u-boot/drivers/ddr/fsl/util.c

435 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2008-2014 Freescale Semiconductor, Inc.
* Copyright 2021 NXP
*/
#include <common.h>
#ifdef CONFIG_PPC
#include <asm/fsl_law.h>
#endif
#include <div64.h>
#include <linux/delay.h>
#include <fsl_ddr.h>
#include <fsl_immap.h>
#include <log.h>
#include <asm/io.h>
#if defined(CONFIG_FSL_LSCH2) || defined(CONFIG_FSL_LSCH3) || \
defined(CONFIG_ARM)
#include <asm/arch/clock.h>
#endif
/* To avoid 64-bit full-divides, we factor this here */
#define ULL_2E12 2000000000000ULL
#define UL_5POW12 244140625UL
#define UL_2POW13 (1UL << 13)
#define ULL_8FS 0xFFFFFFFFULL
u32 fsl_ddr_get_version(unsigned int ctrl_num)
{
struct ccsr_ddr __iomem *ddr;
u32 ver_major_minor_errata;
switch (ctrl_num) {
case 0:
ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
break;
#if defined(CONFIG_SYS_FSL_DDR2_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 1)
case 1:
ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR;
break;
#endif
#if defined(CONFIG_SYS_FSL_DDR3_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 2)
case 2:
ddr = (void *)CONFIG_SYS_FSL_DDR3_ADDR;
break;
#endif
#if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 3)
case 3:
ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR;
break;
#endif
default:
printf("%s unexpected ctrl_num = %u\n", __func__, ctrl_num);
return 0;
}
ver_major_minor_errata = (ddr_in32(&ddr->ip_rev1) & 0xFFFF) << 8;
ver_major_minor_errata |= (ddr_in32(&ddr->ip_rev2) & 0xFF00) >> 8;
return ver_major_minor_errata;
}
/*
* Round up mclk_ps to nearest 1 ps in memory controller code
* if the error is 0.5ps or more.
*
* If an imprecise data rate is too high due to rounding error
* propagation, compute a suitably rounded mclk_ps to compute
* a working memory controller configuration.
*/
unsigned int get_memory_clk_period_ps(const unsigned int ctrl_num)
{
unsigned int data_rate = get_ddr_freq(ctrl_num);
unsigned int result;
/* Round to nearest 10ps, being careful about 64-bit multiply/divide */
unsigned long long rem, mclk_ps = ULL_2E12;
if (data_rate) {
/* Now perform the big divide, the result fits in 32-bits */
rem = do_div(mclk_ps, data_rate);
result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;
} else {
result = 0;
}
return result;
}
/* Convert picoseconds into DRAM clock cycles (rounding up if needed). */
unsigned int picos_to_mclk(const unsigned int ctrl_num, unsigned int picos)
{
unsigned long long clks, clks_rem;
unsigned long data_rate = get_ddr_freq(ctrl_num);
/* Short circuit for zero picos */
if (!picos)
return 0;
/* First multiply the time by the data rate (32x32 => 64) */
clks = picos * (unsigned long long)data_rate;
/*
* Now divide by 5^12 and track the 32-bit remainder, then divide
* by 2*(2^12) using shifts (and updating the remainder).
*/
clks_rem = do_div(clks, UL_5POW12);
clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
clks >>= 13;
/* If we had a remainder greater than the 1ps error, then round up */
if (clks_rem > data_rate)
clks++;
/* Clamp to the maximum representable value */
if (clks > ULL_8FS)
clks = ULL_8FS;
return (unsigned int) clks;
}
unsigned int mclk_to_picos(const unsigned int ctrl_num, unsigned int mclk)
{
return get_memory_clk_period_ps(ctrl_num) * mclk;
}
#ifdef CONFIG_PPC
void
__fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
unsigned int law_memctl,
unsigned int ctrl_num)
{
unsigned long long base = memctl_common_params->base_address;
unsigned long long size = memctl_common_params->total_mem;
/*
* If no DIMMs on this controller, do not proceed any further.
