u-boot/arch/arc/lib/cache.c

837 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2013-2014 Synopsys, Inc. All rights reserved.
*/
#include <config.h>
#include <common.h>
#include <cpu_func.h>
#include <asm/global_data.h>
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <lmb.h>
#include <asm/arcregs.h>
#include <asm/arc-bcr.h>
#include <asm/cache.h>
ARC: Flush & invalidate D$ with a single command We don't implement separate flush_dcache_all() intentionally as entire data cache invalidation is dangerous operation even if we flush data cache right before invalidation. There is the real example: We may get stuck in the following code if we store any context (like BLINK register) on stack in invalidate_dcache_all() function. BLINK register is the register where return address is automatically saved when we do function call with instructions like 'bl'. void flush_dcache_all() { __dc_entire_op(OP_FLUSH); // Other code // } void invalidate_dcache_all() { __dc_entire_op(OP_INV); // Other code // } void foo(void) { flush_dcache_all(); invalidate_dcache_all(); } Now let's see what really happens during that code execution: foo() |->> call flush_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 1] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [flush L1 D$] return [jump to BLINK] <<------ [other flush_dcache_all code] [pop BLINK] (get from stack) return [jump to BLINK] <<------ |->> call invalidate_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 2] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [invalidate L1 D$] ![point 3] // Oops!!! // We lose return address from invalidate_dcache_all function: // we save it to stack and invalidate L1 D$ after that! return [jump to BLINK] <<------ [other invalidate_dcache_all code] [pop BLINK] (get from stack) // we don't have this data in L1 dcache as we invalidated it in [point 3] // so we get it from next memory level (for example DDR memory) // but in the memory we have value which we save in [point 1], which // is return address from flush_dcache_all function (instead of // address from current invalidate_dcache_all function which we // saved in [point 2] !) return [jump to BLINK] <<------ // As BLINK points to invalidate_dcache_all, we call it again and // loop forever. Fortunately we may do flush and invalidation of D$ with a single one instruction which automatically mitigates a situation described above. And because invalidate_dcache_all() isn't used in common U-Boot code we implement "flush and invalidate dcache all" instead. Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-03-21 12:58:50 +00:00
/*
* [ NOTE 1 ]:
* Data cache (L1 D$ or SL$) entire invalidate operation or data cache disable
* operation may result in unexpected behavior and data loss even if we flush
* data cache right before invalidation. That may happens if we store any context
* on stack (like we store BLINK register on stack before function call).
* BLINK register is the register where return address is automatically saved
* when we do function call with instructions like 'bl'.
*
* There is the real example:
* We may hang in the next code as we store any BLINK register on stack in
* invalidate_dcache_all() function.
*
* void flush_dcache_all() {
* __dc_entire_op(OP_FLUSH);
* // Other code //
* }
*
* void invalidate_dcache_all() {
* __dc_entire_op(OP_INV);
* // Other code //
* }
*
* void foo(void) {
* flush_dcache_all();
* invalidate_dcache_all();
* }
*
* Now let's see what really happens during that code execution:
*
* foo()
* |->> call flush_dcache_all
* [return address is saved to BLINK register]
* [push BLINK] (save to stack) ![point 1]
* |->> call __dc_entire_op(OP_FLUSH)
* [return address is saved to BLINK register]
* [flush L1 D$]
* return [jump to BLINK]
* <<------
* [other flush_dcache_all code]
* [pop BLINK] (get from stack)
* return [jump to BLINK]
* <<------
* |->> call invalidate_dcache_all
* [return address is saved to BLINK register]
* [push BLINK] (save to stack) ![point 2]
* |->> call __dc_entire_op(OP_FLUSH)
* [return address is saved to BLINK register]
* [invalidate L1 D$] ![point 3]
* // Oops!!!
* // We lose return address from invalidate_dcache_all function:
* // we save it to stack and invalidate L1 D$ after that!
* return [jump to BLINK]
* <<------
* [other invalidate_dcache_all code]
* [pop BLINK] (get from stack)
* // we don't have this data in L1 dcache as we invalidated it in [point 3]
* // so we get it from next memory level (for example DDR memory)
* // but in the memory we have value which we save in [point 1], which
* // is return address from flush_dcache_all function (instead of
* // address from current invalidate_dcache_all function which we
* // saved in [point 2] !)
* return [jump to BLINK]
* <<------
* // As BLINK points to invalidate_dcache_all, we call it again and
* // loop forever.
