u-boot/drivers/clk/aspeed/clk_ast2600.c

1221 lines
29 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) ASPEED Technology Inc.
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <asm/io.h>
#include <dm/lists.h>
#include <linux/delay.h>
#include <asm/arch/scu_ast2600.h>
#include <asm/global_data.h>
#include <dt-bindings/clock/ast2600-clock.h>
#include <dt-bindings/reset/ast2600-reset.h>
DECLARE_GLOBAL_DATA_PTR;
#define CLKIN_25M 25000000UL
/* MAC Clock Delay settings */
#define MAC12_DEF_DELAY_1G 0x0028a410
#define MAC12_DEF_DELAY_100M 0x00410410
#define MAC12_DEF_DELAY_10M 0x00410410
#define MAC34_DEF_DELAY_1G 0x00104208
#define MAC34_DEF_DELAY_100M 0x00104208
#define MAC34_DEF_DELAY_10M 0x00104208
/*
* 3-bit encode of CPU freqeucy
* Some code is duplicated
*/
enum ast2600_cpu_freq {
CPU_FREQ_1200M_1,
CPU_FREQ_1600M_1,
CPU_FREQ_1200M_2,
CPU_FREQ_1600M_2,
CPU_FREQ_800M_1,
CPU_FREQ_800M_2,
CPU_FREQ_800M_3,
CPU_FREQ_800M_4,
};
struct ast2600_clk_priv {
struct ast2600_scu *scu;
};
/*
* Clock divider/multiplier configuration struct.
* For H-PLL and M-PLL the formula is
* (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1)
* M - Numerator
* N - Denumerator
* P - Post Divider
* They have the same layout in their control register.
*
* D-PLL and D2-PLL have extra divider (OD + 1), which is not
* yet needed and ignored by clock configurations.
*/
union ast2600_pll_reg {
uint32_t w;
struct {
unsigned int m : 13;
unsigned int n : 6;
unsigned int p : 4;
unsigned int off : 1;
unsigned int bypass : 1;
unsigned int reset : 1;
unsigned int reserved : 6;
} b;
};
struct ast2600_pll_cfg {
union ast2600_pll_reg reg;
unsigned int ext_reg;
};
struct ast2600_pll_desc {
uint32_t in;
uint32_t out;
struct ast2600_pll_cfg cfg;
};
static const struct ast2600_pll_desc ast2600_pll_lookup[] = {
{
.in = CLKIN_25M,
.out = 400000000,
.cfg.reg.b.m = 95,
.cfg.reg.b.n = 2,
.cfg.reg.b.p = 1,
.cfg.ext_reg = 0x31,
},
{
.in = CLKIN_25M,
.out = 200000000,
.cfg.reg.b.m = 127,
.cfg.reg.b.n = 0,
.cfg.reg.b.p = 15,
.cfg.ext_reg = 0x3f,
},
{
.in = CLKIN_25M,
.out = 334000000,
.cfg.reg.b.m = 667,
.cfg.reg.b.n = 4,
.cfg.reg.b.p = 9,
.cfg.ext_reg = 0x14d,
},
{
.in = CLKIN_25M,
.out = 1000000000,
.cfg.reg.b.m = 119,
.cfg.reg.b.n = 2,
.cfg.reg.b.p = 0,
.cfg.ext_reg = 0x3d,
},
{
.in = CLKIN_25M,
.out = 50000000,
.cfg.reg.b.m = 95,
.cfg.reg.b.n = 2,
.cfg.reg.b.p = 15,
.cfg.ext_reg = 0x31,
},
};
/* divisor tables */
static uint32_t axi_ahb_div0_table[] = {
3, 2, 3, 4,
};
static uint32_t axi_ahb_div1_table[] = {
3, 4, 6, 8,
};
static uint32_t axi_ahb_default_table[] = {
3, 4, 3, 4, 2, 2, 2, 2,
};
extern uint32_t ast2600_get_pll_rate(struct ast2600_scu *scu, int pll_idx)
{
union ast2600_pll_reg pll_reg;
uint32_t hwstrap1;
uint32_t cpu_freq;
uint32_t mul = 1, div = 1;
switch (pll_idx) {
case ASPEED_CLK_APLL:
pll_reg.w = readl(&scu->apll);
break;
case ASPEED_CLK_DPLL:
pll_reg.w = readl(&scu->dpll);
break;
case ASPEED_CLK_EPLL:
pll_reg.w = readl(&scu->epll);
break;
case ASPEED_CLK_HPLL:
pll_reg.w = readl(&scu->hpll);
break;
case ASPEED_CLK_MPLL:
pll_reg.w = readl(&scu->mpll);
break;
}
if (!pll_reg.b.bypass) {
/* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1)
* HPLL Numerator (M) = fix 0x5F when SCU500[10]=1
* Fixed 0xBF when SCU500[10]=0 and SCU500[8]=1
* SCU200[12:0] (default 0x8F) when SCU510[10]=0 and SCU510[8]=0
* HPLL Denumerator (N) = SCU200[18:13] (default 0x2)
* HPLL Divider (P) = SCU200[22:19] (default 0x0)
* HPLL Bandwidth Adj (NB) = fix 0x2F when SCU500[10]=1
* Fixed 0x5F when SCU500[10]=0 and SCU500[8]=1
* SCU204[11:0] (default 0x31) when SCU500[10]=0 and SCU500[8]=0
*/
if (pll_idx == ASPEED_CLK_HPLL) {
