It's not clear whether or not `system_wcwidth()` was picked solely because of
the namespace conflict (which is easily remedied) but using the most obvious
name for this function should be the way to go.
We already have our own overload of `wcwidth()` (`fish_wcwidth()`) so it should
be more obvious which is the bare system call and which isn't.
(I do want to move this w/ some of the other standalone extern C wrappers to the
unix module later.)
Pull in the correct descriptions merged from across the various C++ header and
source files and get rid of the getter function that's only used in one place
but causes us to split the documentation for FISH_EMOJI_WIDTH across multiple
declarations.
This can be used for functions that accept non-Unicode content (i.e. &CStr or
CString) but are often used in our code base with a UTF-8 or UTF-32 string
on-hand.
When such a function is passed a CString, it's passed through as-is and
allocation-free. But when, as is often the case, we have a static string we can
now pass it in directly with all the nice ergonomics thereof instead of having
to manually create and unwrap a CString at the call location.
There's an upstream request to add this functionality to the standard library:
https://github.com/rust-lang/rust/issues/71448
This is more complicated than it needs to be thanks to the presence of CMake and
the C++ ffi in the picture. rsconf can correctly detect the required libraries
and instruct rustc to link against them, but since we generate a static rust
library and have CMake link it against the C++ binaries, we are still at the
mercy of CMake picking up the symbols we want.
Unfortunately, we could detect the gettext symbols but discover at runtime that
they weren't linked in because CMake was compiled with `-DWITH_GETTEXT=0` or
similar (as the macOS CI runner does). This means we also need to pass state
between CMake and our build script to communicate which CMake options were
enabled.
Delegate the `view` and `view_mut` to the newly added `Projection<T>`, which
makes everything oh so much clearer and cleaner. Add comments to clarify what is
happening.
This can be used when you primarily want to return a reference but in order for
that reference to live long enough it must be returned with an object.
i.e. given `Mutex<Foo { bar }>` you want a function to lock the mutex and return
a reference to `bar` but you can't return that reference since it has a lifetime
dependency on `MutexGuard` (which only derefs to all of `Foo` and not just
`bar`). You can return a `Projection` owning the `MutexGuard<Foo>` and set it up
to deref to `&bar`.
This wasn't providing a lot of value, and the license compatibility is iffy.
There's a bit of weirdness in that this now uses a `Box<dyn Error>`,
but since currently nothing actually errors out let's punt that for
later.
This is a terrible way of going about things,
and means we're currently broken on any unix that isn't specifically listed.
But at least it'll build and allow us to keep the FreeBSD CI running.
Historically fish has used the functions `fish_wcstol`, `fish_wcstoi`, and
`fish_wcstoul` (and some long long variants) for most integer conversions.
These have semantics that are deliberately different from the libc
functions, such as consuming trailing whitespace, and disallowing `-` in
unsigned versions.
fish has started to drift away from these semantics; some divergence from
C++ has crept in.
Rename the existing `fish_wcs*` functions in Rust to remove the fish
prefix, to express that they attempt to mirror libc semantics; then
introduce `fish_` wrappers which are ported from C++. Also fix some
miscellaneous bugs which have crept in, such as missing range checks.
This implements the primary environment stack, and other environments such
as the null and snapshot environments, in Rust. These are used to implement
the push and pop from block scoped commands such as `for` and `begin`, and
also function calls.
owning_null_terminated_array is used for environment variables, where we need to
provide envp for child processes. This switches the implementation from C++ to
Rust.
We retain the C++ owning_null_terminated_array_t; it simply wraps the Rust
version now.
The `u64::from(buf.f_flag)` was needed in two places. The existing handled macOS
which always has a 32-bit statfs::f_flag, but statvfs::f_flag is an `unsigned
long` which means it needs to be coerced to 64-bits on 32-bit targets.
There's no reason to inject prefix into our newly allocated str after storing
pattern in there. Just allocate with the needed capacity up front and then
insert in the correct order.
There's no reason to inject prefix into our newly allocated str after storing
pattern in there. Just allocate with the needed capacity up front and then
insert in the correct order.
The new asan exit handlers are called to get proper ASAN leak reports (as
calling _exit(0) skips the LSAN reporting stage and exits with success every
time).
They are no-ops when not compiled for ASAN.
This ports some signal setup and handling bits to Rust.
The signal handling machinery requires walking over the list of known signals;
that's not supported by the Signal type. Rather than duplicate the list of
signals yet again, switch back to a table, as we had in C++.
This also adds two further pieces which were neglected by the Signal struct:
1. Localize signal descriptions
2. Support for integers as the signal name
This allows the rust code to free up C++ resources allocated for a callback even
when the callback isn't executed (as opposed to requiring the callback to run
and at the end of the callback cleaning up all allocated resources).
Also add type-erased destructor registration to callback_t. This allows for
freeing variables allocated by the callback for debounce_t's
perform_with_callback() that don't end up having their completion called due to
a timeout.
Largely routine but for the trampolines in iothread.h and iothread.cpp which
were a real PITA to get correct w/ all their variants.
Integration is complete with all old code ripped out and the tests using the
rust version of the code.
Like the WSL check, this was incorrectly assuming WSL implies
cfg(windows) when it's actually picked up as Linux.
Also, improve over the C++ code by not relying on the build-time WSL
status to determine if we are running on WSL at runtime since it's often
the case that the fish binaries are built on a non-WSL host (for
packaging) then executed on a WSL only at runtime.
(But it's ok to assume if fish has been built for Windows or not Linux
that it will either be run or not run on top of a Win32 character device
system.)
Also, port of the comment and relevant WSL and fish issue links over
from the CPP codebase for posterity.
* Since we already have an allocation of length wstr.len(), it's
probably better to allocate the result (which is strictly less than or
equal to the input length) up-front rather than risk thrashing the Vec
allocation,
* There's no need to compare c2 against '\0' since that will just cause
to_digit(16) to return None anyway,
* Our convert_hex() specialization of to_digit(16) that only checks
capital letters A-F without also checking lowercase a-f isn't
significantly faster than just use to_digit(16), and we already assert
that the input *wasn't* a lowercase a-f before making the call, so
there's no point in using a special function to handle that.