2008-12-14 08:47:16 +00:00
|
|
|
/*
|
|
|
|
* (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
|
|
|
|
* Rohit Choraria <rohitkc@ti.com>
|
|
|
|
*
|
2013-07-08 07:37:19 +00:00
|
|
|
* SPDX-License-Identifier: GPL-2.0+
|
2008-12-14 08:47:16 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/errno.h>
|
|
|
|
#include <asm/arch/mem.h>
|
2013-03-14 11:15:25 +00:00
|
|
|
#include <asm/arch/cpu.h>
|
2013-04-02 06:05:54 +00:00
|
|
|
#include <asm/omap_gpmc.h>
|
2008-12-14 08:47:16 +00:00
|
|
|
#include <linux/mtd/nand_ecc.h>
|
2013-04-05 04:55:21 +00:00
|
|
|
#include <linux/bch.h>
|
2012-03-21 23:56:17 +00:00
|
|
|
#include <linux/compiler.h>
|
2008-12-14 08:47:16 +00:00
|
|
|
#include <nand.h>
|
2013-11-18 13:32:59 +00:00
|
|
|
#include <asm/omap_elm.h>
|
2013-11-18 13:33:00 +00:00
|
|
|
|
|
|
|
#define BADBLOCK_MARKER_LENGTH 2
|
|
|
|
#define SECTOR_BYTES 512
|
2008-12-14 08:47:16 +00:00
|
|
|
|
|
|
|
static uint8_t cs;
|
2013-11-18 13:33:00 +00:00
|
|
|
static __maybe_unused struct nand_ecclayout omap_ecclayout;
|
2008-12-14 08:47:16 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_nand_hwcontrol - Set the address pointers corretly for the
|
|
|
|
* following address/data/command operation
|
|
|
|
*/
|
|
|
|
static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
|
|
|
|
uint32_t ctrl)
|
|
|
|
{
|
|
|
|
register struct nand_chip *this = mtd->priv;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Point the IO_ADDR to DATA and ADDRESS registers instead
|
|
|
|
* of chip address
|
|
|
|
*/
|
|
|
|
switch (ctrl) {
|
|
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
|
2009-08-08 07:30:22 +00:00
|
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
|
2008-12-14 08:47:16 +00:00
|
|
|
break;
|
|
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
|
2009-08-08 07:30:22 +00:00
|
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
|
2008-12-14 08:47:16 +00:00
|
|
|
break;
|
|
|
|
case NAND_CTRL_CHANGE | NAND_NCE:
|
2009-08-08 07:30:22 +00:00
|
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
|
2008-12-14 08:47:16 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
|
|
writeb(cmd, this->IO_ADDR_W);
|
|
|
|
}
|
|
|
|
|
2011-09-14 19:30:16 +00:00
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
|
|
/* Check wait pin as dev ready indicator */
|
|
|
|
int omap_spl_dev_ready(struct mtd_info *mtd)
|
|
|
|
{
|
|
|
|
return gpmc_cfg->status & (1 << 8);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2008-12-14 08:47:16 +00:00
|
|
|
/*
|
|
|
|
* omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
|
|
|
|
* GPMC controller
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
*
|
|
|
|
*/
|
2012-03-21 23:56:17 +00:00
|
|
|
static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
|
2008-12-14 08:47:16 +00:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Init ECC Control Register
|
|
|
|
* Clear all ECC | Enable Reg1
|
|
|
|
*/
|
2009-08-08 07:30:22 +00:00
|
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
|
2008-12-14 08:47:16 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* gen_true_ecc - This function will generate true ECC value, which
|
|
|
|
* can be used when correcting data read from NAND flash memory core
|
|
|
|
*
|
|
|
|
* @ecc_buf: buffer to store ecc code
|
|
|
|
*
|
|
|
|
* @return: re-formatted ECC value
|
|
|
|
*/
|
|
|
|
static uint32_t gen_true_ecc(uint8_t *ecc_buf)
|
|
|
|
{
|
|
|
|
return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
|
|
|
|
((ecc_buf[2] & 0x0F) << 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_correct_data - Compares the ecc read from nand spare area with ECC
|
|
|
|
* registers values and corrects one bit error if it has occured
|
|
|
|
* Further details can be had from OMAP TRM and the following selected links:
|
|
|
|
* http://en.wikipedia.org/wiki/Hamming_code
|
|
|
|
* http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
|
|
|
|
*
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @dat: page data
|
|
|
|
* @read_ecc: ecc read from nand flash
|
|
|
|
* @calc_ecc: ecc read from ECC registers
|
|
|
|
*
|
|
|
|
* @return 0 if data is OK or corrected, else returns -1
|
|
|
|
*/
|
2012-03-21 23:56:17 +00:00
|
|
|
static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
2008-12-14 08:47:16 +00:00
|
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
|
|
{
|
|
|
|
uint32_t orig_ecc, new_ecc, res, hm;
|
|
|
|
uint16_t parity_bits, byte;
|
|
|
|
uint8_t bit;
|
|
|
|
|
|
|
|
/* Regenerate the orginal ECC */
|
|
|
|
orig_ecc = gen_true_ecc(read_ecc);
|
|
|
|
new_ecc = gen_true_ecc(calc_ecc);
|
|
|
|
/* Get the XOR of real ecc */
|
|
|
|
res = orig_ecc ^ new_ecc;
|
|
|
|
if (res) {
|
|
|
|
/* Get the hamming width */
|
|
|
|
hm = hweight32(res);
|
|
|
|
/* Single bit errors can be corrected! */
|
|
|
|
if (hm == 12) {
|
|
|
|
/* Correctable data! */
|
|
|
|
parity_bits = res >> 16;
|
|
|
|
bit = (parity_bits & 0x7);
|
|
|
|
byte = (parity_bits >> 3) & 0x1FF;
|
|
|
|
/* Flip the bit to correct */
|
|
|
|
dat[byte] ^= (0x1 << bit);
|
|
|
|
} else if (hm == 1) {
|
|
|
|
printf("Error: Ecc is wrong\n");
|
|
|
|
/* ECC itself is corrupted */
|
|
|
|
return 2;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* hm distance != parity pairs OR one, could mean 2 bit
|
|
|
|
* error OR potentially be on a blank page..