hwstrap1 = readl(&scu->hwstrap1);
cpu_freq = (hwstrap1 & SCU_HWSTRAP1_CPU_FREQ_MASK) >>
SCU_HWSTRAP1_CPU_FREQ_SHIFT;
switch (cpu_freq) {
case CPU_FREQ_800M_1:
case CPU_FREQ_800M_2:
case CPU_FREQ_800M_3:
case CPU_FREQ_800M_4:
pll_reg.b.m = 0x5f;
break;
case CPU_FREQ_1600M_1:
case CPU_FREQ_1600M_2:
pll_reg.b.m = 0xbf;
break;
default:
pll_reg.b.m = 0x8f;
break;
}
}
mul = (pll_reg.b.m + 1) / (pll_reg.b.n + 1);
div = (pll_reg.b.p + 1);
}
return ((CLKIN_25M * mul) / div);
}
static uint32_t ast2600_get_hclk_rate(struct ast2600_scu *scu)
{
uint32_t rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
uint32_t axi_div, ahb_div;
uint32_t hwstrap1 = readl(&scu->hwstrap1);
uint32_t cpu_freq = (hwstrap1 & SCU_HWSTRAP1_CPU_FREQ_MASK) >>
SCU_HWSTRAP1_CPU_FREQ_SHIFT;
uint32_t axi_ahb_ratio = (hwstrap1 & SCU_HWSTRAP1_AXI_AHB_CLK_RATIO_MASK) >>
SCU_HWSTRAP1_AXI_AHB_CLK_RATIO_SHIFT;
if (hwstrap1 & SCU_HWSTRAP1_CPU_AXI_CLK_RATIO) {
axi_ahb_div1_table[0] = axi_ahb_default_table[cpu_freq] * 2;
axi_div = 1;
ahb_div = axi_ahb_div1_table[axi_ahb_ratio];
} else {
axi_ahb_div0_table[0] = axi_ahb_default_table[cpu_freq];
axi_div = 2;
ahb_div = axi_ahb_div0_table[axi_ahb_ratio];
}
return (rate / axi_div / ahb_div);
}
static uint32_t ast2600_get_bclk_rate(struct ast2600_scu *scu)
{
uint32_t rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
uint32_t clksrc1 = readl(&scu->clksrc1);
uint32_t bclk_div = (clksrc1 & SCU_CLKSRC1_BCLK_DIV_MASK) >>
SCU_CLKSRC1_BCLK_DIV_SHIFT;
return (rate / ((bclk_div + 1) * 4));
}
static uint32_t ast2600_get_pclk1_rate(struct ast2600_scu *scu)
{
uint32_t rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
uint32_t clksrc1 = readl(&scu->clksrc1);
uint32_t pclk_div = (clksrc1 & SCU_CLKSRC1_PCLK_DIV_MASK) >>
SCU_CLKSRC1_PCLK_DIV_SHIFT;
return (rate / ((pclk_div + 1) * 4));
}
static uint32_t ast2600_get_pclk2_rate(struct ast2600_scu *scu)
{
uint32_t rate = ast2600_get_hclk_rate(scu);
uint32_t clksrc4 = readl(&scu->clksrc4);
uint32_t pclk_div = (clksrc4 & SCU_CLKSRC4_PCLK_DIV_MASK) >>
SCU_CLKSRC4_PCLK_DIV_SHIFT;
return (rate / ((pclk_div + 1) * 2));
}
static uint32_t ast2600_get_uxclk_in_rate(struct ast2600_scu *scu)
{
uint32_t rate = 0;
uint32_t clksrc5 = readl(&scu->clksrc5);
uint32_t uxclk = (clksrc5 & SCU_CLKSRC5_UXCLK_MASK) >>
SCU_CLKSRC5_UXCLK_SHIFT;
switch (uxclk) {
case 0:
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL) / 4;
break;
case 1:
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL) / 2;
break;
case 2:
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL);
break;
case 3:
rate = ast2600_get_hclk_rate(scu);
break;
}
return rate;
}
static uint32_t ast2600_get_huxclk_in_rate(struct ast2600_scu *scu)
{
uint32_t rate = 0;
uint32_t clksrc5 = readl(&scu->clksrc5);
uint32_t huxclk = (clksrc5 & SCU_CLKSRC5_HUXCLK_MASK) >>
SCU_CLKSRC5_HUXCLK_SHIFT;
switch (huxclk) {
case 0:
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL) / 4;
break;
case 1:
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL) / 2;
break;
case 2:
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL);
break;
case 3:
rate = ast2600_get_hclk_rate(scu);
break;
}
return rate;
}
static uint32_t ast2600_get_uart_uxclk_rate(struct ast2600_scu *scu)
{
uint32_t rate = ast2600_get_uxclk_in_rate(scu);
uint32_t uart_clkgen = readl(&scu->uart_clkgen);
uint32_t n = (uart_clkgen & SCU_UART_CLKGEN_N_MASK) >>
SCU_UART_CLKGEN_N_SHIFT;
uint32_t r = (uart_clkgen & SCU_UART_CLKGEN_R_MASK) >>
SCU_UART_CLKGEN_R_SHIFT;
return ((rate * r) / (n * 2));
}
static uint32_t ast2600_get_uart_huxclk_rate(struct ast2600_scu *scu)
{
uint32_t rate = ast2600_get_huxclk_in_rate(scu);
uint32_t huart_clkgen = readl(&scu->huart_clkgen);
