_rate, effective_data_rate;
unsigned int ddrc_clk;
unsigned int refresh_clk;
unsigned int sdram_cfg;
unsigned int ddrc_ecc_enable;
unsigned int pvr = get_pvr();
2006-11-30 17:02:20 +00:00
/* Read SPD parameters with I2C */
CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
#ifdef SPD_DEBUG
spd_debug(&spd);
#endif
/* Check the memory type */
if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) {
debug("DDR: Module mem type is %02X\n", spd.mem_type);
return 0;
}
/* Check the number of physical bank */
if (spd.mem_type == SPD_MEMTYPE_DDR) {
n_ranks = spd.nrows;
} else {
n_ranks = (spd.nrows & 0x7) + 1;
}
if (n_ranks > 2) {
printf("DDR: The number of physical bank is %02X\n", n_ranks);
return 0;
}
/* Check if the number of row of the module is in the range of DDRC */
if (spd.nrow_addr < 12 || spd.nrow_addr > 15) {
printf("DDR: Row number is out of range of DDRC, row=%02X\n",
spd.nrow_addr);
return 0;
}
/* Check if the number of col of the module is in the range of DDRC */
if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
printf("DDR: Col number is out of range of DDRC, col=%02X\n",
spd.ncol_addr);
return 0;
}
#ifdef CFG_DDRCDR_VALUE
/*
* Adjust DDR II IO voltage biasing. It just makes it work.
*/
if(spd.mem_type == SPD_MEMTYPE_DDR2) {
immap->sysconf.ddrcdr = CFG_DDRCDR_VALUE;
}
#endif
/*
* ODT configuration recommendation from DDR Controller Chapter.
*/
odt_rd_cfg = 0; /* Never assert ODT */
odt_wr_cfg = 0; /* Never assert ODT */
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
odt_wr_cfg = 1; /* Assert ODT on writes to CSn */
}
2006-11-30 17:02:20 +00:00
/* Setup DDR chip select register */
#ifdef CFG_83XX_DDR_USES_CS0
ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
ddr->cs_config[0] = ( 1 << 31
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("\n");
debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);
if (n_ranks == 2) {
ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
| ((banksize(spd.row_dens) >> 23) - 1) );
ddr->cs_config[1] = ( 1<<31
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (spd.nrow_addr-12) << 8
| (spd.ncol_addr-8) );
debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
}
#else
ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
ddr->cs_config[2] = ( 1 << 31
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("\n");
debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);
if (n_ranks == 2) {
ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
| ((banksize(spd.row_dens) >> 23) - 1) );
ddr->cs_config[3] = ( 1<<31
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (spd.nrow_addr-12) << 8
| (spd.ncol_addr-8) );
debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
}
#endif
/*
* Figure out memory size in Megabytes.
*/
memsize = n_ranks * banksize(spd.row_dens) / 0x100000;
/*
* First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
*/
law_size = 19 + __ilog2(memsize);
/*
* Set up LAWBAR for all of DDR.