|
|
|
|
* orig_ecc: contains spare area data from nand flash.
|
|
|
|
* new_ecc: generated ecc while reading data area.
|
|
|
|
* Note: if the ecc = 0, all data bits from which it was
|
|
|
|
* generated are 0xFF.
|
|
|
|
* The 3 byte(24 bits) ecc is generated per 512byte
|
|
|
|
* chunk of a page. If orig_ecc(from spare area)
|
|
|
|
* is 0xFF && new_ecc(computed now from data area)=0x0,
|
|
|
|
* this means that data area is 0xFF and spare area is
|
|
|
|
* 0xFF. A sure sign of a erased page!
|
|
|
|
*/
|
|
|
|
if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
|
|
|
|
return 0;
|
|
|
|
printf("Error: Bad compare! failed\n");
|
|
|
|
/* detected 2 bit error */
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_calculate_ecc - Generate non-inverted ECC bytes.
|
|
|
|
*
|
|
|
|
* Using noninverted ECC can be considered ugly since writing a blank
|
|
|
|
* page ie. padding will clear the ECC bytes. This is no problem as
|
|
|
|
* long nobody is trying to write data on the seemingly unused page.
|
|
|
|
* Reading an erased page will produce an ECC mismatch between
|
|
|
|
* generated and read ECC bytes that has to be dealt with separately.
|
|
|
|
* E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
|
|
|
|
* is used, the result of read will be 0x0 while the ECC offsets of the
|
|
|
|
* spare area will be 0xFF which will result in an ECC mismatch.
|
|
|
|
* @mtd: MTD structure
|
|
|
|
* @dat: unused
|
|
|
|
* @ecc_code: ecc_code buffer
|
|
|
|
*/
|
2012-03-21 23:56:17 +00:00
|
|
|
static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
|
|
|
|
const uint8_t *dat, uint8_t *ecc_code)
|
2008-12-14 08:47:16 +00:00
|
|
|
{
|
|
|
|
u_int32_t val;
|
|
|
|
|
|
|
|
/* Start Reading from HW ECC1_Result = 0x200 */
|
2009-08-08 07:30:22 +00:00
|
|
|
val = readl(&gpmc_cfg->ecc1_result);
|
2008-12-14 08:47:16 +00:00
|
|
|
|
|
|
|
ecc_code[0] = val & 0xFF;
|
|
|
|
ecc_code[1] = (val >> 16) & 0xFF;
|
|
|
|
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop reading anymore ECC vals and clear old results
|
|
|
|
* enable will be called if more reads are required
|
|
|
|
*/
|
2009-08-08 07:30:22 +00:00
|
|
|
writel(0x000, &gpmc_cfg->ecc_config);
|
2008-12-14 08:47:16 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_enable_ecc - This function enables the hardware ecc functionality
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @mode: Read/Write mode
|
|
|
|
*/
|
2012-03-21 23:56:17 +00:00
|
|
|
static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
|
2008-12-14 08:47:16 +00:00
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
|
|
|
|
|
|
|
|
switch (mode) {
|
|
|
|
case NAND_ECC_READ:
|
|
|
|
case NAND_ECC_WRITE:
|
|
|
|
/* Clear the ecc result registers, select ecc reg as 1 */
|
2009-08-08 07:30:22 +00:00
|
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
2008-12-14 08:47:16 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
|
|
|
|
* tell all regs to generate size0 sized regs
|
|
|
|
* we just have a single ECC engine for all CS
|
|
|
|
*/
|
|
|
|
writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
|
2009-08-08 07:30:22 +00:00
|
|
|
&gpmc_cfg->ecc_size_config);
|
2008-12-14 08:47:16 +00:00
|
|
|
val = (dev_width << 7) | (cs << 1) | (0x1);
|
2009-08-08 07:30:22 +00:00
|
|
|
writel(val, &gpmc_cfg->ecc_config);
|
2008-12-14 08:47:16 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printf("Error: Unrecognized Mode[%d]!\n", mode);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-11-06 13:06:33 +00:00
|
|
|
/*
|
2013-04-05 04:55:21 +00:00
|
|
|
* Generic BCH interface
|
2012-11-06 13:06:33 +00:00
|
|
|
*/
|
|
|
|
struct nand_bch_priv {
|
|
|
|
uint8_t mode;
|
|
|
|
uint8_t type;
|
|
|
|
uint8_t nibbles;
|
2013-04-05 04:55:21 +00:00
|
|
|
struct bch_control *control;
|
2013-11-18 13:33:00 +00:00
|
|
|
enum omap_ecc ecc_scheme;
|
2012-11-06 13:06:33 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/* bch types */
|
|
|
|
#define ECC_BCH4 0
|
|
|
|
#define ECC_BCH8 1
|
|
|
|
#define ECC_BCH16 2
|
|
|
|
|
2013-04-05 04:55:21 +00:00
|
|
|
/* GPMC ecc engine settings */
|
|
|
|
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
|
|
|
|
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
|
|
|
|
|
2012-11-06 13:06:33 +00:00
|
|
|
/* BCH nibbles for diff bch levels */
|
|
|
|
#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
|
|
|
|
#define ECC_BCH4_NIBBLES 13
|
|
|
|
#define ECC_BCH8_NIBBLES 26
|
|
|
|
#define ECC_BCH16_NIBBLES 52
|
|
|
|
|
2013-04-05 04:55:21 +00:00
|
|
|
/*
|
|
|
|
* This can be a single instance cause all current users have only one NAND
|
|
|
|
* with nearly the same setup (BCH8, some with ELM and others with sw BCH
|
|
|
|
* library).
|
|
|
|
* When some users with other BCH strength will exists this have to change!