*
* Fortunately we may fix that by using flush & invalidation of D$ with a single
* one instruction (instead of flush and invalidation instructions pair) and
* enabling force function inline with '__attribute__((always_inline))' gcc
* attribute to avoid any function call (and BLINK store) between cache flush
* and disable.
*
*
* [ NOTE 2 ]:
* As of today we only support the following cache configurations on ARC.
* Other configurations may exist in HW but we don't support it in SW.
* Configuration 1:
* ______________________
* | |
* | ARC CPU |
* |______________________|
* ___|___ ___|___
* | | | |
* | L1 I$ | | L1 D$ |
* |_______| |_______|
* on/off on/off
* ___|______________|____
* | |
* | main memory |
* |______________________|
*
* Configuration 2:
* ______________________
* | |
* | ARC CPU |
* |______________________|
* ___|___ ___|___
* | | | |
* | L1 I$ | | L1 D$ |
* |_______| |_______|
* on/off on/off
* ___|______________|____
* | |
* | L2 (SL$) |
* |______________________|
* always on (ARCv2, HS < 3.0)
* on/off (ARCv2, HS >= 3.0)
* ___|______________|____
* | |
* | main memory |
* |______________________|
*
* Configuration 3:
* ______________________
* | |
* | ARC CPU |
* |______________________|
* ___|___ ___|___
* | | | |
* | L1 I$ | | L1 D$ |
* |_______| |_______|
* on/off must be on
* ___|______________|____ _______
* | | | |
* | L2 (SL$) |-----| IOC |
* |______________________| |_______|
* always must be on on/off
* ___|______________|____
* | |
* | main memory |
* |______________________|
ARC: Flush & invalidate D$ with a single command We don't implement separate flush_dcache_all() intentionally as entire data cache invalidation is dangerous operation even if we flush data cache right before invalidation. There is the real example: We may get stuck in the following code if we store any context (like BLINK register) on stack in invalidate_dcache_all() function. BLINK register is the register where return address is automatically saved when we do function call with instructions like 'bl'. void flush_dcache_all() { __dc_entire_op(OP_FLUSH); // Other code // } void invalidate_dcache_all() { __dc_entire_op(OP_INV); // Other code // } void foo(void) { flush_dcache_all(); invalidate_dcache_all(); } Now let's see what really happens during that code execution: foo() |->> call flush_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 1] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [flush L1 D$] return [jump to BLINK] <<------ [other flush_dcache_all code] [pop BLINK] (get from stack) return [jump to BLINK] <<------ |->> call invalidate_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 2] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [invalidate L1 D$] ![point 3] // Oops!!! // We lose return address from invalidate_dcache_all function: // we save it to stack and invalidate L1 D$ after that! return [jump to BLINK] <<------ [other invalidate_dcache_all code] [pop BLINK] (get from stack) // we don't have this data in L1 dcache as we invalidated it in [point 3] // so we get it from next memory level (for example DDR memory) // but in the memory we have value which we save in [point 1], which // is return address from flush_dcache_all function (instead of // address from current invalidate_dcache_all function which we // saved in [point 2] !) return [jump to BLINK] <<------ // As BLINK points to invalidate_dcache_all, we call it again and // loop forever. Fortunately we may do flush and invalidation of D$ with a single one instruction which automatically mitigates a situation described above. And because invalidate_dcache_all() isn't used in common U-Boot code we implement "flush and invalidate dcache all" instead. Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-03-21 12:58:50 +00:00
*/
DECLARE_GLOBAL_DATA_PTR;
/* Bit values in IC_CTRL */
#define IC_CTRL_CACHE_DISABLE BIT(0)
/* Bit values in DC_CTRL */
#define DC_CTRL_CACHE_DISABLE BIT(0)
#define DC_CTRL_INV_MODE_FLUSH BIT(6)
#define DC_CTRL_FLUSH_STATUS BIT(8)
#define OP_INV BIT(0)
#define OP_FLUSH BIT(1)
#define OP_FLUSH_N_INV (OP_FLUSH | OP_INV)
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/* Bit val in SLC_CONTROL */
#define SLC_CTRL_DIS 0x001
#define SLC_CTRL_IM 0x040
#define SLC_CTRL_BUSY 0x100
#define SLC_CTRL_RGN_OP_INV 0x200
#define CACHE_LINE_MASK (~(gd->arch.l1_line_sz - 1))
/*
* We don't want to use '__always_inline' macro here as it can be redefined
* to simple 'inline' in some cases which breaks stuff. See [ NOTE 1 ] for more
* details about the reasons we need to use always_inline functions.
