remove blank issue template
r? `@Noratrieb`
So there are currently two blank issue templates. One called "Blank Issue" and one called "Blank issue". Wildly different, of course. It seems that one is auto generated by GitHub, while the other one has an explicit template for it. This removes the explicit one so there's only one "Blank [iI]ssue" in the list. Unfortunately, the only way to test if it works is merging this and finding out, but it seems obvious that it would work.
![image](https://github.com/user-attachments/assets/f802ca88-a80f-48e8-9aff-4008ec030dfa)
add caching to most type folders, rm region uniquification
Fixes the new minimization of the hang in nalgebra and nalgebra itself :3
this is a bit iffy, especially the cache in `TypeRelating`. I believe all the caches are correct, but it definitely adds some non-local complexity in places. The first commit removes region uniquification, reintroducing the ICE from https://github.com/rust-lang/trait-system-refactor-initiative/issues/27. This does not affect coherence and I would like to fix this by introducing OR-region constraints
r? `@compiler-errors`
Add `[Option<T>; N]::transpose`
This PR as a new unstable libs API, `[Option<T>; N]::transpose`, which permits going from `[Option<T>; N]` to `Option<[T; N]>`.
This new API doesn't have an ACP as it was directly asked by T-libs-api in https://github.com/rust-lang/rust/issues/97601#issuecomment-2372109119:
> [..] but it'd be trivial to provide a helper method `.transpose()` that turns array-of-Option into Option-of-array (**and we think that method should exist**; it already does for array-of-MaybeUninit).
r? libs
Add `field@` and `variant@` doc-link disambiguators
I'm not sure if this is big enough to need an fcp or not, but this is something I found missing when trying to refer to a field in macro-generated docs, not knowing if a method might be defined as well. Obviously, there are definitely other uses.
In the case where it's not disambiguated, methods (and I suppose other associated items in the value namespace) still take priority, which `@jyn514` said was an oversight but I think is probably the desired behavior 99% of the time anyway - shadowing a field with an accessor method is a very common pattern. If fields and methods with the same name started conflicting, it would be a breaking change. Though, to quote them:
> jyn: maybe you can break this only if both [the method and the field] are public
> jyn: rustc has some future-incompat warning level
> jyn: that gets through -A warnings and --cap-lints from cargo
That'd be out of scope of this PR, though.
Fixes#80283
Update `catch_unwind` doc comments for `c_unwind`
Updates `catch_unwind` doc comments to indicate that catching a foreign exception _will no longer_ be UB. Instead, there are two possible behaviors, though it is not specified which one an implementation will choose.
Nominated for t-lang to confirm that they are okay with making such a promise based on t-opsem FCP, or whether they would like to be included in the FCP.
Related: https://github.com/rust-lang/rust/issues/74990, https://github.com/rust-lang/rust/issues/115285, https://github.com/rust-lang/reference/pull/1226
Improve autovectorization of to_lowercase / to_uppercase functions
Refactor the code in the `convert_while_ascii` helper function to make it more suitable for auto-vectorization and also process the full ascii prefix of the string. The generic case conversion logic will only be invoked starting from the first non-ascii character.
The runtime on a microbenchmark with a small ascii-only input decreases from ~55ns to ~18ns per iteration. The new implementation also reduces the amount of unsafe code and encapsulates all unsafe inside the helper function.
Fixes#123712
Reorder stack spills so that constants come later.
Currently constants are "pulled forward" and have their stack spills emitted first. This confuses LLVM as to where to place breakpoints at function entry, and results in argument values being wrong in the debugger. It's straightforward to avoid emitting the stack spills for constants until arguments/etc have been introduced in debug_introduce_locals, so do that.
Example LLVM IR (irrelevant IR elided):
Before:
```
define internal void `@_ZN11rust_1289457binding17h2c78f956ba4bd2c3E(i64` %a, i64 %b, double %c) unnamed_addr #0 !dbg !178 { start:
%c.dbg.spill = alloca [8 x i8], align 8
%b.dbg.spill = alloca [8 x i8], align 8
%a.dbg.spill = alloca [8 x i8], align 8
%x.dbg.spill = alloca [4 x i8], align 4
store i32 0, ptr %x.dbg.spill, align 4, !dbg !192 ; LLVM places breakpoint here.
