Adopt the new Rust signal implementation

This switches the signals implementation from C++ to Rust.
This commit is contained in:
ridiculousfish 2023-04-30 15:40:06 -07:00
parent 1ecf9d013d
commit 4771f25102
8 changed files with 97 additions and 455 deletions

View file

@ -42,6 +42,7 @@ fn main() -> miette::Result<()> {
"src/parse_tree.rs",
"src/parse_util.rs",
"src/redirection.rs",
"src/signal.rs",
"src/smoke.rs",
"src/termsize.rs",
"src/timer.rs",

View file

@ -15,10 +15,10 @@ use widestring_suffix::widestrs;
use crate::builtins::shared::io_streams_t;
use crate::common::{escape_string, scoped_push, EscapeFlags, EscapeStringStyle, ScopeGuard};
use crate::ffi::{self, block_t, parser_t, signal_check_cancel, signal_handle, Repin};
use crate::ffi::{self, block_t, parser_t, Repin};
use crate::flog::FLOG;
use crate::job_group::{JobId, MaybeJobId};
use crate::signal::Signal;
use crate::signal::{signal_check_cancel, signal_handle, Signal};
use crate::termsize;
use crate::wchar::{wstr, WString, L};
use crate::wchar_ext::ToWString;
@ -617,7 +617,7 @@ fn event_get_desc_ffi(parser: &parser_t, evt: &Event) -> UniquePtr<CxxWString> {
/// Add an event handler.
pub fn add_handler(eh: EventHandler) {
if let EventType::Signal { signal } = eh.desc.typ {
signal_handle(ffi::c_int(signal.code()));
signal_handle(signal);
inc_signal_observed(signal);
}
@ -772,7 +772,7 @@ pub fn fire_delayed(parser: &mut parser_t) {
return;
};
// Do not invoke new event handlers if we are unwinding (#6649).
if signal_check_cancel().0 != 0 {
if signal_check_cancel() != 0 {
return;
};

View file

@ -93,15 +93,9 @@ include_cpp! {
generate!("pretty_printer_t")
generate!("escape_string")
generate!("sig2wcs")
generate!("wcs2sig")
generate!("signal_get_desc")
generate!("fd_event_signaller_t")
generate!("signal_handle")
generate!("signal_check_cancel")
generate!("block_t")
generate!("block_type_t")
generate!("statuses_t")