|
|
|
|
*/
|
|
|
|
static __maybe_unused struct nand_bch_priv bch_priv = {
|
2012-11-06 13:06:33 +00:00
|
|
|
.mode = NAND_ECC_HW_BCH,
|
|
|
|
.type = ECC_BCH8,
|
2013-04-05 04:55:21 +00:00
|
|
|
.nibbles = ECC_BCH8_NIBBLES,
|
|
|
|
.control = NULL
|
2012-11-06 13:06:33 +00:00
|
|
|
};
|
|
|
|
|
2013-04-05 04:55:21 +00:00
|
|
|
/*
|
|
|
|
* omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
|
|
|
|
* GPMC controller
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @mode: Read/Write mode
|
|
|
|
*/
|
|
|
|
__maybe_unused
|
|
|
|
static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
|
|
|
|
{
|
|
|
|
uint32_t val;
|
|
|
|
uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
|
|
|
|
uint32_t unused_length = 0;
|
|
|
|
uint32_t wr_mode = BCH_WRAPMODE_6;
|
|
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
|
|
|
|
|
|
/* Clear the ecc result registers, select ecc reg as 1 */
|
|
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
|
2013-11-18 13:33:00 +00:00
|
|
|
if (bch->ecc_scheme == OMAP_ECC_BCH8_CODE_HW) {
|
|
|
|
wr_mode = BCH_WRAPMODE_1;
|
2013-04-05 04:55:21 +00:00
|
|
|
|
2013-12-05 06:58:06 +00:00
|
|
|
switch (bch->nibbles) {
|
|
|
|
case ECC_BCH4_NIBBLES:
|
|
|
|
unused_length = 3;
|
|
|
|
break;
|
|
|
|
case ECC_BCH8_NIBBLES:
|
|
|
|
unused_length = 2;
|
|
|
|
break;
|
|
|
|
case ECC_BCH16_NIBBLES:
|
|
|
|
unused_length = 0;
|
|
|
|
break;
|
|
|
|
}
|
2013-04-05 04:55:21 +00:00
|
|
|
|
|
|
|
/*
|
2013-12-05 06:58:06 +00:00
|
|
|
* This is ecc_size_config for ELM mode. Here we are using
|
|
|
|
* different settings for read and write access and also
|
|
|
|
* depending on BCH strength.
|
2013-04-05 04:55:21 +00:00
|
|
|
*/
|
2013-12-05 06:58:06 +00:00
|
|
|
switch (mode) {
|
|
|
|
case NAND_ECC_WRITE:
|
|
|
|
/* write access only setup eccsize1 config */
|
|
|
|
val = ((unused_length + bch->nibbles) << 22);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case NAND_ECC_READ:
|
|
|
|
default:
|
|
|
|
/*
|
|
|
|
* by default eccsize0 selected for ecc1resultsize
|
|
|
|
* eccsize0 config.
|
|
|
|
*/
|
|
|
|
val = (bch->nibbles << 12);
|
|
|
|
/* eccsize1 config */
|
|
|
|
val |= (unused_length << 22);
|
|
|
|
break;
|
|
|
|
}
|
2013-11-18 13:33:00 +00:00
|
|
|
} else {
|
2013-12-05 06:58:06 +00:00
|
|
|
/*
|
|
|
|
* This ecc_size_config setting is for BCH sw library.
|
|
|
|
*
|
|
|
|
* Note: we only support BCH8 currently with BCH sw library!
|
|
|
|
* Should be really easy to adobt to BCH4, however some omap3
|
|
|
|
* have flaws with BCH4.
|
|
|
|
*
|
|
|
|
* Here we are using wrapping mode 6 both for reading and
|
|
|
|
* writing, with:
|
|
|
|
* size0 = 0 (no additional protected byte in spare area)
|
|
|
|
* size1 = 32 (skip 32 nibbles = 16 bytes per sector in
|
|
|
|
* spare area)
|
|
|
|
*/
|
|
|
|
val = (32 << 22) | (0 << 12);
|
2013-11-18 13:33:00 +00:00
|
|
|
}
|
2013-04-05 04:55:21 +00:00
|
|
|
/* ecc size configuration */
|
|
|
|
writel(val, &gpmc_cfg->ecc_size_config);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Configure the ecc engine in gpmc
|
|
|
|
* We assume 512 Byte sector pages for access to NAND.
|
|
|
|
*/
|
|
|
|
val = (1 << 16); /* enable BCH mode */
|
|
|
|
val |= (bch->type << 12); /* setup BCH type */
|
|
|
|
val |= (wr_mode << 8); /* setup wrapping mode */
|
|
|
|
val |= (dev_width << 7); /* setup device width (16 or 8 bit) */
|
|
|
|
val |= (cs << 1); /* setup chip select to work on */
|
|
|
|
debug("set ECC_CONFIG=0x%08x\n", val);
|
|
|
|
writel(val, &gpmc_cfg->ecc_config);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @mode: Read/Write mode
|
|
|
|
*/
|
|
|
|
__maybe_unused
|
|
|
|
static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
|
|
|
|
omap_hwecc_init_bch(chip, mode);
|
|
|
|
/* enable ecc */
|
|
|
|
writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_ecc_disable - Disable H/W ECC calculation
|
|
|
|
*
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
*/
|
|
|
|
static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
|
|
|
|
{
|
|
|
|
writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2013-11-18 13:33:00 +00:00
|
|
|
* BCH support using ELM module
|
2013-04-05 04:55:21 +00:00
|
|
|
*/
|
2013-11-18 13:33:00 +00:00
|
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
2012-11-06 13:06:33 +00:00
|
|
|
/*
|
|
|
|
* omap_read_bch8_result - Read BCH result for BCH8 level
|
|
|
|
*
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @big_endian: When set read register 3 first
|
|
|
|
* @ecc_code: Read syndrome from BCH result registers
|
|
|
|
*/
|
|
|
|
static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
|
|
|
|
uint8_t *ecc_code)
|
|
|
|
{
|
|
|
|
uint32_t *ptr;
|
|
|
|
int8_t i = 0, j;
|
|
|
|
|
|
|
|
if (big_endian) {
|
|
|
|
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