*/
ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
debug("DDR:bar=0x%08x\n", ecm->bar);
debug("DDR:ar=0x%08x\n", ecm->ar);
/*
* Find the largest CAS by locating the highest 1 bit
* in the spd.cas_lat field. Translate it to a DDR
* controller field value:
*
* CAS Lat DDR I DDR II Ctrl
* Clocks SPD Bit SPD Bit Value
* ------- ------- ------- -----
* 1.0 0 0001
* 1.5 1 0010
* 2.0 2 2 0011
* 2.5 3 0100
* 3.0 4 3 0101
* 3.5 5 0110
* 4.0 6 4 0111
* 4.5 1000
* 5.0 5 1001
*/
caslat = __ilog2(spd.cas_lat);
if ((spd.mem_type == SPD_MEMTYPE_DDR)
&& (caslat > 6)) {
printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
return 0;
} else if (spd.mem_type == SPD_MEMTYPE_DDR2
&& (caslat < 2 || caslat > 5)) {
printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
spd.cas_lat);
return 0;
}
debug("DDR: caslat SPD bit is %d\n", caslat);
max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
+ (spd.clk_cycle & 0x0f));
max_data_rate = max_bus_clk * 2;
debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate);
ddrc_clk = gd->ddr_clk / 1000000;
effective_data_rate = 0;
if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */
if (ddrc_clk <= 460 && ddrc_clk > 350) {
/* DDR controller clk at 350~460 */
effective_data_rate = 400; /* 5ns */
caslat = caslat;
} else if (ddrc_clk <= 350 && ddrc_clk > 280) {
/* DDR controller clk at 280~350 */
effective_data_rate = 333; /* 6ns */
if (spd.clk_cycle2 == 0x60)
caslat = caslat - 1;
else
caslat = caslat;
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
/* DDR controller clk at 230~280 */
effective_data_rate = 266; /* 7.5ns */
if (spd.clk_cycle3 == 0x75)
caslat = caslat - 2;
else if (spd.clk_cycle2 == 0x75)
caslat = caslat - 1;
else
caslat = caslat;
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
/* DDR controller clk at 90~230 */
effective_data_rate = 200; /* 10ns */
if (spd.clk_cycle3 == 0xa0)
caslat = caslat - 2;
else if (spd.clk_cycle2 == 0xa0)
caslat = caslat - 1;
else
caslat = caslat;
}
} else if (max_data_rate >= 323) { /* it is DDR 333 */
if (ddrc_clk <= 350 && ddrc_clk > 280) {
/* DDR controller clk at 280~350 */
effective_data_rate = 333; /* 6ns */
caslat = caslat;
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
/* DDR controller clk at 230~280 */
effective_data_rate = 266; /* 7.5ns */
if (spd.clk_cycle2 == 0x75)
caslat = caslat - 1;
else
caslat = caslat;
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
/* DDR controller clk at 90~230 */
effective_data_rate = 200; /* 10ns */
if (spd.clk_cycle3 == 0xa0)
caslat = caslat - 2;
else if (spd.clk_cycle2 == 0xa0)
caslat = caslat - 1;
else
caslat = caslat;
}
} else if (max_data_rate >= 256) { /* it is DDR 266 */
if (ddrc_clk <= 350 && ddrc_clk > 280) {
/* DDR controller clk at 280~350 */
printf("DDR: DDR controller freq is more than "
"max data rate of the module\n");
return 0;
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
/* DDR controller clk at 230~280 */
effective_data_rate = 266; /* 7.5ns */
caslat = caslat;
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
/* DDR controller clk at 90~230 */
effective_data_rate = 200; /* 10ns */
if (spd.clk_cycle2 == 0xa0)
caslat = caslat - 1;
}
} else if (max_data_rate >= 190) { /* it is DDR 200 */
if (ddrc_clk <= 350 && ddrc_clk > 230) {
/* DDR controller clk at 230~350 */
printf("DDR: DDR controller freq is more than "
"max data rate of the module\n");
return 0;
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
/* DDR controller clk at 90~230 */
effective_data_rate = 200; /* 10ns */
caslat = caslat;
}
}
debug("DDR:Effective data rate is: %dMhz\n", effective_data_rate);
debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);
/*
* Errata DDR6 work around: input enable 2 cycles earlier.
* including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
*/
if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){
if (caslat == 2)
ddr->debug_reg = 0x201c0000; /* CL=2 */
else if (caslat == 3)
ddr->debug_reg = 0x202c0000; /* CL=2.5 */
else if (caslat == 4)
ddr->debug_reg = 0x202c0000; /* CL=3.0 */
__asm__ __volatile__ ("sync");
debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);
}
/*
* Convert caslat clocks to DDR controller value.
* Force caslat_ctrl to be DDR Controller field-sized.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
caslat_ctrl = (caslat + 1) & 0x07;
} else {
caslat_ctrl = (2 * caslat - 1) & 0x0f;
}
debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
caslat, caslat_ctrl);
/*
* Timing Config 0.