*/
#define inlined_cachefunc inline __attribute__((always_inline))
static inlined_cachefunc void __ic_entire_invalidate(void);
static inlined_cachefunc void __dc_entire_op(const int cacheop);
static inlined_cachefunc void __slc_entire_op(const int op);
static inlined_cachefunc bool ioc_enabled(void);
static inline bool pae_exists(void)
{
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/* TODO: should we compare mmu version from BCR and from CONFIG? */
#if (CONFIG_ARC_MMU_VER >= 4)
union bcr_mmu_4 mmu4;
mmu4.word = read_aux_reg(ARC_AUX_MMU_BCR);
if (mmu4.fields.pae)
return true;
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
#endif /* (CONFIG_ARC_MMU_VER >= 4) */
return false;
}
static inlined_cachefunc bool icache_exists(void)
{
union bcr_di_cache ibcr;
ibcr.word = read_aux_reg(ARC_BCR_IC_BUILD);
return !!ibcr.fields.ver;
}
static inlined_cachefunc bool icache_enabled(void)
{
if (!icache_exists())
return false;
return !(read_aux_reg(ARC_AUX_IC_CTRL) & IC_CTRL_CACHE_DISABLE);
}
static inlined_cachefunc bool dcache_exists(void)
{
union bcr_di_cache dbcr;
dbcr.word = read_aux_reg(ARC_BCR_DC_BUILD);
return !!dbcr.fields.ver;
}
static inlined_cachefunc bool dcache_enabled(void)
{
if (!dcache_exists())
return false;
return !(read_aux_reg(ARC_AUX_DC_CTRL) & DC_CTRL_CACHE_DISABLE);
}
static inlined_cachefunc bool slc_exists(void)
{
if (is_isa_arcv2()) {
union bcr_generic sbcr;
sbcr.word = read_aux_reg(ARC_BCR_SLC);
return !!sbcr.fields.ver;
}
return false;
}
enum slc_dis_status {
ST_SLC_MISSING = 0,
ST_SLC_NO_DISABLE_CTRL,
ST_SLC_DISABLE_CTRL
};
/*
* ARCv1 -> ST_SLC_MISSING
* ARCv2 && SLC absent -> ST_SLC_MISSING
* ARCv2 && SLC exists && SLC version <= 2 -> ST_SLC_NO_DISABLE_CTRL
* ARCv2 && SLC exists && SLC version > 2 -> ST_SLC_DISABLE_CTRL
*/
static inlined_cachefunc enum slc_dis_status slc_disable_supported(void)
{
if (is_isa_arcv2()) {
union bcr_generic sbcr;
sbcr.word = read_aux_reg(ARC_BCR_SLC);
if (sbcr.fields.ver == 0)
return ST_SLC_MISSING;
else if (sbcr.fields.ver <= 2)
return ST_SLC_NO_DISABLE_CTRL;
else
return ST_SLC_DISABLE_CTRL;
}
return ST_SLC_MISSING;
}
static inlined_cachefunc bool __slc_enabled(void)
{
return !(read_aux_reg(ARC_AUX_SLC_CTRL) & SLC_CTRL_DIS);
}
static inlined_cachefunc void __slc_enable(void)
{
unsigned int ctrl;
ctrl = read_aux_reg(ARC_AUX_SLC_CTRL);
ctrl &= ~SLC_CTRL_DIS;
write_aux_reg(ARC_AUX_SLC_CTRL, ctrl);
}
static inlined_cachefunc void __slc_disable(void)
{
unsigned int ctrl;
ctrl = read_aux_reg(ARC_AUX_SLC_CTRL);
ctrl |= SLC_CTRL_DIS;
write_aux_reg(ARC_AUX_SLC_CTRL, ctrl);
}
static inlined_cachefunc bool slc_enabled(void)
{
enum slc_dis_status slc_status = slc_disable_supported();
if (slc_status == ST_SLC_MISSING)
return false;
else if (slc_status == ST_SLC_NO_DISABLE_CTRL)
return true;
else
return __slc_enabled();
}
static inlined_cachefunc bool slc_data_bypass(void)
{
/*
* If L1 data cache is disabled SL$ is bypassed and all load/store
* requests are sent directly to main memory.
*/
return !dcache_enabled();
}
void slc_enable(void)
{
if (slc_disable_supported() != ST_SLC_DISABLE_CTRL)
return;
if (__slc_enabled())
return;
__slc_enable();
}
/* TODO: warn if we are not able to disable SLC */
void slc_disable(void)
{
if (slc_disable_supported() != ST_SLC_DISABLE_CTRL)
return;
/* we don't support SLC disabling if we use IOC */
if (ioc_enabled())
return;
if (!__slc_enabled())
return;
/*
* We need to flush L1D$ to guarantee that we won't have any
* writeback operations during SLC disabling.
