phaser/src/math/Quaternion.js

1044 lines
24 KiB
JavaScript
Raw Normal View History

2018-02-12 16:01:20 +00:00
/**
* @author Richard Davey <rich@photonstorm.com>
2022-02-28 14:29:51 +00:00
* @copyright 2022 Photon Storm Ltd.
2019-05-10 15:15:04 +00:00
* @license {@link https://opensource.org/licenses/MIT|MIT License}
2018-02-12 16:01:20 +00:00
*/
2018-03-20 15:06:30 +00:00
// Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji
// and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl
var Class = require('../utils/Class');
var Matrix3 = require('./Matrix3');
var NOOP = require('../utils/NOOP');
var Vector3 = require('./Vector3');
var EPSILON = 0.000001;
// Some shared 'private' arrays
var siNext = new Int8Array([ 1, 2, 0 ]);
var tmp = new Float32Array([ 0, 0, 0 ]);
var xUnitVec3 = new Vector3(1, 0, 0);
var yUnitVec3 = new Vector3(0, 1, 0);
var tmpvec = new Vector3();
var tmpMat3 = new Matrix3();
2018-02-07 15:27:21 +00:00
/**
* @classdesc
* A quaternion.
2018-02-07 15:27:21 +00:00
*
* @class Quaternion
2018-10-10 09:49:13 +00:00
* @memberof Phaser.Math
2018-02-07 15:27:21 +00:00
* @constructor
* @since 3.0.0
*
* @param {number} [x=0] - The x component.
* @param {number} [y=0] - The y component.
* @param {number} [z=0] - The z component.
* @param {number} [w=1] - The w component.
2018-02-07 15:27:21 +00:00
*/
var Quaternion = new Class({
initialize:
function Quaternion (x, y, z, w)
{
2018-02-07 15:27:21 +00:00
/**
* The x component of this Quaternion.
*
* @name Phaser.Math.Quaternion#_x
2018-02-07 15:27:21 +00:00
* @type {number}
* @default 0
* @private
* @since 3.50.0
2018-02-07 15:27:21 +00:00
*/
/**
* The y component of this Quaternion.
*
* @name Phaser.Math.Quaternion#_y
2018-02-07 15:27:21 +00:00
* @type {number}
* @default 0
* @private
* @since 3.50.0
2018-02-07 15:27:21 +00:00
*/
/**
* The z component of this Quaternion.
*
* @name Phaser.Math.Quaternion#_z
2018-02-07 15:27:21 +00:00
* @type {number}
* @default 0
* @private
* @since 3.50.0
2018-02-07 15:27:21 +00:00
*/
/**
* The w component of this Quaternion.
*
* @name Phaser.Math.Quaternion#_w
2018-02-07 15:27:21 +00:00
* @type {number}
* @default 0
* @private
* @since 3.50.0
2018-02-07 15:27:21 +00:00
*/
/**
* This callback is invoked, if set, each time a value in this quaternion is changed.
* The callback is passed one argument, a reference to this quaternion.
*
* @name Phaser.Math.Quaternion#onChangeCallback
* @type {function}
* @since 3.50.0
*/
this.onChangeCallback = NOOP;
this.set(x, y, z, w);
},
/**
* The x component of this Quaternion.
*
* @name Phaser.Math.Quaternion#x
* @type {number}
* @default 0
* @since 3.0.0
*/
x: {
get: function ()
{
return this._x;
},
set: function (value)
{
this._x = value;
this.onChangeCallback(this);
}
},
/**
* The y component of this Quaternion.
*
* @name Phaser.Math.Quaternion#y
* @type {number}
* @default 0
* @since 3.0.0
*/
y: {
get: function ()
{
return this._y;
},
set: function (value)
{
this._y = value;
this.onChangeCallback(this);
}
},
/**
* The z component of this Quaternion.
*
* @name Phaser.Math.Quaternion#z
* @type {number}
* @default 0
* @since 3.0.0
*/
z: {
get: function ()
{
return this._z;
},
set: function (value)
{
this._z = value;
this.onChangeCallback(this);
}
},
/**
* The w component of this Quaternion.