*/
if (!memctl_common_params->ndimms_present) {
return;
}
#if !defined(CONFIG_PHYS_64BIT)
if (base >= CONFIG_MAX_MEM_MAPPED)
return;
if ((base + size) >= CONFIG_MAX_MEM_MAPPED)
size = CONFIG_MAX_MEM_MAPPED - base;
#endif
if (set_ddr_laws(base, size, law_memctl) < 0) {
printf("%s: ERROR (ctrl #%d, TRGT ID=%x)\n", __func__, ctrl_num,
law_memctl);
return;
}
debug("setup ddr law base = 0x%llx, size 0x%llx, TRGT_ID 0x%x\n",
base, size, law_memctl);
}
__attribute__((weak, alias("__fsl_ddr_set_lawbar"))) void
fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
unsigned int memctl_interleaved,
unsigned int ctrl_num);
#endif
void fsl_ddr_set_intl3r(const unsigned int granule_size)
{
#ifdef CONFIG_E6500
u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
*mcintl3r = 0x80000000 | (granule_size & 0x1f);
debug("Enable MCINTL3R with granule size 0x%x\n", granule_size);
#endif
}
u32 fsl_ddr_get_intl3r(void)
{
u32 val = 0;
#ifdef CONFIG_E6500
u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
val = *mcintl3r;
#endif
return val;
}
void print_ddr_info(unsigned int start_ctrl)
{
struct ccsr_ddr __iomem *ddr =
(struct ccsr_ddr __iomem *)(CONFIG_SYS_FSL_DDR_ADDR);
#if defined(CONFIG_E6500) && (CONFIG_SYS_NUM_DDR_CTLRS == 3)
u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
#endif
#if (CONFIG_SYS_NUM_DDR_CTLRS > 1)
uint32_t cs0_config = ddr_in32(&ddr->cs0_config);
#endif
uint32_t sdram_cfg = ddr_in32(&ddr->sdram_cfg);
int cas_lat;
#if CONFIG_SYS_NUM_DDR_CTLRS >= 2
if ((!(sdram_cfg & SDRAM_CFG_MEM_EN)) ||
(start_ctrl == 1)) {
ddr = (void __iomem *)CONFIG_SYS_FSL_DDR2_ADDR;
sdram_cfg = ddr_in32(&ddr->sdram_cfg);
}
#endif
#if CONFIG_SYS_NUM_DDR_CTLRS >= 3
if ((!(sdram_cfg & SDRAM_CFG_MEM_EN)) ||
(start_ctrl == 2)) {
ddr = (void __iomem *)CONFIG_SYS_FSL_DDR3_ADDR;
sdram_cfg = ddr_in32(&ddr->sdram_cfg);
}
#endif
if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) {
puts(" (DDR not enabled)\n");
return;
}
puts(" (DDR");
switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >>
SDRAM_CFG_SDRAM_TYPE_SHIFT) {
case SDRAM_TYPE_DDR1:
puts("1");
break;
case SDRAM_TYPE_DDR2:
puts("2");
break;
case SDRAM_TYPE_DDR3:
puts("3");
break;
case SDRAM_TYPE_DDR4:
puts("4");
break;
default:
puts("?");
break;
}
if (sdram_cfg & SDRAM_CFG_32_BE)
puts(", 32-bit");
else if (sdram_cfg & SDRAM_CFG_16_BE)
puts(", 16-bit");
else
puts(", 64-bit");
/* Calculate CAS latency based on timing cfg values */
cas_lat = ((ddr_in32(&ddr->timing_cfg_1) >> 16) & 0xf);
if (fsl_ddr_get_version(0) <= 0x40400)
cas_lat += 1;
else
cas_lat += 2;
cas_lat += ((ddr_in32(&ddr->timing_cfg_3) >> 12) & 3) << 4;
printf(", CL=%d", cas_lat >> 1);
if (cas_lat & 0x1)
puts(".5");
if (sdram_cfg & SDRAM_CFG_ECC_EN)
puts(", ECC on)");
else
puts(", ECC off)");
#if (CONFIG_SYS_NUM_DDR_CTLRS == 3)
#ifdef CONFIG_E6500
if (*mcintl3r & 0x80000000) {
puts("\n");
puts(" DDR Controller Interleaving Mode: ");
switch (*mcintl3r & 0x1f) {
case FSL_DDR_3WAY_1KB_INTERLEAVING:
puts("3-way 1KB");
break;
case FSL_DDR_3WAY_4KB_INTERLEAVING:
puts("3-way 4KB");
break;
case FSL_DDR_3WAY_8KB_INTERLEAVING:
puts("3-way 8KB");
break;
default:
puts("3-way UNKNOWN");
break;
}
}
#endif
#endif
#if (CONFIG_SYS_NUM_DDR_CTLRS >= 2)
if ((cs0_config & 0x20000000) && (start_ctrl == 0)) {
puts("\n");
puts(" DDR Controller Interleaving Mode: ");
switch ((cs0_config >> 24) & 0xf) {