*/
__dc_entire_op(OP_FLUSH);
__slc_entire_op(OP_FLUSH_N_INV);
__slc_disable();
}
static inlined_cachefunc bool ioc_exists(void)
{
if (is_isa_arcv2()) {
union bcr_clust_cfg cbcr;
cbcr.word = read_aux_reg(ARC_BCR_CLUSTER);
return cbcr.fields.c;
}
return false;
}
static inlined_cachefunc bool ioc_enabled(void)
{
/*
* We check only CONFIG option instead of IOC HW state check as IOC
* must be disabled by default.
*/
if (is_ioc_enabled())
return ioc_exists();
return false;
}
static inlined_cachefunc void __slc_entire_op(const int op)
{
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
unsigned int ctrl;
if (!slc_enabled())
return;
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
ctrl = read_aux_reg(ARC_AUX_SLC_CTRL);
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
if (!(op & OP_FLUSH)) /* i.e. OP_INV */
ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */
else
ctrl |= SLC_CTRL_IM;
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
write_aux_reg(ARC_AUX_SLC_CTRL, ctrl);
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */
write_aux_reg(ARC_AUX_SLC_INVALIDATE, 0x1);
else
write_aux_reg(ARC_AUX_SLC_FLUSH, 0x1);
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
read_aux_reg(ARC_AUX_SLC_CTRL);
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/* Important to wait for flush to complete */
while (read_aux_reg(ARC_AUX_SLC_CTRL) & SLC_CTRL_BUSY);
}
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
static void slc_upper_region_init(void)
{
/*
* ARC_AUX_SLC_RGN_START1 and ARC_AUX_SLC_RGN_END1 register exist
* only if PAE exists in current HW. So we had to check pae_exist
* before using them.
*/
if (!pae_exists())
return;
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/*
* ARC_AUX_SLC_RGN_END1 and ARC_AUX_SLC_RGN_START1 are always == 0
* as we don't use PAE40.
*/
write_aux_reg(ARC_AUX_SLC_RGN_END1, 0);
write_aux_reg(ARC_AUX_SLC_RGN_START1, 0);
}
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
static void __slc_rgn_op(unsigned long paddr, unsigned long sz, const int op)
{
#ifdef CONFIG_ISA_ARCV2
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
unsigned int ctrl;
unsigned long end;
if (!slc_enabled())
return;
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/*
* The Region Flush operation is specified by CTRL.RGN_OP[11..9]
* - b'000 (default) is Flush,
* - b'001 is Invalidate if CTRL.IM == 0
* - b'001 is Flush-n-Invalidate if CTRL.IM == 1
*/
ctrl = read_aux_reg(ARC_AUX_SLC_CTRL);
/* Don't rely on default value of IM bit */
if (!(op & OP_FLUSH)) /* i.e. OP_INV */
ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */
else
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
ctrl |= SLC_CTRL_IM;
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
if (op & OP_INV)
ctrl |= SLC_CTRL_RGN_OP_INV; /* Inv or flush-n-inv */
else
ctrl &= ~SLC_CTRL_RGN_OP_INV;
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
write_aux_reg(ARC_AUX_SLC_CTRL, ctrl);
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/*
* Lower bits are ignored, no need to clip
* END needs to be setup before START (latter triggers the operation)
* END can't be same as START, so add (l2_line_sz - 1) to sz
*/
end = paddr + sz + gd->arch.slc_line_sz - 1;
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/*
* Upper addresses (ARC_AUX_SLC_RGN_END1 and ARC_AUX_SLC_RGN_START1)
* are always == 0 as we don't use PAE40, so we only setup lower ones
* (ARC_AUX_SLC_RGN_END and ARC_AUX_SLC_RGN_START)
*/
write_aux_reg(ARC_AUX_SLC_RGN_END, end);
write_aux_reg(ARC_AUX_SLC_RGN_START, paddr);
/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
read_aux_reg(ARC_AUX_SLC_CTRL);
while (read_aux_reg(ARC_AUX_SLC_CTRL) & SLC_CTRL_BUSY);
#endif /* CONFIG_ISA_ARCV2 */
}
static void arc_ioc_setup(void)
{
/* IOC Aperture start is equal to DDR start */
unsigned int ap_base = CFG_SYS_SDRAM_BASE;
/* IOC Aperture size is equal to DDR size */
long ap_size = CFG_SYS_SDRAM_SIZE;
/* Unsupported configuration. See [ NOTE 2 ] for more details. */
if (!slc_exists())
panic("Try to enable IOC but SLC is not present");
if (!slc_enabled())
panic("Try to enable IOC but SLC is disabled");
/* Unsupported configuration. See [ NOTE 2 ] for more details. */
if (!dcache_enabled())
panic("Try to enable IOC but L1 D$ is disabled");
if (!is_power_of_2(ap_size) || ap_size < 4096)
panic("IOC Aperture size must be power of 2 and bigger 4Kib");
/* IOC Aperture start must be aligned to the size of the aperture */
if (ap_base % ap_size != 0)
panic("IOC Aperture start must be aligned to the size of the aperture");
flush_n_invalidate_dcache_all();
/*
* IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
* so setting 0x11 implies 512M, 0x12 implies 1G...