uint32_t n = (huart_clkgen & SCU_HUART_CLKGEN_N_MASK) >>
SCU_HUART_CLKGEN_N_SHIFT;
uint32_t r = (huart_clkgen & SCU_HUART_CLKGEN_R_MASK) >>
SCU_HUART_CLKGEN_R_SHIFT;
return ((rate * r) / (n * 2));
}
static uint32_t ast2600_get_sdio_clk_rate(struct ast2600_scu *scu)
{
uint32_t rate = 0;
uint32_t clksrc4 = readl(&scu->clksrc4);
uint32_t sdio_div = (clksrc4 & SCU_CLKSRC4_SDIO_DIV_MASK) >>
SCU_CLKSRC4_SDIO_DIV_SHIFT;
if (clksrc4 & SCU_CLKSRC4_SDIO)
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL);
else
rate = ast2600_get_hclk_rate(scu);
return (rate / ((sdio_div + 1) * 2));
}
static uint32_t ast2600_get_emmc_clk_rate(struct ast2600_scu *scu)
{
uint32_t rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
uint32_t clksrc1 = readl(&scu->clksrc1);
uint32_t emmc_div = (clksrc1 & SCU_CLKSRC1_EMMC_DIV_MASK) >>
SCU_CLKSRC1_EMMC_DIV_SHIFT;
return (rate / ((emmc_div + 1) * 4));
}
static uint32_t ast2600_get_uart_clk_rate(struct ast2600_scu *scu, int uart_idx)
{
uint32_t rate = 0;
uint32_t uart5_clk = 0;
uint32_t clksrc2 = readl(&scu->clksrc2);
uint32_t clksrc4 = readl(&scu->clksrc4);
uint32_t clksrc5 = readl(&scu->clksrc5);
uint32_t misc_ctrl1 = readl(&scu->misc_ctrl1);
switch (uart_idx) {
case 1:
case 2:
case 3:
case 4:
case 6:
if (clksrc4 & BIT(uart_idx - 1))
rate = ast2600_get_uart_huxclk_rate(scu);
else
rate = ast2600_get_uart_uxclk_rate(scu);
break;
case 5:
/*
* SCU0C[12] and SCU304[14] together decide
* the UART5 clock generation
*/
if (misc_ctrl1 & SCU_MISC_CTRL1_UART5_DIV)
uart5_clk = 0x1 << 1;
if (clksrc2 & SCU_CLKSRC2_UART5)
uart5_clk |= 0x1;
switch (uart5_clk) {
case 0:
rate = 24000000;
break;
case 1:
rate = 192000000;
break;
case 2:
rate = 24000000 / 13;
break;
case 3:
rate = 192000000 / 13;
break;
}
break;
case 7:
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
if (clksrc5 & BIT(uart_idx - 1))
rate = ast2600_get_uart_huxclk_rate(scu);
else
rate = ast2600_get_uart_uxclk_rate(scu);
break;
}
return rate;
}
static ulong ast2600_clk_get_rate(struct clk *clk)
{
struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
ulong rate = 0;
switch (clk->id) {
case ASPEED_CLK_HPLL:
case ASPEED_CLK_EPLL:
case ASPEED_CLK_DPLL:
case ASPEED_CLK_MPLL:
case ASPEED_CLK_APLL:
rate = ast2600_get_pll_rate(priv->scu, clk->id);
break;
case ASPEED_CLK_AHB:
rate = ast2600_get_hclk_rate(priv->scu);
break;
case ASPEED_CLK_APB1:
rate = ast2600_get_pclk1_rate(priv->scu);
break;
case ASPEED_CLK_APB2:
rate = ast2600_get_pclk2_rate(priv->scu);
break;
case ASPEED_CLK_GATE_UART1CLK:
rate = ast2600_get_uart_clk_rate(priv->scu, 1);
break;
case ASPEED_CLK_GATE_UART2CLK:
rate = ast2600_get_uart_clk_rate(priv->scu, 2);
break;
case ASPEED_CLK_GATE_UART3CLK:
rate = ast2600_get_uart_clk_rate(priv->scu, 3);
break;
case ASPEED_CLK_GATE_UART4CLK:
rate = ast2600_get_uart_clk_rate(priv->scu, 4);
break;
case ASPEED_CLK_GATE_UART5CLK:
rate = ast2600_get_uart_clk_rate(priv->scu, 5);
break;
case ASPEED_CLK_BCLK:
rate = ast2600_get_bclk_rate(priv->scu);
break;
case ASPEED_CLK_SDIO:
rate = ast2600_get_sdio_clk_rate(priv->scu);
break;
case ASPEED_CLK_EMMC:
rate = ast2600_get_emmc_clk_rate(priv->scu);
break;
case ASPEED_CLK_UARTX:
rate = ast2600_get_uart_uxclk_rate(priv->scu);
break;
case ASPEED_CLK_HUARTX:
rate = ast2600_get_uart_huxclk_rate(priv->scu);
break;
default:
debug("can't get clk rate\n");
return -ENOENT;
}
return rate;
}
/**
* @brief lookup PLL divider config by input/output rate
* @param[in] *pll - PLL descriptor
* Return: true - if PLL divider config is found, false - else
* The function caller shall fill "pll->in" and "pll->out",
* then this function will search the lookup table
* to find a valid PLL divider configuration.