|
|
|
|
ecc_code[i++] = readl(ptr) & 0xFF;
|
|
|
|
ptr--;
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
|
|
ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
|
|
|
|
ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
|
|
|
|
ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
|
|
|
|
ecc_code[i++] = readl(ptr) & 0xFF;
|
|
|
|
ptr--;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
|
|
ecc_code[i++] = readl(ptr) & 0xFF;
|
|
|
|
ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
|
|
|
|
ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
|
|
|
|
ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
|
|
|
|
ptr++;
|
|
|
|
}
|
|
|
|
ecc_code[i++] = readl(ptr) & 0xFF;
|
|
|
|
ecc_code[i++] = 0; /* 14th byte is always zero */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_rotate_ecc_bch - Rotate the syndrome bytes
|
|
|
|
*
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @calc_ecc: ECC read from ECC registers
|
|
|
|
* @syndrome: Rotated syndrome will be retuned in this array
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
|
|
|
|
uint8_t *syndrome)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
|
|
uint8_t n_bytes = 0;
|
|
|
|
int8_t i, j;
|
|
|
|
|
|
|
|
switch (bch->type) {
|
|
|
|
case ECC_BCH4:
|
|
|
|
n_bytes = 8;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ECC_BCH16:
|
|
|
|
n_bytes = 28;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ECC_BCH8:
|
|
|
|
default:
|
|
|
|
n_bytes = 13;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
|
|
|
|
syndrome[i] = calc_ecc[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_calculate_ecc_bch - Read BCH ECC result
|
|
|
|
*
|
|
|
|
* @mtd: MTD structure
|
|
|
|
* @dat: unused
|
|
|
|
* @ecc_code: ecc_code buffer
|
|
|
|
*/
|
|
|
|
static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
|
|
|
|
uint8_t *ecc_code)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
|
|
uint8_t big_endian = 1;
|
|
|
|
int8_t ret = 0;
|
|
|
|
|
|
|
|
if (bch->type == ECC_BCH8)
|
|
|
|
omap_read_bch8_result(mtd, big_endian, ecc_code);
|
|
|
|
else /* BCH4 and BCH16 currently not supported */
|
|
|
|
ret = -1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop reading anymore ECC vals and clear old results
|
|
|
|
* enable will be called if more reads are required
|
|
|
|
*/
|
|
|
|
omap_ecc_disable(mtd);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_fix_errors_bch - Correct bch error in the data
|
|
|
|
*
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @data: Data read from flash
|
|
|
|
* @error_count:Number of errors in data
|
|
|
|
* @error_loc: Locations of errors in the data
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
|
|
|
|
uint32_t error_count, uint32_t *error_loc)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
|
|
uint8_t count = 0;
|
|
|
|
uint32_t error_byte_pos;
|
|
|
|
uint32_t error_bit_mask;
|
|
|
|
uint32_t last_bit = (bch->nibbles * 4) - 1;
|
|
|
|
|
|
|
|
/* Flip all bits as specified by the error location array. */
|
|
|
|
/* FOR( each found error location flip the bit ) */
|
|
|
|
for (count = 0; count < error_count; count++) {
|
|
|
|
if (error_loc[count] > last_bit) {
|
|
|
|
/* Remove the ECC spare bits from correction. */
|
|
|
|
error_loc[count] -= (last_bit + 1);
|
|
|
|
/* Offset bit in data region */
|
|
|
|
error_byte_pos = ((512 * 8) -
|
|
|
|
(error_loc[count]) - 1) / 8;
|
|
|
|
/* Error Bit mask */
|
|
|
|
error_bit_mask = 0x1 << (error_loc[count] % 8);
|
|
|
|
/* Toggle the error bit to make the correction. */
|
|
|
|
data[error_byte_pos] ^= error_bit_mask;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_correct_data_bch - Compares the ecc read from nand spare area
|
|
|
|
* with ECC registers values and corrects one bit error if it has occured
|
|
|
|
*
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @dat: page data
|
|
|
|
* @read_ecc: ecc read from nand flash (ignored)
|
|
|
|
* @calc_ecc: ecc read from ECC registers
|
|
|
|
*
|
|
|
|
* @return 0 if data is OK or corrected, else returns -1
|
|
|
|
*/
|
|
|
|
static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
|
|
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
|
|
uint8_t syndrome[28];
|
|
|
|
uint32_t error_count = 0;
|
|
|
|
uint32_t error_loc[8];
|
|
|
|
uint32_t i, ecc_flag;
|
|
|
|
|
|
|
|
ecc_flag = 0;
|
|
|
|
for (i = 0; i < chip->ecc.bytes; i++)
|
|
|
|
if (read_ecc[i] != 0xff)
|
|
|
|
ecc_flag = 1;
|
|
|
|
|
|
|
|
if (!ecc_flag)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
elm_reset();
|
|
|
|
elm_config((enum bch_level)(bch->type));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* while reading ECC result we read it in big endian.
|
|
|
|
* Hence while loading to ELM we have rotate to get the right endian.