*/
write_aux_reg(ARC_AUX_IO_COH_AP0_SIZE,
order_base_2(ap_size / 1024) - 2);
write_aux_reg(ARC_AUX_IO_COH_AP0_BASE, ap_base >> 12);
write_aux_reg(ARC_AUX_IO_COH_PARTIAL, 1);
write_aux_reg(ARC_AUX_IO_COH_ENABLE, 1);
}
static void read_decode_cache_bcr_arcv2(void)
{
#ifdef CONFIG_ISA_ARCV2
union bcr_slc_cfg slc_cfg;
if (slc_exists()) {
slc_cfg.word = read_aux_reg(ARC_AUX_SLC_CONFIG);
gd->arch.slc_line_sz = (slc_cfg.fields.lsz == 0) ? 128 : 64;
/*
* We don't support configuration where L1 I$ or L1 D$ is
* absent but SL$ exists. See [ NOTE 2 ] for more details.
*/
if (!icache_exists() || !dcache_exists())
panic("Unsupported cache configuration: SLC exists but one of L1 caches is absent");
}
#endif /* CONFIG_ISA_ARCV2 */
}
void read_decode_cache_bcr(void)
{
int dc_line_sz = 0, ic_line_sz = 0;
union bcr_di_cache ibcr, dbcr;
/*
* We don't care much about I$ line length really as there're
* no per-line ops on I$ instead we only do full invalidation of it
* on occasion of relocation and right before jumping to the OS.
* Still we check insane config with zero-encoded line length in
* presense of version field in I$ BCR. Just in case.
*/
ibcr.word = read_aux_reg(ARC_BCR_IC_BUILD);
if (ibcr.fields.ver) {
ic_line_sz = 8 << ibcr.fields.line_len;
if (!ic_line_sz)
panic("Instruction exists but line length is 0\n");
}
dbcr.word = read_aux_reg(ARC_BCR_DC_BUILD);
if (dbcr.fields.ver) {
gd->arch.l1_line_sz = dc_line_sz = 16 << dbcr.fields.line_len;
if (!dc_line_sz)
panic("Data cache exists but line length is 0\n");
}
}
void cache_init(void)
{
read_decode_cache_bcr();
if (is_isa_arcv2())
read_decode_cache_bcr_arcv2();
if (is_isa_arcv2() && ioc_enabled())
arc_ioc_setup();
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
if (is_isa_arcv2() && slc_exists())
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
slc_upper_region_init();
}
int icache_status(void)
{
return icache_enabled();
}
void icache_enable(void)
{
if (icache_exists())
write_aux_reg(ARC_AUX_IC_CTRL, read_aux_reg(ARC_AUX_IC_CTRL) &
~IC_CTRL_CACHE_DISABLE);
}
void icache_disable(void)
{
if (!icache_exists())
return;
__ic_entire_invalidate();
write_aux_reg(ARC_AUX_IC_CTRL, read_aux_reg(ARC_AUX_IC_CTRL) |
IC_CTRL_CACHE_DISABLE);
}
/* IC supports only invalidation */
static inlined_cachefunc void __ic_entire_invalidate(void)
{
if (!icache_enabled())
return;
/* Any write to IC_IVIC register triggers invalidation of entire I$ */
write_aux_reg(ARC_AUX_IC_IVIC, 1);
/*
* As per ARC HS databook (see chapter 5.3.3.2)
* it is required to add 3 NOPs after each write to IC_IVIC.
*/
__builtin_arc_nop();
__builtin_arc_nop();
__builtin_arc_nop();
read_aux_reg(ARC_AUX_IC_CTRL); /* blocks */
}
void invalidate_icache_all(void)
{
__ic_entire_invalidate();
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
/*
* If SL$ is bypassed for data it is used only for instructions,
* so we need to invalidate it too.