* Avoid writing for DDR I.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
unsigned char taxpd_clk = 8; /* By the book. */
unsigned char tmrd_clk = 2; /* By the book. */
unsigned char act_pd_exit = 2; /* Empirical? */
unsigned char pre_pd_exit = 6; /* Empirical? */
ddr->timing_cfg_0 = (0
| ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
| ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
| ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
| ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
);
debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
}
/*
* For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
* use conservative value.
* For DDR II, they are bytes 36 and 37, in quarter nanos.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
twr_clk = 3; /* Clocks */
twtr_clk = 1; /* Clocks */
} else {
twr_clk = picos_to_clk(spd.twr * 250);
twtr_clk = picos_to_clk(spd.twtr * 250);
}
/*
* Calculate Trfc, in picos.
* DDR I: Byte 42 straight up in ns.
* DDR II: Byte 40 and 42 swizzled some, in ns.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
trfc = spd.trfc * 1000; /* up to ps */
} else {
unsigned int byte40_table_ps[8] = {
0,
250,
330,
500,
660,
750,
0,
0
};
trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
}
trfc_clk = picos_to_clk(trfc);
/*
* Trcd, Byte 29, from quarter nanos to ps and clocks.
*/
trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
/*
* Convert trfc_clk to DDR controller fields. DDR I should
* fit in the REFREC field (16-19) of TIMING_CFG_1, but the
* 83xx controller has an extended REFREC field of three bits.
* The controller automatically adds 8 clocks to this value,
* so preadjust it down 8 first before splitting it up.
*/
trfc_low = (trfc_clk - 8) & 0xf;
trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
ddr->timing_cfg_1 =
(((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | /* PRETOACT */
((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */
(trcd_clk << 20 ) | /* ACTTORW */
(caslat_ctrl << 16 ) | /* CASLAT */
(trfc_low << 12 ) | /* REFEC */
((twr_clk & 0x07) << 8) | /* WRRREC */
((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | /* ACTTOACT */
((twtr_clk & 0x07) << 0) /* WRTORD */
);
/*
* Additive Latency
* For DDR I, 0.
* For DDR II, with ODT enabled, use "a value" less than ACTTORW,
* which comes from Trcd, and also note that:
* add_lat + caslat must be >= 4
*/
add_lat = 0;
if (spd.mem_type == SPD_MEMTYPE_DDR2
&& (odt_wr_cfg || odt_rd_cfg)
&& (caslat < 4)) {
add_lat = trcd_clk - 1;
if ((add_lat + caslat) < 4) {
add_lat = 0;
}
}
/*
* Write Data Delay
* Historically 0x2 == 4/8 clock delay.
* Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
*/
wr_data_delay = 2;
/*
* Write Latency
* Read to Precharge
* Minimum CKE Pulse Width.
* Four Activate Window
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
/*
* This is a lie. It should really be 1, but if it is
* set to 1, bits overlap into the old controller's
* otherwise unused ACSM field. If we leave it 0, then
* the HW will magically treat it as 1 for DDR 1. Oh Yea.
*/
wr_lat = 0;
trtp_clk = 2; /* By the book. */
cke_min_clk = 1; /* By the book. */
four_act = 1; /* By the book. */
} else {
wr_lat = caslat - 1;
/* Convert SPD value from quarter nanos to picos. */
trtp_clk = picos_to_clk(spd.trtp * 250);
cke_min_clk = 3; /* By the book. */
four_act = picos_to_clk(37500); /* By the book. 1k pages? */
}
/*
* Empirically set ~MCAS-to-preamble override for DDR 2.
* Your milage will vary.