#dbg_declare(ptr %x.dbg.spill, !190, !DIExpression(), !192)
store i64 %a, ptr %a.dbg.spill, align 8
#dbg_declare(ptr %a.dbg.spill, !187, !DIExpression(), !193)
store i64 %b, ptr %b.dbg.spill, align 8
#dbg_declare(ptr %b.dbg.spill, !188, !DIExpression(), !194)
store double %c, ptr %c.dbg.spill, align 8
#dbg_declare(ptr %c.dbg.spill, !189, !DIExpression(), !195)
ret void, !dbg !196
}
```
After:
```
define internal void `@_ZN11rust_1289457binding17h2c78f956ba4bd2c3E(i64` %a, i64 %b, double %c) unnamed_addr #0 !dbg !178 { start:
%x.dbg.spill = alloca [4 x i8], align 4
%c.dbg.spill = alloca [8 x i8], align 8
%b.dbg.spill = alloca [8 x i8], align 8
%a.dbg.spill = alloca [8 x i8], align 8
store i64 %a, ptr %a.dbg.spill, align 8
#dbg_declare(ptr %a.dbg.spill, !187, !DIExpression(), !192)
store i64 %b, ptr %b.dbg.spill, align 8
#dbg_declare(ptr %b.dbg.spill, !188, !DIExpression(), !193)
store double %c, ptr %c.dbg.spill, align 8
#dbg_declare(ptr %c.dbg.spill, !189, !DIExpression(), !194)
store i32 0, ptr %x.dbg.spill, align 4, !dbg !195 ; LLVM places breakpoint here.
#dbg_declare(ptr %x.dbg.spill, !190, !DIExpression(), !195)
ret void, !dbg !196
}
```
Note in particular the position of the "LLVM places breakpoint here" comment relative to the stack spills for the function arguments. LLVM assumes that the first instruction with with a debug location is the end of the prologue. As LLVM does not currently offer front ends any direct control over the placement of the prologue end reordering the IR is the only mechanism available to fix argument values at function entry in the presence of MIR optimizations like SingleUseConsts. Fixes#128945
r? `@michaelwoerister`
fix: Pass all-targets for build scripts in more cli commands
Without this, build scripts don't run for tests and as such any proc-macros in dev-deps fail to resolve
Add `optimize_for_size` variants for stable and unstable sort as well as select_nth_unstable
- Stable sort uses a simple merge-sort that re-uses the existing - rather gnarly - merge function.
- Unstable sort jumps directly to the branchless heapsort fallback.
- select_nth_unstable jumps directly to the median_of_medians fallback, which is augmented with a custom tiny smallsort and partition impl.
Some code is duplicated but de-duplication would bring it's own problems. For example `swap_if_less` is critical for performance, if the sorting networks don't inline it perf drops drastically, however `#[inline(always)]` is also a poor fit, if the provided comparison function is huge, it gives the compiler an out to only instantiate `swap_if_less` once and call it. Another aspect that would suffer when making `swap_if_less` pub, is having to cfg out dozens of functions in in smallsort module.
Part of https://github.com/rust-lang/rust/issues/125612
r? `@Kobzol`
llvm: replace some deprecated functions
`LLVMMDStringInContext` and `LLVMMDNodeInContext` are deprecated, replace them with `LLVMMDStringInContext2` and `LLVMMDNodeInContext2`.
Also replace `Value` with `Metadata` in some function signatures for better consistency.
fix: Fix a bug in span map merge, and add explanations of how span maps are stored
Because it took me hours to figure out that contrary to common sense, the offset stored is the *end* of the node, and we search by the *start*. Which is why we need a convoluted `partition_point()` instead of a simple `binary_search()`. And this was not documented at all. Which made me make mistakes with my implementation of `SpanMap::merge()`.