*/
if (is_isa_arcv2() && slc_data_bypass())
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
__slc_entire_op(OP_INV);
}
int dcache_status(void)
{
return dcache_enabled();
}
void dcache_enable(void)
{
if (!dcache_exists())
return;
write_aux_reg(ARC_AUX_DC_CTRL, read_aux_reg(ARC_AUX_DC_CTRL) &
~(DC_CTRL_INV_MODE_FLUSH | DC_CTRL_CACHE_DISABLE));
}
void dcache_disable(void)
{
if (!dcache_exists())
return;
__dc_entire_op(OP_FLUSH_N_INV);
/*
* As SLC will be bypassed for data after L1 D$ disable we need to
* flush it first before L1 D$ disable. Also we invalidate SLC to
* avoid any inconsistent data problems after enabling L1 D$ again with
* dcache_enable function.
*/
if (is_isa_arcv2())
__slc_entire_op(OP_FLUSH_N_INV);
write_aux_reg(ARC_AUX_DC_CTRL, read_aux_reg(ARC_AUX_DC_CTRL) |
DC_CTRL_CACHE_DISABLE);
}
/* Common Helper for Line Operations on D-cache */
static inline void __dcache_line_loop(unsigned long paddr, unsigned long sz,
const int cacheop)
{
unsigned int aux_cmd;
int num_lines;
/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
aux_cmd = cacheop & OP_INV ? ARC_AUX_DC_IVDL : ARC_AUX_DC_FLDL;
sz += paddr & ~CACHE_LINE_MASK;
paddr &= CACHE_LINE_MASK;
num_lines = DIV_ROUND_UP(sz, gd->arch.l1_line_sz);
while (num_lines-- > 0) {
#if (CONFIG_ARC_MMU_VER == 3)
write_aux_reg(ARC_AUX_DC_PTAG, paddr);
#endif
write_aux_reg(aux_cmd, paddr);
paddr += gd->arch.l1_line_sz;
}
}
static inlined_cachefunc void __before_dc_op(const int op)
{
unsigned int ctrl;
ctrl = read_aux_reg(ARC_AUX_DC_CTRL);
/* IM bit implies flush-n-inv, instead of vanilla inv */
if (op == OP_INV)
ctrl &= ~DC_CTRL_INV_MODE_FLUSH;
else
ctrl |= DC_CTRL_INV_MODE_FLUSH;
write_aux_reg(ARC_AUX_DC_CTRL, ctrl);
}
static inlined_cachefunc void __after_dc_op(const int op)
{
if (op & OP_FLUSH) /* flush / flush-n-inv both wait */
while (read_aux_reg(ARC_AUX_DC_CTRL) & DC_CTRL_FLUSH_STATUS);
}
static inlined_cachefunc void __dc_entire_op(const int cacheop)
{
int aux;
if (!dcache_enabled())
return;
__before_dc_op(cacheop);
if (cacheop & OP_INV) /* Inv or flush-n-inv use same cmd reg */
aux = ARC_AUX_DC_IVDC;
else
aux = ARC_AUX_DC_FLSH;
write_aux_reg(aux, 0x1);
__after_dc_op(cacheop);
}
static inline void __dc_line_op(unsigned long paddr, unsigned long sz,
const int cacheop)
{
if (!dcache_enabled())
return;
__before_dc_op(cacheop);
__dcache_line_loop(paddr, sz, cacheop);
__after_dc_op(cacheop);
}
void invalidate_dcache_range(unsigned long start, unsigned long end)
{
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
if (start >= end)
return;
/*
* ARCv1 -> call __dc_line_op
* ARCv2 && L1 D$ disabled -> nothing
* ARCv2 && L1 D$ enabled && IOC enabled -> nothing
* ARCv2 && L1 D$ enabled && no IOC -> call __dc_line_op; call __slc_rgn_op
*/
if (!is_isa_arcv2() || !ioc_enabled())
__dc_line_op(start, end - start, OP_INV);
if (is_isa_arcv2() && !ioc_enabled() && !slc_data_bypass())
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
__slc_rgn_op(start, end - start, OP_INV);
}
void flush_dcache_range(unsigned long start, unsigned long end)
{
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
if (start >= end)
return;
/*
* ARCv1 -> call __dc_line_op
* ARCv2 && L1 D$ disabled -> nothing
* ARCv2 && L1 D$ enabled && IOC enabled -> nothing
* ARCv2 && L1 D$ enabled && no IOC -> call __dc_line_op; call __slc_rgn_op
*/
if (!is_isa_arcv2() || !ioc_enabled())
__dc_line_op(start, end - start, OP_FLUSH);
if (is_isa_arcv2() && !ioc_enabled() && !slc_data_bypass())