|
|
|
|
*/
|
|
|
|
omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
|
|
|
|
|
|
|
|
/* use elm module to check for errors */
|
|
|
|
if (elm_check_error(syndrome, bch->nibbles, &error_count,
|
|
|
|
error_loc) != 0) {
|
|
|
|
printf("ECC: uncorrectable.\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* correct bch error */
|
|
|
|
if (error_count > 0)
|
|
|
|
omap_fix_errors_bch(mtd, dat, error_count, error_loc);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_read_page_bch - hardware ecc based page read function
|
|
|
|
* @mtd: mtd info structure
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
2013-01-14 03:46:50 +00:00
|
|
|
* @oob_required: caller expects OOB data read to chip->oob_poi
|
2012-11-06 13:06:33 +00:00
|
|
|
* @page: page number to read
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
2013-01-14 03:46:50 +00:00
|
|
|
uint8_t *buf, int oob_required, int page)
|
2012-11-06 13:06:33 +00:00
|
|
|
{
|
|
|
|
int i, eccsize = chip->ecc.size;
|
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
int eccsteps = chip->ecc.steps;
|
|
|
|
uint8_t *p = buf;
|
|
|
|
uint8_t *ecc_calc = chip->buffers->ecccalc;
|
|
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
|
|
uint8_t *oob = chip->oob_poi;
|
|
|
|
uint32_t data_pos;
|
|
|
|
uint32_t oob_pos;
|
|
|
|
|
|
|
|
data_pos = 0;
|
|
|
|
/* oob area start */
|
|
|
|
oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
|
|
|
|
oob += chip->ecc.layout->eccpos[0];
|
|
|
|
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
|
|
|
|
oob += eccbytes) {
|
|
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
/* read data */
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
|
|
|
|
chip->read_buf(mtd, p, eccsize);
|
|
|
|
|
|
|
|
/* read respective ecc from oob area */
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
|
|
|
|
chip->read_buf(mtd, oob, eccbytes);
|
|
|
|
/* read syndrome */
|
|
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
|
|
|
|
data_pos += eccsize;
|
|
|
|
oob_pos += eccbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < chip->ecc.total; i++)
|
|
|
|
ecc_code[i] = chip->oob_poi[eccpos[i]];
|
|
|
|
|
|
|
|
eccsteps = chip->ecc.steps;
|
|
|
|
p = buf;
|
|
|
|
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
|
|
int stat;
|
|
|
|
|
|
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
|
|
if (stat < 0)
|
|
|
|
mtd->ecc_stats.failed++;
|
|
|
|
else
|
|
|
|
mtd->ecc_stats.corrected += stat;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2013-11-18 13:33:00 +00:00
|
|
|
#endif /* CONFIG_NAND_OMAP_ELM */
|
2012-11-06 13:06:33 +00:00
|
|
|
|
2013-04-05 04:55:21 +00:00
|
|
|
/*
|
|
|
|
* OMAP3 BCH8 support (with BCH library)
|
|
|
|
*/
|
2013-11-18 13:33:00 +00:00
|
|
|
#ifdef CONFIG_BCH
|
2013-04-05 04:55:21 +00:00
|
|
|
/*
|
2013-11-18 13:33:00 +00:00
|
|
|
* omap_calculate_ecc_bch_sw - Read BCH ECC result
|
2013-04-05 04:55:21 +00:00
|
|
|
*
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @dat: The pointer to data on which ecc is computed (unused here)
|
|
|
|
* @ecc: The ECC output buffer
|
|
|
|
*/
|
2013-11-18 13:33:00 +00:00
|
|
|
static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, const uint8_t *dat,
|
2013-04-05 04:55:21 +00:00
|
|
|
uint8_t *ecc)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
size_t i;
|
|
|
|
unsigned long nsectors, val1, val2, val3, val4;
|
|
|
|
|
|
|
|
nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
|
|
|
|
|
|
|
|
for (i = 0; i < nsectors; i++) {
|
|
|
|
/* Read hw-computed remainder */
|
|
|
|
val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
|
|
|
|
val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
|
|
|
|
val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
|
|
|
|
val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add constant polynomial to remainder, in order to get an ecc
|
|
|
|
* sequence of 0xFFs for a buffer filled with 0xFFs.
|
|
|
|
*/
|
|
|
|
*ecc++ = 0xef ^ (val4 & 0xFF);
|
|
|
|
*ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
|
|
|
|
*ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
|
|
|
|
*ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
|
|
|
|
*ecc++ = 0xed ^ (val3 & 0xFF);
|
|
|
|
*ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
|
|
|
|
*ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
|
|
|
|
*ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
|
|
|
|
*ecc++ = 0x97 ^ (val2 & 0xFF);
|
|
|
|
*ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
|
|
|
|
*ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
|
|
|
|
*ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
|
|
|
|
*ecc++ = 0xb5 ^ (val1 & 0xFF);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop reading anymore ECC vals and clear old results
|
|
|
|
* enable will be called if more reads are required
|
|
|
|
*/
|
|
|
|
omap_ecc_disable(mtd);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2013-11-18 13:33:00 +00:00
|
|
|
* omap_correct_data_bch_sw - Decode received data and correct errors
|
2013-04-05 04:55:21 +00:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @data: page data
|
|
|
|
* @read_ecc: ecc read from nand flash
|
|
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
|
|
*/
|
2013-11-18 13:33:00 +00:00
|
|
|
static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
|
2013-04-05 04:55:21 +00:00
|
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
|
|
{
|
|
|
|
int i, count;
|
|
|
|
/* cannot correct more than 8 errors */
|
|
|
|
unsigned int errloc[8];
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
struct nand_bch_priv *chip_priv = chip->priv;
|
|
|
|
struct bch_control *bch = chip_priv->control;
|
|
|
|
|
|
|
|
count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc);
|
|
|
|
if (count > 0) {
|
|
|
|
/* correct errors */
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
/* correct data only, not ecc bytes */
|
|
|
|
if (errloc[i] < 8*512)
|
|
|
|
data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
|
|
|
|
printf("corrected bitflip %u\n", errloc[i]);
|
|
|
|
#ifdef DEBUG
|
|
|
|
puts("read_ecc: ");
|
|
|
|
/*
|
|
|
|
* BCH8 have 13 bytes of ECC; BCH4 needs adoption
|
|
|
|
* here!