The other bug fixed about span map merging is correctly keeping track of the current offset in presence of multiple sibling macro invocations. Unrelated, but because of the previous issue it took me hours to debug, so I figured out I'll put them together for posterity.
Fixes#18163.
fix: Fix name resolution when an import is resolved to some namespace and then later in the algorithm another namespace is added
The import is flagged as "indeterminate", and previously it was re-resolved, but only at the end of name resolution, when it's already too late for anything that depends on it.
This issue was tried to fix in https://github.com/rust-lang/rust-analyzer/pull/2466, but it was not fixed fully.
That PR is also why IDE features did work: the import at the end was resolved correctly, so IDE features that re-resolved the macro path resolved it correctly.
I was concerned about the performance of this, but this doesn't seem to regress `analysis-stats .`, so I guess it's fine to land this. I have no idea about the incremental perf however and I don't know how to measure that, although when typing in `zbus` (including creating a new function, which should recompute the def map) completion was fast enough.
I didn't check what rustc does, so maybe it does something more performant, like keeping track of only possibly problematic imports.
Fixes#18138.
Probably fixes#17630.
analysis-stats: respect `--disable-proc-macros` flag
I noticed that this flag wasn't being respected by `analysis-stats` when profiling proc macro expansion, so here's a small fix.
internal: Make COMPLETION_MARKER more explicitly r-a
If a user ever sees the completion marker, it's confusing to see text about IntelliJ. Use a string that's more explicitly about completion for rust-analyzer.
If a user ever sees the completion marker, it's confusing to see text
about IntelliJ. Use a string that's more explicitly about completion
for rust-analyzer.
Update to LLVM 19.1.0
This is a branch rebase of the submodule, now that LLVM 19.1.0 is final.
Our *only* extra patch right now is the one we're carrying for SGX unwind.
Apply `EarlyOtherwiseBranch` to scalar value
In the future, I'm thinking of hoisting discriminant via GVN so that we only need to write very little code here.
r? `@cjgillot`
internal: Disable GitHub releases for now
These are currently throwing `Error: HttpError: Resource not accessible by integration` because of the organization change, let's disable them for today's release.
Because it took me hours to figure out that contrary to common sense, the offset stored is the *end* of the node, and we search by the *start*. Which is why we need a convoluted `partition_point()` instead of a simple `binary_search()`. And this was not documented at all. Which made me make mistakes with my implementation of `SpanMap::merge()`.
The other bug fixed about span map merging is correctly keeping track of the current offset in presence of multiple sibling macro invocations. Unrelated, but because of the previous issue it took me hours to debug, so I figured out I'll put them together for posterity.
Mark `char::make_ascii_uppercase` and `char::make_ascii_lowercase` as const.
Relevant tracking issue: #130698
The `make_ascii_uppercase` and `make_ascii_lowercase` methods in `char` should be marked "const."
With the stabilisation of [`const_mut_refs`](https://github.com/rust-lang/rust/issues/57349/), this simply requires adding the `const` specifier to the function signatures.
fix rustc_nonnull_optimization_guaranteed docs
As far as I can tell, even back when this was [added](https://github.com/rust-lang/rust/pull/60300) it never *enabled* any optimizations. It just indicates that the FFI compat lint should accept those types for NPO.
rustc_llvm: adapt to flattened CLI args in LLVM
This changed in
llvm/llvm-project@e190d074a0. I decided to stick with more duplication between the ifdef blocks to make the code easier to read for the next two years before we can plausibly drop LLVM 19.
`@rustbot` label: +llvm-main
try-job: x86_64-msvc
rustc_expand: remember module `#[path]`s during expansion
During invocation collection, if a module item parsed from a `#[path]` attribute needed a second pass after parsing, its path wouldn't get added to the file path stack, so cycle detection broke. This checks the `#[path]` in such cases, so that it gets added appropriately. I think it should work identically to the case for external modules that don't need a second pass, but I'm not 100% sure.
Fixes#97589