*/
static bool ast2600_search_clock_config(struct ast2600_pll_desc *pll)
{
uint32_t i;
const struct ast2600_pll_desc *def_desc;
bool is_found = false;
for (i = 0; i < ARRAY_SIZE(ast2600_pll_lookup); i++) {
def_desc = &ast2600_pll_lookup[i];
if (def_desc->in == pll->in && def_desc->out == pll->out) {
is_found = true;
pll->cfg.reg.w = def_desc->cfg.reg.w;
pll->cfg.ext_reg = def_desc->cfg.ext_reg;
break;
}
}
return is_found;
}
static uint32_t ast2600_configure_pll(struct ast2600_scu *scu,
struct ast2600_pll_cfg *p_cfg, int pll_idx)
{
uint32_t addr, addr_ext;
uint32_t reg;
switch (pll_idx) {
case ASPEED_CLK_HPLL:
addr = (uint32_t)(&scu->hpll);
addr_ext = (uint32_t)(&scu->hpll_ext);
break;
case ASPEED_CLK_MPLL:
addr = (uint32_t)(&scu->mpll);
addr_ext = (uint32_t)(&scu->mpll_ext);
break;
case ASPEED_CLK_DPLL:
addr = (uint32_t)(&scu->dpll);
addr_ext = (uint32_t)(&scu->dpll_ext);
break;
case ASPEED_CLK_EPLL:
addr = (uint32_t)(&scu->epll);
addr_ext = (uint32_t)(&scu->epll_ext);
break;
case ASPEED_CLK_APLL:
addr = (uint32_t)(&scu->apll);
addr_ext = (uint32_t)(&scu->apll_ext);
break;
default:
debug("unknown PLL index\n");
return 1;
}
p_cfg->reg.b.bypass = 0;
p_cfg->reg.b.off = 1;
p_cfg->reg.b.reset = 1;
reg = readl(addr);
reg &= ~GENMASK(25, 0);
reg |= p_cfg->reg.w;
writel(reg, addr);
/* write extend parameter */
writel(p_cfg->ext_reg, addr_ext);
udelay(100);
p_cfg->reg.b.off = 0;
p_cfg->reg.b.reset = 0;
reg &= ~GENMASK(25, 0);
reg |= p_cfg->reg.w;
writel(reg, addr);
while (!(readl(addr_ext) & BIT(31)))
;
return 0;
}
static uint32_t ast2600_configure_ddr(struct ast2600_scu *scu, ulong rate)
{
struct ast2600_pll_desc mpll;
mpll.in = CLKIN_25M;
mpll.out = rate;
if (ast2600_search_clock_config(&mpll) == false) {
printf("error!! unable to find valid DDR clock setting\n");
return 0;
}
ast2600_configure_pll(scu, &mpll.cfg, ASPEED_CLK_MPLL);
return ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL);
}
static ulong ast2600_clk_set_rate(struct clk *clk, ulong rate)
{
struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
ulong new_rate;
switch (clk->id) {
case ASPEED_CLK_MPLL:
new_rate = ast2600_configure_ddr(priv->scu, rate);
break;
default:
return -ENOENT;
}
return new_rate;
}
static uint32_t ast2600_configure_mac12_clk(struct ast2600_scu *scu)
{
/* scu340[25:0]: 1G default delay */
clrsetbits_le32(&scu->mac12_clk_delay, GENMASK(25, 0),
MAC12_DEF_DELAY_1G);
/* set 100M/10M default delay */
writel(MAC12_DEF_DELAY_100M, &scu->mac12_clk_delay_100M);
writel(MAC12_DEF_DELAY_10M, &scu->mac12_clk_delay_10M);
/* MAC AHB = HPLL / 6 */
clrsetbits_le32(&scu->clksrc1, SCU_CLKSRC1_MAC_DIV_MASK,
(0x2 << SCU_CLKSRC1_MAC_DIV_SHIFT));
return 0;
}
static uint32_t ast2600_configure_mac34_clk(struct ast2600_scu *scu)
{
/*
* scu350[31] RGMII 125M source: 0 = from IO pin
* scu350[25:0] MAC 1G delay
*/
clrsetbits_le32(&scu->mac34_clk_delay, (BIT(31) | GENMASK(25, 0)),
MAC34_DEF_DELAY_1G);
writel(MAC34_DEF_DELAY_100M, &scu->mac34_clk_delay_100M);
writel(MAC34_DEF_DELAY_10M, &scu->mac34_clk_delay_10M);
/*
* clock source seletion and divider
* scu310[26:24] : MAC AHB bus clock = HCLK / 2
* scu310[18:16] : RMII 50M = HCLK_200M / 4
*/
clrsetbits_le32(&scu->clksrc4,
(SCU_CLKSRC4_MAC_DIV_MASK | SCU_CLKSRC4_RMII34_DIV_MASK),
((0x0 << SCU_CLKSRC4_MAC_DIV_SHIFT)
| (0x3 << SCU_CLKSRC4_RMII34_DIV_SHIFT)));
/*
* set driving strength