ARC: ARCv2: Cache: Fixed operation without IOC Previous SLC management implementation is broken. Seems like it was never sufficiently tested probably because most of the time IOC was used instead (i.e. no manual cache operations were done). Now if we disable IOC in U-boot we'll get a lot of errors while using DMA-enabled peripherals. This time we fix it by substitution of broken per-line SLC operations region operations as it is done in the Linux kernel (we took it from v4.14 which is the latest stable as of today). Among other things this implementation might be a bit faster because instead of iteration over each and every cache line we're taking care about entire region in one go. Main changes: * Replaced __slc_line_op (per line operations) by __slc_rgn_op (region operations). * Reworked __slc_entire_op to get rid of __after_slc_op and __before_slc_op functions. Note flush fix (flush only instead of flush-n-inv when OP_FLUSH is used, see [1] for more details) is already incorporated here. * Added SLC invalidation to invalidate_icache_all(). * Added (start >= end) check to invalidate_dcache_range() and flush_dcache_range() as some buggy drivers pass region start == end. * Added read-out of MMU BCR so we may know if PAE40 exists in HW and then act on a particular AUX regs accordingly. [1] http://lists.infradead.org/pipermail/linux-snps-arc/2018-January/003357.html Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-01-16 16:20:26 +00:00
__slc_rgn_op(start, end - start, OP_FLUSH);
}
void flush_cache(unsigned long start, unsigned long size)
{
flush_dcache_range(start, start + size);
}
ARC: Flush & invalidate D$ with a single command We don't implement separate flush_dcache_all() intentionally as entire data cache invalidation is dangerous operation even if we flush data cache right before invalidation. There is the real example: We may get stuck in the following code if we store any context (like BLINK register) on stack in invalidate_dcache_all() function. BLINK register is the register where return address is automatically saved when we do function call with instructions like 'bl'. void flush_dcache_all() { __dc_entire_op(OP_FLUSH); // Other code // } void invalidate_dcache_all() { __dc_entire_op(OP_INV); // Other code // } void foo(void) { flush_dcache_all(); invalidate_dcache_all(); } Now let's see what really happens during that code execution: foo() |->> call flush_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 1] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [flush L1 D$] return [jump to BLINK] <<------ [other flush_dcache_all code] [pop BLINK] (get from stack) return [jump to BLINK] <<------ |->> call invalidate_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 2] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [invalidate L1 D$] ![point 3] // Oops!!! // We lose return address from invalidate_dcache_all function: // we save it to stack and invalidate L1 D$ after that! return [jump to BLINK] <<------ [other invalidate_dcache_all code] [pop BLINK] (get from stack) // we don't have this data in L1 dcache as we invalidated it in [point 3] // so we get it from next memory level (for example DDR memory) // but in the memory we have value which we save in [point 1], which // is return address from flush_dcache_all function (instead of // address from current invalidate_dcache_all function which we // saved in [point 2] !) return [jump to BLINK] <<------ // As BLINK points to invalidate_dcache_all, we call it again and // loop forever. Fortunately we may do flush and invalidation of D$ with a single one instruction which automatically mitigates a situation described above. And because invalidate_dcache_all() isn't used in common U-Boot code we implement "flush and invalidate dcache all" instead. Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-03-21 12:58:50 +00:00
/*
* As invalidate_dcache_all() is not used in generic U-Boot code and as we
* don't need it in arch/arc code alone (invalidate without flush) we implement
* flush_n_invalidate_dcache_all (flush and invalidate in 1 operation) because
* it's much safer. See [ NOTE 1 ] for more details.