*
* @name Phaser.Math.Quaternion#w
* @type {number}
* @default 0
* @since 3.0.0
*/
w: {
get: function ()
{
return this._w;
},
set: function (value)
{
this._w = value;
this.onChangeCallback(this);
}
},
2018-01-26 06:19:27 +00:00
/**
* Copy the components of a given Quaternion or Vector into this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#copy
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} src - The Quaternion or Vector to copy the components from.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
copy: function (src)
{
return this.set(src);
},
2018-01-26 06:19:27 +00:00
/**
* Set the components of this Quaternion and optionally call the `onChangeCallback`.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#set
* @since 3.0.0
*
* @param {(number|object)} [x=0] - The x component, or an object containing x, y, z, and w components.
* @param {number} [y=0] - The y component.
* @param {number} [z=0] - The z component.
* @param {number} [w=0] - The w component.
* @param {boolean} [update=true] - Call the `onChangeCallback`?
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
set: function (x, y, z, w, update)
{
if (update === undefined) { update = true; }
if (typeof x === 'object')
{
this._x = x.x || 0;
this._y = x.y || 0;
this._z = x.z || 0;
this._w = x.w || 0;
}
else
{
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._w = w || 0;
}
if (update)
{
this.onChangeCallback(this);
}
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Add a given Quaternion or Vector to this Quaternion. Addition is component-wise.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#add
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to add to this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
add: function (v)
{
this._x += v.x;
this._y += v.y;
this._z += v.z;
this._w += v.w;
this.onChangeCallback(this);
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Subtract a given Quaternion or Vector from this Quaternion. Subtraction is component-wise.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#subtract
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to subtract from this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
subtract: function (v)
{
this._x -= v.x;
this._y -= v.y;
this._z -= v.z;
this._w -= v.w;
this.onChangeCallback(this);
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Scale this Quaternion by the given value.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#scale
* @since 3.0.0
*
* @param {number} scale - The value to scale this Quaternion by.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
scale: function (scale)
{
this._x *= scale;
this._y *= scale;
this._z *= scale;
this._w *= scale;
this.onChangeCallback(this);
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Calculate the length of this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#length
* @since 3.0.0
*
* @return {number} The length of this Quaternion.
2018-01-26 06:19:27 +00:00
*/
length: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var w = this.w;
return Math.sqrt(x * x + y * y + z * z + w * w);
},
2018-01-26 06:19:27 +00:00
/**
* Calculate the length of this Quaternion squared.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#lengthSq
* @since 3.0.0
*
* @return {number} The length of this Quaternion, squared.
2018-01-26 06:19:27 +00:00
*/
lengthSq: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var w = this.w;
return x * x + y * y + z * z + w * w;
},
2018-01-26 06:19:27 +00:00
/**
* Normalize this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#normalize
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
normalize: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var w = this.w;
var len = x * x + y * y + z * z + w * w;
if (len > 0)
{
len = 1 / Math.sqrt(len);
this._x = x * len;
this._y = y * len;
this._z = z * len;
this._w = w * len;
}
this.onChangeCallback(this);
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Calculate the dot product of this Quaternion and the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#dot
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to dot product with this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @return {number} The dot product of this Quaternion and the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*/
dot: function (v)
{
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
2018-01-26 06:19:27 +00:00
/**
* Linearly interpolate this Quaternion towards the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#lerp
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to interpolate towards.
* @param {number} [t=0] - The percentage of interpolation.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
lerp: function (v, t)
{
if (t === undefined) { t = 0; }
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
return this.set(
ax + t * (v.x - ax),
ay + t * (v.y - ay),
az + t * (v.z - az),
aw + t * (v.w - aw)
);
},
2018-01-26 06:19:27 +00:00
/**
2020-02-04 14:51:43 +00:00
* Rotates this Quaternion based on the two given vectors.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#rotationTo
* @since 3.0.0
*
2020-02-04 14:51:43 +00:00
* @param {Phaser.Math.Vector3} a - The transform rotation vector.