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 13; i++)
|
|
|
|
printf("%02x ", read_ecc[i]);
|
|
|
|
puts("\n");
|
|
|
|
puts("calc_ecc: ");
|
|
|
|
for (i = 0; i < 13; i++)
|
|
|
|
printf("%02x ", calc_ecc[i]);
|
|
|
|
puts("\n");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
} else if (count < 0) {
|
|
|
|
puts("ecc unrecoverable error\n");
|
|
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_free_bch - Release BCH ecc resources
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
*/
|
|
|
|
static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
struct nand_bch_priv *chip_priv = chip->priv;
|
|
|
|
struct bch_control *bch = NULL;
|
|
|
|
|
|
|
|
if (chip_priv)
|
|
|
|
bch = chip_priv->control;
|
|
|
|
|
|
|
|
if (bch) {
|
|
|
|
free_bch(bch);
|
|
|
|
chip_priv->control = NULL;
|
|
|
|
}
|
|
|
|
}
|
2013-11-18 13:33:00 +00:00
|
|
|
#endif /* CONFIG_BCH */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_select_ecc_scheme - configures driver for particular ecc-scheme
|
|
|
|
* @nand: NAND chip device structure
|
|
|
|
* @ecc_scheme: ecc scheme to configure
|
|
|
|
* @pagesize: number of main-area bytes per page of NAND device
|
|
|
|
* @oobsize: number of OOB/spare bytes per page of NAND device
|
|
|
|
*/
|
|
|
|
static int omap_select_ecc_scheme(struct nand_chip *nand,
|
|
|
|
enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
|
|
|
|
struct nand_bch_priv *bch = nand->priv;
|
2013-12-16 17:19:01 +00:00
|
|
|
struct nand_ecclayout *ecclayout = &omap_ecclayout;
|
2013-11-18 13:33:00 +00:00
|
|
|
int eccsteps = pagesize / SECTOR_BYTES;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
switch (ecc_scheme) {
|
|
|
|
case OMAP_ECC_HAM1_CODE_SW:
|
|
|
|
debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
|
|
|
|
/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
|
|
|
|
* initialized in nand_scan_tail(), so just set ecc.mode */
|
|
|
|
bch_priv.control = NULL;
|
|
|
|
bch_priv.type = 0;
|
|
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
|
|
nand->ecc.layout = NULL;
|
2013-12-12 13:19:31 +00:00
|
|
|
nand->ecc.size = 0;
|
2013-11-18 13:33:00 +00:00
|
|
|
bch->ecc_scheme = OMAP_ECC_HAM1_CODE_SW;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OMAP_ECC_HAM1_CODE_HW:
|
|
|
|
debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
|
|
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
|
|
if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
|
|
(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
bch_priv.control = NULL;
|
|
|
|
bch_priv.type = 0;
|
|
|
|
/* populate ecc specific fields */
|
mtd: nand: omap: fix ecc ops assignment when changing ecc
If we change to software ecc and then back to hardware ecc, the nand ecc ops
pointers are populated with incorrect function pointers. This is related to the
way nand_scan_tail() handles assigning functions to ecc ops:
If we are switching to software ecc/no ecc, it assigns default functions to the
ecc ops pointers unconditionally, but if we are switching to hardware ecc,
the default hardware ecc functions are assigned to ops pointers only if these
pointers are NULL (so that drivers could set their own functions). In the case
of omap_gpmc.c driver, when we switch to sw ecc, sw ecc functions are
assigned to ecc ops by nand_scan_tail(), and when we later switch to hw ecc,
the ecc ops pointers are not NULL, so nand_scan_tail() does not overwrite
them with hw ecc functions.
The result: sw ecc functions used to write hw ecc data.
Clear the ecc ops pointers in omap_gpmc.c when switching ecc types, so that
ops which were not assigned by the driver will get the correct default values
from nand_scan_tail().
Cc: Scott Wood <scottwood@freescale.com>
Cc: Pekon Gupta <pekon@ti.com>
Signed-off-by: Nikita Kiryanov <nikita@compulab.co.il>
2013-12-17 13:18:01 +00:00
|
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
2013-11-18 13:33:00 +00:00
|
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
|
|
nand->ecc.strength = 1;
|
|
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
|
|
nand->ecc.bytes = 3;
|
|
|
|
nand->ecc.hwctl = omap_enable_hwecc;
|
|
|
|
nand->ecc.correct = omap_correct_data;
|
|
|
|
nand->ecc.calculate = omap_calculate_ecc;
|
|
|
|
/* define ecc-layout */
|
|
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
2013-12-05 12:24:21 +00:00
|
|
|
for (i = 0; i < ecclayout->eccbytes; i++) {
|
|
|
|
if (nand->options & NAND_BUSWIDTH_16)
|
|
|
|
ecclayout->eccpos[i] = i + 2;
|
|
|
|
else
|
|
|
|
ecclayout->eccpos[i] = i + 1;
|
|
|
|
}
|
2013-11-18 13:33:00 +00:00
|
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
|
|
BADBLOCK_MARKER_LENGTH;
|
|
|
|
bch->ecc_scheme = OMAP_ECC_HAM1_CODE_HW;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
|
|
#ifdef CONFIG_BCH
|
|
|
|
debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
|
|
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
|
|
if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
|
|
(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
/* check if BCH S/W library can be used for error detection */
|
|
|
|
bch_priv.control = init_bch(13, 8, 0x201b);
|
|
|
|
if (!bch_priv.control) {
|
|
|
|
printf("nand: error: could not init_bch()\n");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
bch_priv.type = ECC_BCH8;
|
|
|
|
/* populate ecc specific fields */
|
mtd: nand: omap: fix ecc ops assignment when changing ecc
If we change to software ecc and then back to hardware ecc, the nand ecc ops
pointers are populated with incorrect function pointers. This is related to the
way nand_scan_tail() handles assigning functions to ecc ops:
If we are switching to software ecc/no ecc, it assigns default functions to the
ecc ops pointers unconditionally, but if we are switching to hardware ecc,
the default hardware ecc functions are assigned to ops pointers only if these
pointers are NULL (so that drivers could set their own functions). In the case
of omap_gpmc.c driver, when we switch to sw ecc, sw ecc functions are
assigned to ecc ops by nand_scan_tail(), and when we later switch to hw ecc,
the ecc ops pointers are not NULL, so nand_scan_tail() does not overwrite
them with hw ecc functions.
The result: sw ecc functions used to write hw ecc data.
Clear the ecc ops pointers in omap_gpmc.c when switching ecc types, so that
ops which were not assigned by the driver will get the correct default values
from nand_scan_tail().