*/
cpo = 0;
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
if (effective_data_rate == 266 || effective_data_rate == 333) {
cpo = 0x7; /* READ_LAT + 5/4 */
} else if (effective_data_rate == 400) {
cpo = 0x9; /* READ_LAT + 7/4 */
} else {
/* Automatic calibration */
cpo = 0x1f;
}
}
ddr->timing_cfg_2 = (0
| ((add_lat & 0x7) << 28) /* ADD_LAT */
| ((cpo & 0x1f) << 23) /* CPO */
| ((wr_lat & 0x7) << 19) /* WR_LAT */
| ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
| ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
| ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
| ((four_act & 0x1f) << 0) /* FOUR_ACT */
);
debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
/* Check DIMM data bus width */
if (spd.dataw_lsb == 0x20) {
if (spd.mem_type == SPD_MEMTYPE_DDR)
burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
else
burstlen = 0x02; /* 32 bit data bus, burst len is 4 */
debug("\n DDR DIMM: data bus width is 32 bit");
} else {
burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
debug("\n DDR DIMM: data bus width is 64 bit");
}
/* Is this an ECC DDR chip? */
if (spd.config == 0x02)
debug(" with ECC\n");
else
debug(" without ECC\n");
/* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
Burst type is sequential
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
switch (caslat) {
case 1:
ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
break;
case 2:
ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
break;
case 3:
ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
break;
case 4:
ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
break;
default:
printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
return 0;
}
} else {
mode_odt_enable = 0x0; /* Default disabled */
if (odt_wr_cfg || odt_rd_cfg) {
/*
* Bits 6 and 2 in Extended MRS(1)
* Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
* Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
*/
mode_odt_enable = 0x40; /* 150 Ohm */
}
ddr->sdram_mode =
(0
| (1 << (16 + 10)) /* DQS Differential disable */
| (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
| (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
| ((twr_clk - 1) << 9) /* Write Recovery Autopre */
| (caslat << 4) /* caslat */
| (burstlen << 0) /* Burst length */
);
}
debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
/*
* Clear EMRS2 and EMRS3.
*/
ddr->sdram_mode2 = 0;
debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2);
switch (spd.refresh) {
case 0x00:
case 0x80:
refresh_clk = picos_to_clk(15625000);
break;
case 0x01:
case 0x81:
refresh_clk = picos_to_clk(3900000);
break;
case 0x02:
case 0x82:
refresh_clk = picos_to_clk(7800000);
break;
case 0x03:
case 0x83:
refresh_clk = picos_to_clk(31300000);
break;
case 0x04:
case 0x84:
refresh_clk = picos_to_clk(62500000);
break;
case 0x05:
case 0x85:
refresh_clk = picos_to_clk(125000000);
break;
default:
refresh_clk = 0x512;
break;
}
/*
* Set BSTOPRE to 0x100 for page mode
* If auto-charge is used, set BSTOPRE = 0
*/
ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
/*
* SDRAM Cfg 2
*/
odt_cfg = 0;
if (odt_rd_cfg | odt_wr_cfg) {
odt_cfg = 0x2; /* ODT to IOs during reads */
}
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
ddr->sdram_cfg2 = (0
| (0 << 26) /* True DQS */
| (odt_cfg << 21) /* ODT only read */
| (1 << 12) /* 1 refresh at a time */
);
debug("DDR: sdram_cfg2 = 0x%08x\n", ddr->sdram_cfg2);
}
#ifdef CFG_DDR_SDRAM_CLK_CNTL /* Optional platform specific value */
ddr->sdram_clk_cntl = CFG_DDR_SDRAM_CLK_CNTL;
#endif
debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);
asm("sync;isync");
udelay(600);
/*
* Figure out the settings for the sdram_cfg register. Build up
* the value in 'sdram_cfg' before writing since the write into
* the register will actually enable the memory controller, and all
* settings must be done before enabling.
*
* sdram_cfg[0] = 1 (ddr sdram logic enable)
* sdram_cfg[1] = 1 (self-refresh-enable)
* sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
* 010 DDR 1 SDRAM
* 011 DDR 2 SDRAM
* sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
* sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
*/
if (spd.mem_type == SPD_MEMTYPE_DDR)
sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;
else
sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR2;
sdram_cfg = (0
| SDRAM_CFG_MEM_EN /* DDR enable */
| SDRAM_CFG_SREN /* Self refresh */
| sdram_type /* SDRAM type */
);
/* sdram_cfg[3] = RD_EN - registered DIMM enable */
if (spd.mod_attr & 0x02)
sdram_cfg |= SDRAM_CFG_RD_EN;
/* The DIMM is 32bit width */
if (spd.dataw_lsb == 0x20) {
if (spd.mem_type == SPD_MEMTYPE_DDR)
sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE;
if (spd.mem_type == SPD_MEMTYPE_DDR2)
sdram_cfg |= SDRAM_CFG_32_BE;
}
ddrc_ecc_enable = 0;
#if defined(CONFIG_DDR_ECC)
/* Enable ECC with sdram_cfg[2] */
if (spd.config == 0x02) {
sdram_cfg |= 0x20000000;
ddrc_ecc_enable = 1;
/* disable error detection */
ddr->err_disable = ~ECC_ERROR_ENABLE;
/* set single bit error threshold to maximum value,
* reset counter to zero */
ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
(0 << ECC_ERROR_MAN_SBEC_SHIFT);
}
debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
#endif
debug(" DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");
#if defined(CONFIG_DDR_2T_TIMING)
/*
* Enable 2T timing by setting sdram_cfg[16].