* @param {Phaser.Math.Vector3} b - The target rotation vector.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
rotationTo: function (a, b)
{
var dot = a.x * b.x + a.y * b.y + a.z * b.z;
if (dot < -0.999999)
{
if (tmpvec.copy(xUnitVec3).cross(a).length() < EPSILON)
{
tmpvec.copy(yUnitVec3).cross(a);
}
2018-03-20 15:06:30 +00:00
tmpvec.normalize();
return this.setAxisAngle(tmpvec, Math.PI);
}
else if (dot > 0.999999)
{
return this.set(0, 0, 0, 1);
}
else
{
tmpvec.copy(a).cross(b);
this._x = tmpvec.x;
this._y = tmpvec.y;
this._z = tmpvec.z;
this._w = 1 + dot;
return this.normalize();
}
},
2018-01-26 06:19:27 +00:00
/**
* Set the axes of this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#setAxes
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} view - The view axis.
* @param {Phaser.Math.Vector3} right - The right axis.
* @param {Phaser.Math.Vector3} up - The upwards axis.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
setAxes: function (view, right, up)
{
var m = tmpMat3.val;
m[0] = right.x;
m[3] = right.y;
m[6] = right.z;
m[1] = up.x;
m[4] = up.y;
m[7] = up.z;
m[2] = -view.x;
m[5] = -view.y;
m[8] = -view.z;
return this.fromMat3(tmpMat3).normalize();
},
2018-01-26 06:19:27 +00:00
/**
* Reset this Matrix to an identity (default) Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#identity
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
identity: function ()
{
return this.set(0, 0, 0, 1);
},
2018-01-26 06:19:27 +00:00
/**
* Set the axis angle of this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#setAxisAngle
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} axis - The axis.
* @param {number} rad - The angle in radians.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
setAxisAngle: function (axis, rad)
{
rad = rad * 0.5;
var s = Math.sin(rad);
return this.set(
s * axis.x,
s * axis.y,
s * axis.z,
Math.cos(rad)
);
},
2018-01-26 06:19:27 +00:00
/**
* Multiply this Quaternion by the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#multiply
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} b - The Quaternion or Vector to multiply this Quaternion by.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
multiply: function (b)
{
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var bx = b.x;
var by = b.y;
var bz = b.z;
var bw = b.w;
return this.set(
ax * bw + aw * bx + ay * bz - az * by,
ay * bw + aw * by + az * bx - ax * bz,
az * bw + aw * bz + ax * by - ay * bx,
aw * bw - ax * bx - ay * by - az * bz
);
},
2018-01-26 06:19:27 +00:00
/**
* Smoothly linearly interpolate this Quaternion towards the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#slerp
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} b - The Quaternion or Vector to interpolate towards.
* @param {number} t - The percentage of interpolation.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
slerp: function (b, t)
{
// benchmarks: http://jsperf.com/quaternion-slerp-implementations
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var bx = b.x;
var by = b.y;
var bz = b.z;
var bw = b.w;
// calc cosine
var cosom = ax * bx + ay * by + az * bz + aw * bw;
// adjust signs (if necessary)
if (cosom < 0)
{
cosom = -cosom;
bx = - bx;
by = - by;
bz = - bz;
bw = - bw;
}
2018-03-20 15:06:30 +00:00
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
var scale0 = 1 - t;
var scale1 = t;
// calculate coefficients
if ((1 - cosom) > EPSILON)
{
// standard case (slerp)
var omega = Math.acos(cosom);
var sinom = Math.sin(omega);
scale0 = Math.sin((1.0 - t) * omega) / sinom;
scale1 = Math.sin(t * omega) / sinom;
}
// calculate final values
return this.set(
scale0 * ax + scale1 * bx,
scale0 * ay + scale1 * by,
scale0 * az + scale1 * bz,
scale0 * aw + scale1 * bw
);
},
2018-01-26 06:19:27 +00:00
/**
* Invert this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#invert
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
invert: function ()
{
var a0 = this.x;
var a1 = this.y;
var a2 = this.z;
var a3 = this.w;
var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
var invDot = (dot) ? 1 / dot : 0;
2018-03-20 15:06:30 +00:00
return this.set(
-a0 * invDot,
-a1 * invDot,
-a2 * invDot,
a3 * invDot
);
},
2018-01-26 06:19:27 +00:00
/**
* Convert this Quaternion into its conjugate.