Cc: Scott Wood <scottwood@freescale.com>
Cc: Pekon Gupta <pekon@ti.com>
Signed-off-by: Nikita Kiryanov <nikita@compulab.co.il>
2013-12-17 13:18:01 +00:00
|
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
2013-11-18 13:33:00 +00:00
|
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
|
|
nand->ecc.strength = 8;
|
|
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
|
|
nand->ecc.bytes = 13;
|
|
|
|
nand->ecc.hwctl = omap_enable_ecc_bch;
|
|
|
|
nand->ecc.correct = omap_correct_data_bch_sw;
|
|
|
|
nand->ecc.calculate = omap_calculate_ecc_bch_sw;
|
|
|
|
/* define ecc-layout */
|
|
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
|
|
for (i = 1; i < ecclayout->eccbytes; i++) {
|
|
|
|
if (i % nand->ecc.bytes)
|
|
|
|
ecclayout->eccpos[i] =
|
|
|
|
ecclayout->eccpos[i - 1] + 1;
|
|
|
|
else
|
|
|
|
ecclayout->eccpos[i] =
|
|
|
|
ecclayout->eccpos[i - 1] + 2;
|
|
|
|
}
|
|
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
|
|
BADBLOCK_MARKER_LENGTH;
|
|
|
|
omap_hwecc_init_bch(nand, NAND_ECC_READ);
|
|
|
|
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
|
|
|
|
break;
|
|
|
|
#else
|
|
|
|
printf("nand: error: CONFIG_BCH required for ECC\n");
|
|
|
|
return -EINVAL;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
|
|
|
debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
|
|
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
|
|
if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
|
|
(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
/* intialize ELM for ECC error detection */
|
|
|
|
elm_init();
|
|
|
|
bch_priv.type = ECC_BCH8;
|
|
|
|
/* populate ecc specific fields */
|
mtd: nand: omap: fix ecc ops assignment when changing ecc
If we change to software ecc and then back to hardware ecc, the nand ecc ops
pointers are populated with incorrect function pointers. This is related to the
way nand_scan_tail() handles assigning functions to ecc ops:
If we are switching to software ecc/no ecc, it assigns default functions to the
ecc ops pointers unconditionally, but if we are switching to hardware ecc,
the default hardware ecc functions are assigned to ops pointers only if these
pointers are NULL (so that drivers could set their own functions). In the case
of omap_gpmc.c driver, when we switch to sw ecc, sw ecc functions are
assigned to ecc ops by nand_scan_tail(), and when we later switch to hw ecc,
the ecc ops pointers are not NULL, so nand_scan_tail() does not overwrite
them with hw ecc functions.
The result: sw ecc functions used to write hw ecc data.
Clear the ecc ops pointers in omap_gpmc.c when switching ecc types, so that
ops which were not assigned by the driver will get the correct default values
from nand_scan_tail().
Cc: Scott Wood <scottwood@freescale.com>
Cc: Pekon Gupta <pekon@ti.com>
Signed-off-by: Nikita Kiryanov <nikita@compulab.co.il>
2013-12-17 13:18:01 +00:00
|
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
2013-11-18 13:33:00 +00:00
|
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
|
|
nand->ecc.strength = 8;
|
|
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
|
|
nand->ecc.bytes = 14;
|
|
|
|
nand->ecc.hwctl = omap_enable_ecc_bch;
|
|
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
|
|
nand->ecc.calculate = omap_calculate_ecc_bch;
|
|
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
|
|
/* define ecc-layout */
|
|
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
|
|
for (i = 0; i < ecclayout->eccbytes; i++)
|
|
|
|
ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
|
|
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
|
|
BADBLOCK_MARKER_LENGTH;
|
|
|
|
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW;
|
|
|
|
break;
|
|
|
|
#else
|
|
|
|
printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
|
|
|
|
return -EINVAL;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
default:
|
|
|
|
debug("nand: error: ecc scheme not enabled or supported\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2013-12-16 17:19:01 +00:00
|
|
|
|
|
|
|
/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
|
|
|
|
if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
|
|
|
|
nand->ecc.layout = ecclayout;
|
|
|
|
|
2013-11-18 13:33:00 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2013-04-05 04:55:21 +00:00
|
|
|
|
2011-09-14 19:30:16 +00:00
|
|
|
#ifndef CONFIG_SPL_BUILD
|
2008-12-14 08:47:16 +00:00
|
|
|
/*
|
2013-04-04 23:52:50 +00:00
|
|
|
* omap_nand_switch_ecc - switch the ECC operation between different engines
|
|
|
|
* (h/w and s/w) and different algorithms (hamming and BCHx)
|
2008-12-14 08:47:16 +00:00
|
|
|
*
|
2013-04-04 23:52:50 +00:00
|
|
|
* @hardware - true if one of the HW engines should be used
|
|
|
|
* @eccstrength - the number of bits that could be corrected
|
|
|
|
* (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
|
2008-12-14 08:47:16 +00:00
|
|
|
*/
|
2013-11-18 13:33:00 +00:00
|
|
|
int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
|
2008-12-14 08:47:16 +00:00
|
|
|
{
|
|
|
|
struct nand_chip *nand;
|
|
|
|
struct mtd_info *mtd;
|
2013-11-18 13:33:00 +00:00
|
|
|
int err = 0;
|
2008-12-14 08:47:16 +00:00
|
|
|
|
|
|
|
if (nand_curr_device < 0 ||
|
|
|
|
nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
|
|
|
|
!nand_info[nand_curr_device].name) {
|
2013-11-18 13:33:00 +00:00
|