*/
sdram_cfg |= SDRAM_CFG_2T_EN;
#endif
/* Enable controller, and GO! */
ddr->sdram_cfg = sdram_cfg;
asm("sync;isync");
udelay(500);
debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
return memsize; /*in MBytes*/
}
#endif /* CONFIG_SPD_EEPROM */
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
/*
* Use timebase counter, get_timer() is not availabe
* at this point of initialization yet.
*/
static __inline__ unsigned long get_tbms (void)
{
unsigned long tbl;
unsigned long tbu1, tbu2;
unsigned long ms;
unsigned long long tmp;
ulong tbclk = get_tbclk();
/* get the timebase ticks */
do {
asm volatile ("mftbu %0":"=r" (tbu1):);
asm volatile ("mftb %0":"=r" (tbl):);
asm volatile ("mftbu %0":"=r" (tbu2):);
} while (tbu1 != tbu2);
/* convert ticks to ms */
tmp = (unsigned long long)(tbu1);
tmp = (tmp << 32);
tmp += (unsigned long long)(tbl);
ms = tmp/(tbclk/1000);
return ms;
}
/*
* Initialize all of memory for ECC, then enable errors.
*/
2006-04-16 08:51:58 +00:00
/* #define CONFIG_DDR_ECC_INIT_VIA_DMA */
void ddr_enable_ecc(unsigned int dram_size)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ddr83xx_t *ddr= &immap->ddr;
unsigned long t_start, t_end;
register u64 *p;
register uint size;
unsigned int pattern[2];
#if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
uint i;
#endif
icache_enable();
t_start = get_tbms();
pattern[0] = 0xdeadbeef;
pattern[1] = 0xdeadbeef;
#if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
debug("ddr init: CPU FP write method\n");
size = dram_size;
for (p = 0; p < (u64*)(size); p++) {
ppcDWstore((u32*)p, pattern);
}
__asm__ __volatile__ ("sync");
#else
debug("ddr init: DMA method\n");
size = 0x2000;
for (p = 0; p < (u64*)(size); p++) {
ppcDWstore((u32*)p, pattern);
}
__asm__ __volatile__ ("sync");
/* Initialise DMA for direct transfer */
dma_init();
/* Start DMA to transfer */
dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 8K */
dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 16K */
dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 32K */
dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 64K */
dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 128K */
dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 256K */
dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 512K */
dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
for (i = 1; i < dram_size / 0x800000; i++) {
dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
}
#endif
t_end = get_tbms();
icache_disable();
debug("\nREADY!!\n");
debug("ddr init duration: %ld ms\n", t_end - t_start);
/* Clear All ECC Errors */
if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
ddr->err_detect |= ECC_ERROR_DETECT_MME;
if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
ddr->err_detect |= ECC_ERROR_DETECT_MBE;
if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
ddr->err_detect |= ECC_ERROR_DETECT_SBE;
if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
ddr->err_detect |= ECC_ERROR_DETECT_MSE;
/* Disable ECC-Interrupts */
ddr->err_int_en &= ECC_ERR_INT_DISABLE;
/* Enable errors for ECC */
ddr->err_disable &= ECC_ERROR_ENABLE;
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("isync");
}
#endif /* CONFIG_DDR_ECC */