* scu458[3:2] : MAC4 driving strength
* scu458[1:0] : MAC3 driving strength
*/
clrsetbits_le32(&scu->pinmux16,
SCU_PINCTRL16_MAC4_DRIVING_MASK | SCU_PINCTRL16_MAC3_DRIVING_MASK,
(0x3 << SCU_PINCTRL16_MAC4_DRIVING_SHIFT)
| (0x3 << SCU_PINCTRL16_MAC3_DRIVING_SHIFT));
return 0;
}
/**
* ast2600 RGMII clock source tree
* 125M from external PAD -------->|\
* HPLL -->|\ | |---->RGMII 125M for MAC#1 & MAC#2
* | |---->| divider |---->|/ +
* EPLL -->|/ |
* |
* +---------<-----------|RGMIICK PAD output enable|<-------------+
* |
* +--------------------------->|\
* | |----> RGMII 125M for MAC#3 & MAC#4
* HCLK 200M ---->|divider|---->|/
* To simplify the control flow:
* 1. RGMII 1/2 always use EPLL as the internal clock source
* 2. RGMII 3/4 always use RGMIICK pad as the RGMII 125M source
* 125M from external PAD -------->|\
* | |---->RGMII 125M for MAC#1 & MAC#2
* EPLL---->| divider |--->|/ +
* |
* +<--------------------|RGMIICK PAD output enable|<-------------+
* |
* +--------------------------->RGMII 125M for MAC#3 & MAC#4
*/
#define RGMIICK_SRC_PAD 0
#define RGMIICK_SRC_EPLL 1 /* recommended */
#define RGMIICK_SRC_HPLL 2
#define RGMIICK_DIV2 1
#define RGMIICK_DIV3 2
#define RGMIICK_DIV4 3
#define RGMIICK_DIV5 4
#define RGMIICK_DIV6 5
#define RGMIICK_DIV7 6
#define RGMIICK_DIV8 7 /* recommended */
#define RMIICK_DIV4 0
#define RMIICK_DIV8 1
#define RMIICK_DIV12 2
#define RMIICK_DIV16 3
#define RMIICK_DIV20 4 /* recommended */
#define RMIICK_DIV24 5
#define RMIICK_DIV28 6
#define RMIICK_DIV32 7
struct ast2600_mac_clk_div {
uint32_t src; /* 0=external PAD, 1=internal PLL */
uint32_t fin; /* divider input speed */
uint32_t n; /* 0=div2, 1=div2, 2=div3, 3=div4,...,7=div8 */
uint32_t fout; /* fout = fin / n */
};
struct ast2600_mac_clk_div rgmii_clk_defconfig = {
.src = ASPEED_CLK_EPLL,
.fin = 1000000000,
.n = RGMIICK_DIV8,
.fout = 125000000,
};
struct ast2600_mac_clk_div rmii_clk_defconfig = {
.src = ASPEED_CLK_EPLL,
.fin = 1000000000,
.n = RMIICK_DIV20,
.fout = 50000000,
};
static void ast2600_init_mac_pll(struct ast2600_scu *p_scu,
struct ast2600_mac_clk_div *p_cfg)
{
struct ast2600_pll_desc pll;
pll.in = CLKIN_25M;
pll.out = p_cfg->fin;
if (ast2600_search_clock_config(&pll) == false) {
pr_err("unable to find valid ETHNET MAC clock setting\n");
return;
}
ast2600_configure_pll(p_scu, &pll.cfg, p_cfg->src);
}
static void ast2600_init_rgmii_clk(struct ast2600_scu *p_scu,
struct ast2600_mac_clk_div *p_cfg)
{
uint32_t reg_304 = readl(&p_scu->clksrc2);
uint32_t reg_340 = readl(&p_scu->mac12_clk_delay);
uint32_t reg_350 = readl(&p_scu->mac34_clk_delay);
reg_340 &= ~GENMASK(31, 29);
/* scu340[28]: RGMIICK PAD output enable (to MAC 3/4) */
reg_340 |= BIT(28);
if (p_cfg->src == ASPEED_CLK_EPLL || p_cfg->src == ASPEED_CLK_HPLL) {
/*
* re-init PLL if the current PLL output frequency doesn't match
* the divider setting
*/
if (p_cfg->fin != ast2600_get_pll_rate(p_scu, p_cfg->src))
ast2600_init_mac_pll(p_scu, p_cfg);
/* scu340[31]: select RGMII 125M from internal source */
reg_340 |= BIT(31);
}
reg_304 &= ~GENMASK(23, 20);
/* set clock divider */
reg_304 |= (p_cfg->n & 0x7) << 20;
/* select internal clock source */
if (p_cfg->src == ASPEED_CLK_HPLL)
reg_304 |= BIT(23);
/* RGMII 3/4 clock source select */
reg_350 &= ~BIT(31);
writel(reg_304, &p_scu->clksrc2);
writel(reg_340, &p_scu->mac12_clk_delay);