2018-01-26 06:19:27 +00:00
*
* Sets the x, y and z components.
*
2018-01-26 06:19:27 +00:00
* @method Phaser.Math.Quaternion#conjugate
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
conjugate: function ()
{
this._x = -this.x;
this._y = -this.y;
this._z = -this.z;
this.onChangeCallback(this);
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Rotate this Quaternion on the X axis.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#rotateX
* @since 3.0.0
*
* @param {number} rad - The rotation angle in radians.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
rotateX: function (rad)
{
rad *= 0.5;
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var bx = Math.sin(rad);
var bw = Math.cos(rad);
return this.set(
ax * bw + aw * bx,
ay * bw + az * bx,
az * bw - ay * bx,
aw * bw - ax * bx
);
},
2018-01-26 06:19:27 +00:00
/**
* Rotate this Quaternion on the Y axis.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#rotateY
* @since 3.0.0
*
* @param {number} rad - The rotation angle in radians.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
rotateY: function (rad)
{
rad *= 0.5;
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var by = Math.sin(rad);
var bw = Math.cos(rad);
return this.set(
ax * bw - az * by,
ay * bw + aw * by,
az * bw + ax * by,
aw * bw - ay * by
);
},
2018-01-26 06:19:27 +00:00
/**
* Rotate this Quaternion on the Z axis.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#rotateZ
* @since 3.0.0
*
* @param {number} rad - The rotation angle in radians.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
rotateZ: function (rad)
{
rad *= 0.5;
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var bz = Math.sin(rad);
var bw = Math.cos(rad);
return this.set(
ax * bw + ay * bz,
ay * bw - ax * bz,
az * bw + aw * bz,
aw * bw - az * bz
);
},
2018-01-26 06:19:27 +00:00
/**
* Create a unit (or rotation) Quaternion from its x, y, and z components.
*
* Sets the w component.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#calculateW
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
calculateW: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
this.w = -Math.sqrt(1.0 - x * x - y * y - z * z);
return this;
},
/**
* Set this Quaternion from the given Euler, based on Euler order.
*
2020-09-30 10:23:01 +00:00
* @method Phaser.Math.Quaternion#setFromEuler
* @since 3.50.0
*
* @param {Phaser.Math.Euler} euler - The Euler to convert from.
* @param {boolean} [update=true] - Run the `onChangeCallback`?
*
* @return {Phaser.Math.Quaternion} This Quaternion.
*/
2020-09-30 10:23:01 +00:00
setFromEuler: function (euler, update)
{
var x = euler.x / 2;
var y = euler.y / 2;
var z = euler.z / 2;
var c1 = Math.cos(x);
var c2 = Math.cos(y);
var c3 = Math.cos(z);
var s1 = Math.sin(x);
var s2 = Math.sin(y);
var s3 = Math.sin(z);
switch (euler.order)
{
case 'XYZ':
{
this.set(
s1 * c2 * c3 + c1 * s2 * s3,
c1 * s2 * c3 - s1 * c2 * s3,
c1 * c2 * s3 + s1 * s2 * c3,
c1 * c2 * c3 - s1 * s2 * s3,
update
);
break;
}
case 'YXZ':
{
this.set(
s1 * c2 * c3 + c1 * s2 * s3,
c1 * s2 * c3 - s1 * c2 * s3,
c1 * c2 * s3 - s1 * s2 * c3,
c1 * c2 * c3 + s1 * s2 * s3,
update
);
break;
}
case 'ZXY':
{
this.set(
s1 * c2 * c3 - c1 * s2 * s3,
c1 * s2 * c3 + s1 * c2 * s3,
c1 * c2 * s3 + s1 * s2 * c3,
c1 * c2 * c3 - s1 * s2 * s3,
update
);
break;
}
case 'ZYX':
{
this.set(
s1 * c2 * c3 - c1 * s2 * s3,
c1 * s2 * c3 + s1 * c2 * s3,
c1 * c2 * s3 - s1 * s2 * c3,
c1 * c2 * c3 + s1 * s2 * s3,
update
);
break;
}
case 'YZX':
{
this.set(
s1 * c2 * c3 + c1 * s2 * s3,
c1 * s2 * c3 + s1 * c2 * s3,
c1 * c2 * s3 - s1 * s2 * c3,
c1 * c2 * c3 - s1 * s2 * s3,
update
);
break;
}
case 'XZY':
{
this.set(
s1 * c2 * c3 - c1 * s2 * s3,
c1 * s2 * c3 - s1 * c2 * s3,
c1 * c2 * s3 + s1 * s2 * c3,
c1 * c2 * c3 + s1 * s2 * s3,
update
);
break;
}
}
return this;
},
/**
* Sets the rotation of this Quaternion from the given Matrix4.