|
|
printf("nand: error: no NAND devices found\n");
|
|
|
|
return -ENODEV;
|
2008-12-14 08:47:16 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
mtd = &nand_info[nand_curr_device];
|
|
|
|
nand = mtd->priv;
|
|
|
|
nand->options |= NAND_OWN_BUFFERS;
|
2014-01-15 16:58:54 +00:00
|
|
|
nand->options &= ~NAND_SUBPAGE_READ;
|
2008-12-14 08:47:16 +00:00
|
|
|
/* Setup the ecc configurations again */
|
2013-04-04 23:52:50 +00:00
|
|
|
if (hardware) {
|
|
|
|
if (eccstrength == 1) {
|
2013-11-18 13:33:00 +00:00
|
|
|
err = omap_select_ecc_scheme(nand,
|
|
|
|
OMAP_ECC_HAM1_CODE_HW,
|
|
|
|
mtd->writesize, mtd->oobsize);
|
|
|
|
} else if (eccstrength == 8) {
|
|
|
|
err = omap_select_ecc_scheme(nand,
|
|
|
|
OMAP_ECC_BCH8_CODE_HW,
|
|
|
|
mtd->writesize, mtd->oobsize);
|
|
|
|
} else {
|
|
|
|
printf("nand: error: unsupported ECC scheme\n");
|
|
|
|
return -EINVAL;
|
2013-04-04 23:52:50 +00:00
|
|
|
}
|
2008-12-14 08:47:16 +00:00
|
|
|
} else {
|
2013-11-18 13:33:00 +00:00
|
|
|
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
|
|
|
|
mtd->writesize, mtd->oobsize);
|
2008-12-14 08:47:16 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Update NAND handling after ECC mode switch */
|
2013-11-18 13:33:00 +00:00
|
|
|
if (!err)
|
|
|
|
err = nand_scan_tail(mtd);
|
|
|
|
return err;
|
2008-12-14 08:47:16 +00:00
|
|
|
}
|
2011-09-14 19:30:16 +00:00
|
|
|
#endif /* CONFIG_SPL_BUILD */
|
2008-12-14 08:47:16 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Board-specific NAND initialization. The following members of the
|
|
|
|
* argument are board-specific:
|
|
|
|
* - IO_ADDR_R: address to read the 8 I/O lines of the flash device
|
|
|
|
* - IO_ADDR_W: address to write the 8 I/O lines of the flash device
|
|
|
|
* - cmd_ctrl: hardwarespecific function for accesing control-lines
|
|
|
|
* - waitfunc: hardwarespecific function for accesing device ready/busy line
|
|
|
|
* - ecc.hwctl: function to enable (reset) hardware ecc generator
|
|
|
|
* - ecc.mode: mode of ecc, see defines
|
|
|
|
* - chip_delay: chip dependent delay for transfering data from array to
|
|
|
|
* read regs (tR)
|
|
|
|
* - options: various chip options. They can partly be set to inform
|
|
|
|
* nand_scan about special functionality. See the defines for further
|
|
|
|
* explanation
|
|
|
|
*/
|
|
|
|
int board_nand_init(struct nand_chip *nand)
|
|
|
|
{
|
|
|
|
int32_t gpmc_config = 0;
|
|
|
|
cs = 0;
|
2013-11-18 13:33:00 +00:00
|
|
|
int err = 0;
|
2008-12-14 08:47:16 +00:00
|
|
|
/*
|
|
|
|
* xloader/Uboot's gpmc configuration would have configured GPMC for
|
|
|
|
* nand type of memory. The following logic scans and latches on to the
|
|
|
|
* first CS with NAND type memory.
|
|
|
|
* TBD: need to make this logic generic to handle multiple CS NAND
|
|
|
|
* devices.
|
|
|
|
*/
|
|
|
|
while (cs < GPMC_MAX_CS) {
|
|
|
|
/* Check if NAND type is set */
|
2009-08-08 07:30:22 +00:00
|
|
|
if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
|
2008-12-14 08:47:16 +00:00
|
|
|
/* Found it!! */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
cs++;
|
|
|
|
}
|
|
|
|
if (cs >= GPMC_MAX_CS) {
|
2013-11-18 13:33:00 +00:00
|
|
|
printf("nand: error: Unable to find NAND settings in "
|
2008-12-14 08:47:16 +00:00
|
|
|
"GPMC Configuration - quitting\n");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
2009-08-08 07:30:22 +00:00
|
|
|
gpmc_config = readl(&gpmc_cfg->config);
|
2008-12-14 08:47:16 +00:00
|
|
|
/* Disable Write protect */
|
|
|
|
gpmc_config |= 0x10;
|
2009-08-08 07:30:22 +00:00
|
|
|
writel(gpmc_config, &gpmc_cfg->config);
|
2008-12-14 08:47:16 +00:00
|
|
|
|
2009-08-08 07:30:22 +00:00
|
|
|
nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
|
|
|
|
nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
|
2013-11-18 13:33:00 +00:00
|
|
|
nand->priv = &bch_priv;
|
|
|
|
nand->cmd_ctrl = omap_nand_hwcontrol;
|
|
|
|
nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
|
2008-12-14 08:47:16 +00:00
|
|
|
/* If we are 16 bit dev, our gpmc config tells us that */
|
2009-08-08 07:30:22 +00:00
|
|
|
if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
|
2008-12-14 08:47:16 +00:00
|
|
|
nand->options |= NAND_BUSWIDTH_16;
|
|
|
|
|
|
|
|
nand->chip_delay = 100;
|
2013-11-18 13:33:00 +00:00
|
|
|
nand->ecc.layout = &omap_ecclayout;
|
|
|
|
|
|
|
|
/* select ECC scheme */
|
2013-11-18 13:33:01 +00:00
|
|
|
#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
|
|
|
|
err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
|
2013-11-18 13:33:00 +00:00
|
|
|
CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
|
2013-11-18 13:33:01 +00:00
|
|
|
#else
|
|
|
|
/* pagesize and oobsize are not required to configure sw ecc-scheme */
|
2013-11-18 13:33:00 +00:00
|
|
|
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
|
|
|
|
0, 0);
|
2012-11-06 13:06:33 +00:00
|
|
|
#endif
|
2013-11-18 13:33:00 +00:00
|
|
|
if (err)
|
|
|
|
return err;
|
2011-09-14 19:30:16 +00:00
|
|
|
|
2011-11-28 06:37:38 +00:00
|
|
|
#ifdef CONFIG_SPL_BUILD
|
2011-09-14 19:30:16 +00:00
|
|
|
if (nand->options & NAND_BUSWIDTH_16)
|
|
|
|
nand->read_buf = nand_read_buf16;
|
|
|
|
else
|
|
|
|
nand->read_buf = nand_read_buf;
|
|
|
|
nand->dev_ready = omap_spl_dev_ready;
|
|
|
|
#endif
|
2008-12-14 08:47:16 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|