writel(reg_350, &p_scu->mac34_clk_delay);
}
/**
* ast2600 RMII/NCSI clock source tree
* HPLL -->|\
* | |---->| divider |----> RMII 50M for MAC#1 & MAC#2
* EPLL -->|/
* HCLK(SCLICLK)---->| divider |----> RMII 50M for MAC#3 & MAC#4
*/
static void ast2600_init_rmii_clk(struct ast2600_scu *p_scu,
struct ast2600_mac_clk_div *p_cfg)
{
uint32_t clksrc2 = readl(&p_scu->clksrc2);
uint32_t clksrc4 = readl(&p_scu->clksrc4);
if (p_cfg->src == ASPEED_CLK_EPLL || p_cfg->src == ASPEED_CLK_HPLL) {
/*
* re-init PLL if the current PLL output frequency doesn't match
* the divider setting
*/
if (p_cfg->fin != ast2600_get_pll_rate(p_scu, p_cfg->src))
ast2600_init_mac_pll(p_scu, p_cfg);
}
clksrc2 &= ~(SCU_CLKSRC2_RMII12 | SCU_CLKSRC2_RMII12_DIV_MASK);
/* set RMII 1/2 clock divider */
clksrc2 |= (p_cfg->n & 0x7) << 16;
/* RMII clock source selection */
if (p_cfg->src == ASPEED_CLK_HPLL)
clksrc2 |= SCU_CLKSRC2_RMII12;
/* set RMII 3/4 clock divider */
clksrc4 &= ~SCU_CLKSRC4_RMII34_DIV_MASK;
clksrc4 |= (0x3 << SCU_CLKSRC4_RMII34_DIV_SHIFT);
writel(clksrc2, &p_scu->clksrc2);
writel(clksrc4, &p_scu->clksrc4);
}
static uint32_t ast2600_configure_mac(struct ast2600_scu *scu, int index)
{
uint32_t reset_bit;
uint32_t clkgate_bit;
switch (index) {
case 1:
reset_bit = BIT(ASPEED_RESET_MAC1);
clkgate_bit = SCU_CLKGATE1_MAC1;
writel(reset_bit, &scu->modrst_ctrl1);
udelay(100);
writel(clkgate_bit, &scu->clkgate_clr1);
mdelay(10);
writel(reset_bit, &scu->modrst_clr1);
break;
case 2:
reset_bit = BIT(ASPEED_RESET_MAC2);
clkgate_bit = SCU_CLKGATE1_MAC2;
writel(reset_bit, &scu->modrst_ctrl1);
udelay(100);
writel(clkgate_bit, &scu->clkgate_clr1);
mdelay(10);
writel(reset_bit, &scu->modrst_clr1);
break;
case 3:
reset_bit = BIT(ASPEED_RESET_MAC3 - 32);
clkgate_bit = SCU_CLKGATE2_MAC3;
writel(reset_bit, &scu->modrst_ctrl2);
udelay(100);
writel(clkgate_bit, &scu->clkgate_clr2);
mdelay(10);
writel(reset_bit, &scu->modrst_clr2);
break;
case 4:
reset_bit = BIT(ASPEED_RESET_MAC4 - 32);
clkgate_bit = SCU_CLKGATE2_MAC4;
writel(reset_bit, &scu->modrst_ctrl2);
udelay(100);
writel(clkgate_bit, &scu->clkgate_clr2);
mdelay(10);
writel(reset_bit, &scu->modrst_clr2);
break;
default:
return -EINVAL;
}
return 0;
}
static void ast2600_configure_rsa_ecc_clk(struct ast2600_scu *scu)
{
uint32_t clksrc1 = readl(&scu->clksrc1);
/* Configure RSA clock = HPLL/3 */
clksrc1 |= SCU_CLKSRC1_ECC_RSA;
clksrc1 &= ~SCU_CLKSRC1_ECC_RSA_DIV_MASK;
clksrc1 |= (2 << SCU_CLKSRC1_ECC_RSA_DIV_SHIFT);
writel(clksrc1, &scu->clksrc1);
}
static ulong ast2600_enable_sdclk(struct ast2600_scu *scu)
{
uint32_t reset_bit;
uint32_t clkgate_bit;
reset_bit = BIT(ASPEED_RESET_SD - 32);
clkgate_bit = SCU_CLKGATE2_SDIO;
writel(reset_bit, &scu->modrst_ctrl2);
udelay(100);
writel(clkgate_bit, &scu->clkgate_clr2);
mdelay(10);
writel(reset_bit, &scu->modrst_clr2);
return 0;
}
static ulong ast2600_enable_extsdclk(struct ast2600_scu *scu)
{
int i = 0;
uint32_t div = 0;
uint32_t rate = 0;
uint32_t clksrc4 = readl(&scu->clksrc4);
/*
* ast2600 SD controller max clk is 200Mhz
* use apll for clock source 800/4 = 200
* controller max is 200mhz
*/
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL);
for (i = 0; i < 8; i++) {
div = (i + 1) * 2;
if ((rate / div) <= 200000000)
break;
}
clksrc4 &= ~SCU_CLKSRC4_SDIO_DIV_MASK;
clksrc4 |= (i << SCU_CLKSRC4_SDIO_DIV_SHIFT);
clksrc4 |= SCU_CLKSRC4_SDIO;
