/** * @author Richard Davey <rich@photonstorm.com> * @copyright 2014 Photon Storm Ltd. * @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License} */ /** * This is the core internal game clock. * It manages the elapsed time and calculation of elapsed values, used for game object motion and tweens. * * @class Phaser.Time * @constructor * @param {Phaser.Game} game A reference to the currently running game. */ Phaser.Time = function (game) { /** * @property {Phaser.Game} game - Local reference to game. */ this.game = game; /** * @property {number} time - Game time counter. If you need a value for in-game calculation please use Phaser.Time.now instead. * - This always contains Date.now, but Phaser.Time.now will hold the high resolution RAF timer value (if RAF is available) * @protected */ this.time = 0; /** * @property {number} prevTime - The time the previous update occurred. * @protected */ this.prevTime = 0; /** * @property {number} now - The time right now. * @protected */ this.now = 0; /** * @property {number} elapsed - Elapsed time since the last frame (in ms). * @protected */ this.elapsed = 0; /** * @property {number} pausedTime - Records how long the game has been paused for. Is reset each time the game pauses. * @protected */ this.pausedTime = 0; /** * @property {number} desiredFps = 60 - The desired frame-rate for this project. */ this.desiredFps = 60; /** * @property {number} suggestedFps = null - The suggested frame-rate for this project. * NOTE: not available until after a few frames have passed, it is recommended to use this after a few seconds (eg. after the menus) */ this.suggestedFps = null; /** * @property {number} _frameCount - count the number of calls to time.update since the last suggestedFps was calculated * @private */ this._frameCount = 0; /** * @property {number} _elapsedAcumulator - sum of the elapsed time since the last suggestedFps was calculated * @private */ this._elapsedAccumulator = 0; /** * @property {number} slowMotion = 1.0 - Scaling factor to make the game move smoothly in slow motion (1.0 = normal speed, 2.0 = half speed) * @type {Number} */ this.slowMotion = 1.0; /** * @property {boolean} advancedTiming - If true Phaser.Time will perform advanced profiling including the fps rate, fps min/max and msMin and msMax. * @default */ this.advancedTiming = false; /** * @property {number} fps - Frames per second. Only calculated if Time.advancedTiming is true. * @protected */ this.fps = 0; /** * @property {number} fpsMin - The lowest rate the fps has dropped to. Only calculated if Time.advancedTiming is true. */ this.fpsMin = 1000; /** * @property {number} fpsMax - The highest rate the fps has reached (usually no higher than 60fps). Only calculated if Time.advancedTiming is true. */ this.fpsMax = 0; /** * @property {number} msMin - The minimum amount of time the game has taken between two frames. Only calculated if Time.advancedTiming is true. * @default */ this.msMin = 1000; /** * @property {number} msMax - The maximum amount of time the game has taken between two frames. Only calculated if Time.advancedTiming is true. */ this.msMax = 0; /** * @property {number} physicsElapsed - The elapsed time calculated for the physics motion updates. In a stable 60fps system this will be 0.016 every frame. */ this.physicsElapsed = 0; /** * @property {number} deltaCap - If you need to cap the delta timer, set the value here. For 60fps the delta should be 0.016, so try variances just above this. */ this.deltaCap = 0; /** * @property {number} timeCap - If the difference in time between two frame updates exceeds this value in ms, the frame time is reset to avoid huge elapsed counts. * - assumes a desiredFps of 60 * * DEPRECATED: this no longer has any effect since the change to fixed-time stepping in game.update 3rd November 2014 */ this.timeCap = 1000 / 60; /** * @property {number} frames - The number of frames record in the last second. Only calculated if Time.advancedTiming is true. */ this.frames = 0; /** * @property {number} pauseDuration - Records how long the game was paused for in miliseconds. */ this.pauseDuration = 0; /** * @property {number} timeToCall - The value that setTimeout needs to work out when to next update */ this.timeToCall = 0; /** * @property {number} timeExpected - The time when the next call is expected when using setTimer to control the update loop */ this.timeExpected = 0; /** * @property {Phaser.Timer} events - This is a Phaser.Timer object bound to the master clock to which you can add timed events. */ this.events = new Phaser.Timer(this.game, false); /** * @property {number} _started - The time at which the Game instance started. * @private */ this._started = 0; /** * @property {number} _timeLastSecond - The time (in ms) that the last second counter ticked over. * @private */ this._timeLastSecond = 0; /** * @property {number} _pauseStarted - The time the game started being paused. * @private */ this._pauseStarted = 0; /** * @property {boolean} _justResumed - Internal value used to recover from the game pause state. * @private */ this._justResumed = false; /** * @property {array} _timers - Internal store of Phaser.Timer objects. * @private */ this._timers = []; /** * @property {number} _len - Temp. array length variable. * @private */ this._len = 0; /** * @property {number} _i - Temp. array counter variable. * @private */ this._i = 0; }; Phaser.Time.prototype = { /** * Called automatically by Phaser.Game after boot. Should