case FSL_DDR_256B_INTERLEAVING:
puts("256B");
break;
case FSL_DDR_CACHE_LINE_INTERLEAVING:
puts("cache line");
break;
case FSL_DDR_PAGE_INTERLEAVING:
puts("page");
break;
case FSL_DDR_BANK_INTERLEAVING:
puts("bank");
break;
case FSL_DDR_SUPERBANK_INTERLEAVING:
puts("super-bank");
break;
default:
puts("invalid");
break;
}
}
#endif
if ((sdram_cfg >> 8) & 0x7f) {
puts("\n");
puts(" DDR Chip-Select Interleaving Mode: ");
switch(sdram_cfg >> 8 & 0x7f) {
case FSL_DDR_CS0_CS1_CS2_CS3:
puts("CS0+CS1+CS2+CS3");
break;
case FSL_DDR_CS0_CS1:
puts("CS0+CS1");
break;
case FSL_DDR_CS2_CS3:
puts("CS2+CS3");
break;
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
puts("CS0+CS1 and CS2+CS3");
break;
default:
puts("invalid");
break;
}
}
}
void __weak detail_board_ddr_info(void)
{
print_ddr_info(0);
}
void board_add_ram_info(int use_default)
{
detail_board_ddr_info();
}
#ifdef CONFIG_FSL_DDR_SYNC_REFRESH
#define DDRC_DEBUG20_INIT_DONE 0x80000000
#define DDRC_DEBUG2_RF 0x00000040
void fsl_ddr_sync_memctl_refresh(unsigned int first_ctrl,
unsigned int last_ctrl)
{
unsigned int i;
u32 ddrc_debug20;
u32 ddrc_debug2[CONFIG_SYS_NUM_DDR_CTLRS] = {};
u32 *ddrc_debug2_p[CONFIG_SYS_NUM_DDR_CTLRS] = {};
struct ccsr_ddr __iomem *ddr;
for (i = first_ctrl; i <= last_ctrl; i++) {
switch (i) {
case 0:
ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
break;
#if defined(CONFIG_SYS_FSL_DDR2_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 1)
case 1:
ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR;
break;
#endif
#if defined(CONFIG_SYS_FSL_DDR3_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 2)
case 2:
ddr = (void *)CONFIG_SYS_FSL_DDR3_ADDR;
break;
#endif
#if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 3)
case 3:
ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR;
break;
#endif
default:
printf("%s unexpected ctrl = %u\n", __func__, i);
return;
}
ddrc_debug20 = ddr_in32(&ddr->debug[19]);
ddrc_debug2_p[i] = &ddr->debug[1];
while (!(ddrc_debug20 & DDRC_DEBUG20_INIT_DONE)) {
/* keep polling until DDRC init is done */
udelay(100);
ddrc_debug20 = ddr_in32(&ddr->debug[19]);
}
ddrc_debug2[i] = ddr_in32(&ddr->debug[1]) | DDRC_DEBUG2_RF;
}
/*
* Sync refresh
* This is put together to make sure the refresh reqeusts are sent
* closely to each other.
*/
for (i = first_ctrl; i <= last_ctrl; i++)
ddr_out32(ddrc_debug2_p[i], ddrc_debug2[i]);
}
#endif /* CONFIG_FSL_DDR_SYNC_REFRESH */
void remove_unused_controllers(fsl_ddr_info_t *info)
{
#ifdef CONFIG_SYS_FSL_HAS_CCN504
int i;
u64 nodeid;
void *hnf_sam_ctrl = (void *)(CCI_HN_F_0_BASE + CCN_HN_F_SAM_CTL);
bool ddr0_used = false;
bool ddr1_used = false;
for (i = 0; i < 8; i++) {
nodeid = in_le64(hnf_sam_ctrl) & CCN_HN_F_SAM_NODEID_MASK;
if (nodeid == CCN_HN_F_SAM_NODEID_DDR0) {
ddr0_used = true;
} else if (nodeid == CCN_HN_F_SAM_NODEID_DDR1) {
ddr1_used = true;
} else {
printf("Unknown nodeid in HN-F SAM control: 0x%llx\n",
nodeid);
}
hnf_sam_ctrl += (CCI_HN_F_1_BASE - CCI_HN_F_0_BASE);
}
if (!ddr0_used && !ddr1_used) {
printf("Invalid configuration in HN-F SAM control\n");
return;
}
if (!ddr0_used && info->first_ctrl == 0) {
info->first_ctrl = 1;
info->num_ctrls = 1;
debug("First DDR controller disabled\n");
return;
}
if (!ddr1_used && info->first_ctrl + info->num_ctrls > 1) {
info->num_ctrls = 1;
debug("Second DDR controller disabled\n");
}
#endif
}