*/
void flush_n_invalidate_dcache_all(void)
{
ARC: Flush & invalidate D$ with a single command We don't implement separate flush_dcache_all() intentionally as entire data cache invalidation is dangerous operation even if we flush data cache right before invalidation. There is the real example: We may get stuck in the following code if we store any context (like BLINK register) on stack in invalidate_dcache_all() function. BLINK register is the register where return address is automatically saved when we do function call with instructions like 'bl'. void flush_dcache_all() { __dc_entire_op(OP_FLUSH); // Other code // } void invalidate_dcache_all() { __dc_entire_op(OP_INV); // Other code // } void foo(void) { flush_dcache_all(); invalidate_dcache_all(); } Now let's see what really happens during that code execution: foo() |->> call flush_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 1] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [flush L1 D$] return [jump to BLINK] <<------ [other flush_dcache_all code] [pop BLINK] (get from stack) return [jump to BLINK] <<------ |->> call invalidate_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 2] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [invalidate L1 D$] ![point 3] // Oops!!! // We lose return address from invalidate_dcache_all function: // we save it to stack and invalidate L1 D$ after that! return [jump to BLINK] <<------ [other invalidate_dcache_all code] [pop BLINK] (get from stack) // we don't have this data in L1 dcache as we invalidated it in [point 3] // so we get it from next memory level (for example DDR memory) // but in the memory we have value which we save in [point 1], which // is return address from flush_dcache_all function (instead of // address from current invalidate_dcache_all function which we // saved in [point 2] !) return [jump to BLINK] <<------ // As BLINK points to invalidate_dcache_all, we call it again and // loop forever. Fortunately we may do flush and invalidation of D$ with a single one instruction which automatically mitigates a situation described above. And because invalidate_dcache_all() isn't used in common U-Boot code we implement "flush and invalidate dcache all" instead. Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-03-21 12:58:50 +00:00
__dc_entire_op(OP_FLUSH_N_INV);
if (is_isa_arcv2() && !slc_data_bypass())
ARC: Flush & invalidate D$ with a single command We don't implement separate flush_dcache_all() intentionally as entire data cache invalidation is dangerous operation even if we flush data cache right before invalidation. There is the real example: We may get stuck in the following code if we store any context (like BLINK register) on stack in invalidate_dcache_all() function. BLINK register is the register where return address is automatically saved when we do function call with instructions like 'bl'. void flush_dcache_all() { __dc_entire_op(OP_FLUSH); // Other code // } void invalidate_dcache_all() { __dc_entire_op(OP_INV); // Other code // } void foo(void) { flush_dcache_all(); invalidate_dcache_all(); } Now let's see what really happens during that code execution: foo() |->> call flush_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 1] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [flush L1 D$] return [jump to BLINK] <<------ [other flush_dcache_all code] [pop BLINK] (get from stack) return [jump to BLINK] <<------ |->> call invalidate_dcache_all [return address is saved to BLINK register] [push BLINK] (save to stack) ![point 2] |->> call __dc_entire_op(OP_FLUSH) [return address is saved to BLINK register] [invalidate L1 D$] ![point 3] // Oops!!! // We lose return address from invalidate_dcache_all function: // we save it to stack and invalidate L1 D$ after that! return [jump to BLINK] <<------ [other invalidate_dcache_all code] [pop BLINK] (get from stack) // we don't have this data in L1 dcache as we invalidated it in [point 3] // so we get it from next memory level (for example DDR memory) // but in the memory we have value which we save in [point 1], which // is return address from flush_dcache_all function (instead of // address from current invalidate_dcache_all function which we // saved in [point 2] !) return [jump to BLINK] <<------ // As BLINK points to invalidate_dcache_all, we call it again and // loop forever. Fortunately we may do flush and invalidation of D$ with a single one instruction which automatically mitigates a situation described above. And because invalidate_dcache_all() isn't used in common U-Boot code we implement "flush and invalidate dcache all" instead. Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2018-03-21 12:58:50 +00:00
__slc_entire_op(OP_FLUSH_N_INV);
}
void flush_dcache_all(void)
{
__dc_entire_op(OP_FLUSH);
if (is_isa_arcv2() && !slc_data_bypass())
__slc_entire_op(OP_FLUSH);
}
/*
* This is function to cleanup all caches (and therefore sync I/D caches) which
* can be used for cleanup before linux launch or to sync caches during
* relocation.
*/
void sync_n_cleanup_cache_all(void)
{
__dc_entire_op(OP_FLUSH_N_INV);
/*
* If SL$ is bypassed for data it is used only for instructions,
* and we shouldn't flush it. So invalidate it instead of flush_n_inv.
*/
if (is_isa_arcv2()) {
if (slc_data_bypass())
__slc_entire_op(OP_INV);
else
__slc_entire_op(OP_FLUSH_N_INV);
}
__ic_entire_invalidate();
}
static ulong get_sp(void)
{
ulong ret;
asm("mov %0, sp" : "=r"(ret) : );
return ret;
}
void arch_lmb_reserve(struct lmb *lmb)
{
arch_lmb_reserve_generic(lmb, get_sp(), gd->ram_top, 4096);
}