not be called directly. * * @method Phaser.Time#boot * @protected */ boot: function () { this._started = Date.now(); this.events.start(); }, /** * Adds an existing Phaser.Timer object to the Timer pool. * * @method Phaser.Time#add * @param {Phaser.Timer} timer - An existing Phaser.Timer object. * @return {Phaser.Timer} The given Phaser.Timer object. */ add: function (timer) { this._timers.push(timer); return timer; }, /** * Creates a new stand-alone Phaser.Timer object. * * @method Phaser.Time#create * @param {boolean} [autoDestroy=true] - A Timer that is set to automatically destroy itself will do so after all of its events have been dispatched (assuming no looping events). * @return {Phaser.Timer} The Timer object that was created. */ create: function (autoDestroy) { if (typeof autoDestroy === 'undefined') { autoDestroy = true; } var timer = new Phaser.Timer(this.game, autoDestroy); this._timers.push(timer); return timer; }, /** * Remove all Timer objects, regardless of their state. Also clears all Timers from the Time.events timer. * * @method Phaser.Time#removeAll */ removeAll: function () { for (var i = 0; i < this._timers.length; i++) { this._timers[i].destroy(); } this._timers = []; this.events.removeAll(); }, /** * Updates the game clock and if enabled the advanced timing data. This is called automatically by Phaser.Game. * * @method Phaser.Time#update * @protected * @param {number} time - The current timestamp. */ update: function (time) { // this.time always holds Date.now, this.now may hold the RAF high resolution time value if RAF is available (otherwise it also holds Date.now) this.time = Date.now(); // 'now' is currently still holding the time of the last call, move it into prevTime this.prevTime = this.now; // update 'now' to hold the current time this.now = time; // elapsed time between previous call and now this.elapsed = this.now - this.prevTime; // time to call this function again in ms in case we're using timers instead of RequestAnimationFrame to update the game this.timeToCall = Math.floor(Math.max(0, (1000.0 / this.desiredFps) - (this.timeCallExpected - time))); // time when the next call is expected if using timers this.timeCallExpected = time + this.timeToCall; // count the number of time.update calls this._frameCount++; this._elapsedAccumulator += this.elapsed; // occasionally recalculate the suggestedFps based on the accumulated elapsed time if (this._frameCount >= this.desiredFps * 2) { // this formula calculates suggestedFps in multiples of 5 fps this.suggestedFps = Math.floor(200 / (this._elapsedAccumulator / this._frameCount)) * 5; this._frameCount = 0; this._elapsedAccumulator = 0; } // Set the physics elapsed time... this will always be 1 / this.desiredFps because we're using fixed time steps in game.update now this.physicsElapsed = 1 / this.desiredFps; if (this.deltaCap > 0 && this.physicsElapsed > this.deltaCap) { this.physicsElapsed = this.deltaCap; } if (this.advancedTiming) { this.msMin = Math.min(this.msMin, this.elapsed); this.msMax = Math.max(this.msMax, this.elapsed); this.frames++; if (this.now > this._timeLastSecond + 1000) { this.fps = Math.round((this.frames * 1000) / (this.now - this._timeLastSecond)); this.fpsMin = Math.min(this.fpsMin, this.fps); this.fpsMax = Math.max(this.fpsMax, this.fps); this._timeLastSecond = this.now; this.frames = 0; } } // Paused but still running? if (!this.game.paused) { // Our internal Phaser.Timer this.events.update(this.time); // Any game level timers this._i = 0; this._len = this._timers.length; while (this._i < this._len) { if (this._timers[this._i].update(this.time)) { this._i++; } else { this._timers.splice(this._i, 1); this._len--; } } } }, /** * Called when the game enters a paused state. * * @method Phaser.Time#gamePaused * @private */ gamePaused: function () { this._pauseStarted = Date.now(); this.events.pause(); var i = this._timers.length; while (i--) { this._timers[i]._pause(); } }, /** * Called when the game resumes from a paused state. * * @method Phaser.Time#gameResumed * @private */ gameResumed: function () { // Set the parameter which stores Date.now() to make sure it's correct on resume this.time = Date.now(); this.pauseDuration = this.time - this._pauseStarted; this.events.resume(); var i = this._timers.length; while (i--) { this._timers[i]._resume(); } }, /** * The number of seconds that have elapsed since the game was started. * * @method Phaser.Time#totalElapsedSeconds * @return {number} The number of seconds that have elapsed since the game was started. */ totalElapsedSeconds: function() { return (this.time - this._started) * 0.001; }, /** * How long has passed since the given time. * * @method Phaser.Time#elapsedSince * @param {number} since - The time you want to measure against. * @return {number} The difference between the given time and now. */ elapsedSince: function (since) { return this.time - since; }, /** * How long has passed since the given time (in seconds). * * @method Phaser.Time#elapsedSecondsSince * @param {number} since - The time you want to measure (in seconds). * @return {number} Duration between given time and now (in seconds). */ elapsedSecondsSince: function (since) { return (this.time - since) * 0.001; }, /** * Resets the private _started value to now and removes all currently running Timers. * * @method Phaser.Time#reset */ reset: function () { this._started = this.now; this.removeAll(); } }; Phaser.Time.prototype.constructor = Phaser.Time;