*
* @method Phaser.Math.Quaternion#setFromRotationMatrix
* @since 3.50.0
*
* @param {Phaser.Math.Matrix4} mat4 - The Matrix4 to set the rotation from.
*
* @return {Phaser.Math.Quaternion} This Quaternion.
*/
setFromRotationMatrix: function (mat4)
{
var m = mat4.val;
var m11 = m[0];
var m12 = m[4];
var m13 = m[8];
var m21 = m[1];
var m22 = m[5];
var m23 = m[9];
var m31 = m[2];
var m32 = m[6];
var m33 = m[10];
var trace = m11 + m22 + m33;
var s;
if (trace > 0)
{
s = 0.5 / Math.sqrt(trace + 1.0);
this.set(
(m32 - m23) * s,
(m13 - m31) * s,
(m21 - m12) * s,
0.25 / s
);
}
else if (m11 > m22 && m11 > m33)
{
s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
this.set(
0.25 * s,
(m12 + m21) / s,
(m13 + m31) / s,
(m32 - m23) / s
);
}
else if (m22 > m33)
{
s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
this.set(
(m12 + m21) / s,
0.25 * s,
(m23 + m32) / s,
(m13 - m31) / s
);
}
else
{
s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
this.set(
(m13 + m31) / s,
(m23 + m32) / s,
0.25 * s,
(m21 - m12) / s
);
}
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Convert the given Matrix into this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#fromMat3
* @since 3.0.0
*
* @param {Phaser.Math.Matrix3} mat - The Matrix to convert from.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
fromMat3: function (mat)
{
// benchmarks:
// http://jsperf.com/typed-array-access-speed
// http://jsperf.com/conversion-of-3x3-matrix-to-quaternion
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
// article "Quaternion Calculus and Fast Animation".
var m = mat.val;
var fTrace = m[0] + m[4] + m[8];
var fRoot;
if (fTrace > 0)
{
// |w| > 1/2, may as well choose w > 1/2
fRoot = Math.sqrt(fTrace + 1.0); // 2w
this.w = 0.5 * fRoot;
fRoot = 0.5 / fRoot; // 1/(4w)
this._x = (m[7] - m[5]) * fRoot;
this._y = (m[2] - m[6]) * fRoot;
this._z = (m[3] - m[1]) * fRoot;
}
else
{
// |w| <= 1/2
var i = 0;
if (m[4] > m[0])
{
i = 1;
}
if (m[8] > m[i * 3 + i])
{
i = 2;
}
var j = siNext[i];
var k = siNext[j];
2018-03-20 15:06:30 +00:00
// This isn't quite as clean without array access
fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1);
tmp[i] = 0.5 * fRoot;
fRoot = 0.5 / fRoot;
tmp[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
tmp[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
this._x = tmp[0];
this._y = tmp[1];
this._z = tmp[2];
this._w = (m[k * 3 + j] - m[j * 3 + k]) * fRoot;
}
2018-03-20 15:06:30 +00:00
this.onChangeCallback(this);
return this;
}
});
module.exports = Quaternion;