writel(clksrc4, &scu->clksrc4);
setbits_le32(&scu->clksrc4, SCU_CLKSRC4_SDIO_EN);
return 0;
}
static ulong ast2600_enable_emmcclk(struct ast2600_scu *scu)
{
uint32_t reset_bit;
uint32_t clkgate_bit;
reset_bit = BIT(ASPEED_RESET_EMMC);
clkgate_bit = SCU_CLKGATE1_EMMC;
writel(reset_bit, &scu->modrst_ctrl1);
udelay(100);
writel(clkgate_bit, &scu->clkgate_clr1);
mdelay(10);
writel(reset_bit, &scu->modrst_clr1);
return 0;
}
static ulong ast2600_enable_extemmcclk(struct ast2600_scu *scu)
{
int i = 0;
uint32_t div = 0;
uint32_t rate = 0;
uint32_t clksrc1 = readl(&scu->clksrc1);
/*
* ast2600 eMMC controller max clk is 200Mhz
* HPll->1/2->|\
* |->SCU300[11]->SCU300[14:12][1/N] +
* MPLL------>|/ |
* +----------------------------------------------+
* |
* +---------> EMMC12C[15:8][1/N]-> eMMC clk
*/
rate = ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL);
for (i = 0; i < 8; i++) {
div = (i + 1) * 2;
if ((rate / div) <= 200000000)
break;
}
clksrc1 &= ~SCU_CLKSRC1_EMMC_DIV_MASK;
clksrc1 |= (i << SCU_CLKSRC1_EMMC_DIV_SHIFT);
clksrc1 |= SCU_CLKSRC1_EMMC;
writel(clksrc1, &scu->clksrc1);
setbits_le32(&scu->clksrc1, SCU_CLKSRC1_EMMC_EN);
return 0;
}
static ulong ast2600_enable_fsiclk(struct ast2600_scu *scu)
{
uint32_t reset_bit;
uint32_t clkgate_bit;
reset_bit = BIT(ASPEED_RESET_FSI % 32);
clkgate_bit = SCU_CLKGATE2_FSI;
/* The FSI clock is shared between masters. If it's already on
* don't touch it, as that will reset the existing master.
*/
if (!(readl(&scu->clkgate_ctrl2) & clkgate_bit)) {
debug("%s: already running, not touching it\n", __func__);
return 0;
}
writel(reset_bit, &scu->modrst_ctrl2);
udelay(100);
writel(clkgate_bit, &scu->clkgate_clr2);
mdelay(10);
writel(reset_bit, &scu->modrst_clr2);
return 0;
}
static ulong ast2600_enable_usbahclk(struct ast2600_scu *scu)
{
uint32_t reset_bit;
uint32_t clkgate_bit;
reset_bit = BIT(ASPEED_RESET_EHCI_P1);
clkgate_bit = SCU_CLKGATE1_USB_HUB;
writel(reset_bit, &scu->modrst_ctrl1);
udelay(100);
writel(clkgate_bit, &scu->clkgate_ctrl1);
mdelay(20);
writel(reset_bit, &scu->modrst_clr1);
return 0;
}
static ulong ast2600_enable_usbbhclk(struct ast2600_scu *scu)
{
uint32_t reset_bit;
uint32_t clkgate_bit;
reset_bit = BIT(ASPEED_RESET_EHCI_P2);
clkgate_bit = SCU_CLKGATE1_USB_HOST2;
writel(reset_bit, &scu->modrst_ctrl1);
udelay(100);
writel(clkgate_bit, &scu->clkgate_clr1);
mdelay(20);
writel(reset_bit, &scu->modrst_clr1);
return 0;
}
static ulong ast2600_enable_haceclk(struct ast2600_scu *scu)
{
uint32_t reset_bit;
uint32_t clkgate_bit;
/* share the same reset control bit with ACRY */
reset_bit = BIT(ASPEED_RESET_HACE);
clkgate_bit = SCU_CLKGATE1_HACE;
/*
* we don't do reset assertion here as HACE
* shares the same reset control with ACRY
*/
writel(clkgate_bit, &scu->clkgate_clr1);
mdelay(20);
writel(reset_bit, &scu->modrst_clr1);
return 0;
}
static ulong ast2600_enable_rsaclk(struct ast2600_scu *scu)
{
uint32_t reset_bit;
uint32_t clkgate_bit;
/* same reset control bit with HACE */
reset_bit = BIT(ASPEED_RESET_HACE);
clkgate_bit = SCU_CLKGATE1_ACRY;
/*
* we don't do reset assertion here as HACE
* shares the same reset control with ACRY
*/
writel(clkgate_bit, &scu->clkgate_clr1);
mdelay(20);
writel(reset_bit, &scu->modrst_clr1);
return 0;
}
static int ast2600_clk_enable(struct clk *clk)
{
struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
switch (clk->id) {
case ASPEED_CLK_GATE_MAC1CLK:
ast2600_configure_mac(priv->scu, 1);
break;
case ASPEED_CLK_GATE_MAC2CLK:
ast2600_configure_mac(priv->scu, 2);
break;
case ASPEED_CLK_GATE_MAC3CLK:
ast2600_configure_mac(priv->scu, 3);
break;
case ASPEED_CLK_GATE_MAC4CLK:
ast2600_configure_mac(priv->scu, 4);
break;
case ASPEED_CLK_GATE_SDCLK:
ast2600_enable_sdclk(priv->scu);
break;
case ASPEED_CLK_GATE_SDEXTCLK:
ast2600_enable_extsdclk(priv->scu);
break;
case ASPEED_CLK_GATE_EMMCCLK:
ast2600_enable_emmcclk(priv->scu);
break;
case ASPEED_CLK_GATE_EMMCEXTCLK:
ast2600_enable_extemmcclk(priv->scu);
break;
case ASPEED_CLK_GATE_FSICLK:
ast2600_enable_fsiclk(priv->scu);
break;
case ASPEED_CLK_GATE_USBPORT1CLK:
ast2600_enable_usbahclk(priv->scu);
break;
case ASPEED_CLK_GATE_USBPORT2CLK:
ast2600_enable_usbbhclk(priv->scu);
break;
case ASPEED_CLK_GATE_YCLK:
ast2600_enable_haceclk(priv->scu);
break;
case ASPEED_CLK_GATE_RSACLK:
ast2600_enable_rsaclk(priv->scu);
break;
default:
pr_err("can't enable clk\n");
return -ENOENT;
}
return 0;
}
struct clk_ops ast2600_clk_ops = {
.get_rate = ast2600_clk_get_rate,
.set_rate = ast2600_clk_set_rate,
.enable = ast2600_clk_enable,
};
static int ast2600_clk_probe(struct udevice *dev)
{
struct ast2600_clk_priv *priv = dev_get_priv(dev);
priv->scu = devfdt_get_addr_ptr(dev);
if (IS_ERR(priv->scu))
return PTR_ERR(priv->scu);
ast2600_init_rgmii_clk(priv->scu, &rgmii_clk_defconfig);
ast2600_init_rmii_clk(priv->scu, &rmii_clk_defconfig);
ast2600_configure_mac12_clk(priv->scu);
ast2600_configure_mac34_clk(priv->scu);
ast2600_configure_rsa_ecc_clk(priv->scu);
return 0;
}
static int ast2600_clk_bind(struct udevice *dev)
{
int ret;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev);
if (ret)
debug("Warning: No reset driver: ret=%d\n", ret);
return 0;
}
struct aspeed_clks {
ulong id;
const char *name;
};
static struct aspeed_clks aspeed_clk_names[] = {
{ ASPEED_CLK_HPLL, "hpll" },
{ ASPEED_CLK_MPLL, "mpll" },
{ ASPEED_CLK_APLL, "apll" },
{ ASPEED_CLK_EPLL, "epll" },
{ ASPEED_CLK_DPLL, "dpll" },
{ ASPEED_CLK_AHB, "hclk" },
{ ASPEED_CLK_APB1, "pclk1" },
{ ASPEED_CLK_APB2, "pclk2" },
{ ASPEED_CLK_BCLK, "bclk" },
{ ASPEED_CLK_UARTX, "uxclk" },
{ ASPEED_CLK_HUARTX, "huxclk" },
};
int soc_clk_dump(void)
{
struct udevice *dev;
struct clk clk;
unsigned long rate;
int i, ret;
ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(aspeed_scu),
&dev);
if (ret)
return ret;
printf("Clk\t\tHz\n");
for (i = 0; i < ARRAY_SIZE(aspeed_clk_names); i++) {
clk.id = aspeed_clk_names[i].id;
ret = clk_request(dev, &clk);
if (ret < 0) {
debug("%s clk_request() failed: %d\n", __func__, ret);
continue;
}
ret = clk_get_rate(&clk);
rate = ret;
clk_free(&clk);
if (ret == -EINVAL) {
printf("clk ID %lu not supported yet\n",
aspeed_clk_names[i].id);
continue;
}
if (ret < 0) {
printf("%s %lu: get_rate err: %d\n", __func__,
aspeed_clk_names[i].id, ret);
continue;
}
printf("%s(%3lu):\t%lu\n", aspeed_clk_names[i].name,
aspeed_clk_names[i].id, rate);
}
return 0;
}
static const struct udevice_id ast2600_clk_ids[] = {
{ .compatible = "aspeed,ast2600-scu", },
{ },
};
U_BOOT_DRIVER(aspeed_ast2600_scu) = {
.name = "aspeed_ast2600_scu",
.id = UCLASS_CLK,
.of_match = ast2600_clk_ids,
.priv_auto = sizeof(struct ast2600_clk_priv),
.ops = &ast2600_clk_ops,
.bind = ast2600_clk_bind,
.probe = ast2600_clk_probe,
};