View file

@ -5,12 +5,64 @@ use crate::event::{enqueue_signal, is_signal_observed};
use crate::termsize::termsize_handle_winch;
use crate::topic_monitor::{generation_t, invalid_generations, topic_monitor_principal, topic_t};
use crate::wchar::{wstr, WExt, L};
use crate::wutil::fish_wcstoi;
use crate::wutil::{wgettext, wgettext_str, wperror};
use crate::wchar_ffi::{AsWstr, WCharToFFI};
use crate::wutil::{fish_wcstoi, wgettext, wgettext_str, wperror};
use cxx::{CxxWString, UniquePtr};
use errno::{errno, set_errno};
use std::sync::atomic::{AtomicI32, Ordering};
use widestring_suffix::widestrs;
#[cxx::bridge]
mod signal_ffi {
extern "Rust" {
fn signal_set_handlers(interactive: bool);
fn signal_set_handlers_once(interactive: bool);
#[cxx_name = "signal_handle"]
fn signal_handle_ffi(sig: i32);
fn signal_unblock_all();
#[cxx_name = "sig2wcs"]
fn sig2wcs_ffi(sig: i32) -> UniquePtr<CxxWString>;
#[cxx_name = "wcs2sig"]
fn wcs2sig_ffi(sig: &CxxWString) -> i32;
#[cxx_name = "signal_get_desc"]
fn signal_get_desc_ffi(sig: i32) -> UniquePtr<CxxWString>;
fn signal_check_cancel() -> i32;
fn signal_clear_cancel();
fn signal_reset_handlers();
}
}
fn sig2wcs_ffi(sig: i32) -> UniquePtr<CxxWString> {
Signal::new(sig).name().to_ffi()
}
fn wcs2sig_ffi(sig: &CxxWString) -> i32 {
if let Some(sig) = Signal::parse(sig.as_wstr()) {
sig.code()
} else {
-1
}
}
fn signal_get_desc_ffi(sig: i32) -> UniquePtr<CxxWString> {
Signal::new(sig).desc().to_ffi()
}
fn signal_handle_ffi(sig: i32) {
signal_handle(Signal::new(sig));
}
// This is extern "C" for FFI purposes, as this is used after fork().
#[no_mangle]
pub extern "C" fn get_signals_with_handlers_ffi(set: *mut libc::sigset_t) {
get_signals_with_handlers(unsafe { &mut *set });
}
/// Store the "main" pid. This allows us to reliably determine if we are in a forked child.
static MAIN_PID: AtomicI32 = AtomicI32::new(0);
@ -38,10 +90,15 @@ fn reraise_if_forked_child(sig: i32) -> bool {
/// Of course this is modified from a signal handler.
static CANCELLATION_SIGNAL: AtomicI32 = AtomicI32::new(0);
/// Set the cancellation signal to zero.
/// In generally this should only be done in interactive sessions.
pub fn signal_clear_cancel() {
CANCELLATION_SIGNAL.store(0, Ordering::Relaxed);
}
/// \return the most recent cancellation signal received by the fish process.
/// Currently only SIGINT is considered a cancellation signal.
/// This is thread safe.
pub fn signal_check_cancel() -> i32 {
CANCELLATION_SIGNAL.load(Ordering::Relaxed)
}
@ -121,7 +178,8 @@ extern "C" fn fish_signal_handler(
set_errno(saved_errno);
}
fn signal_reset_handlers() {
/// Set all signal handlers to SIG_DFL.
pub fn signal_reset_handlers() {
let mut act: libc::sigaction = unsafe { std::mem::zeroed() };
unsafe { libc::sigemptyset(&mut act.sa_mask) };
act.sa_flags = 0;
@ -190,8 +248,11 @@ fn set_interactive_handlers() {
sigaction(libc::SIGWINCH, &act, nullptr);
}
/// Sets up appropriate signal handlers.
fn signal_set_handlers(interactive: bool) {
/// Set signal handlers to fish default handlers.
pub fn signal_set_handlers(interactive: bool) {
// Mark our main pid.
MAIN_PID.store(unsafe { libc::getpid() }, Ordering::Relaxed);
use libc::SIG_IGN;
let nullptr = std::ptr::null_mut();
let mut act: libc::sigaction = unsafe { std::mem::zeroed() };
@ -238,7 +299,19 @@ fn signal_set_handlers(interactive: bool) {
}
}
pub fn signal_handle(sig: libc::c_int) {
pub fn signal_set_handlers_once(interactive: bool) {
static NONINTER_ONCE: std::sync::Once = std::sync::Once::new();
NONINTER_ONCE.call_once(|| signal_set_handlers(false));
static INTER_ONCE: std::sync::Once = std::sync::Once::new();
if interactive {
INTER_ONCE.call_once(set_interactive_handlers);
}
}
/// Mark that a signal is being handled.
pub fn signal_handle(sig: Signal) {
let sig = sig.code();
let mut act: libc::sigaction = unsafe { std::mem::zeroed() };
// These should always be handled.
@ -443,7 +516,8 @@ impl Signal {
.find(|entry| entry.signal == self.code())
}
// Previously sig2wcs().
/// Get string representation of a signal.
/// Previously sig2wcs().
pub fn name(&self) -> &'static wstr {
match self.get_lookup_entry() {
Some(entry) => entry.name,
@ -451,7 +525,8 @@ impl Signal {
}
}
// Previously signal_get_desc().
/// Returns a description of the specified signal.
/// Previously signal_get_desc().
pub fn desc(&self) -> &'static wstr {
match self.get_lookup_entry() {
Some(entry) => wgettext_str(entry.desc),

View file

@ -360,7 +360,7 @@ wcstring function_properties_t::annotated_definition(const wcstring &name) const
for (const auto &d : handlers) {
switch (d.typ) {
case event_type_t::signal: {
append_format(out, L" --on-signal %ls", sig2wcs(d.signal));
append_format(out, L" --on-signal %ls", sig2wcs(d.signal)->c_str());
break;
}
case event_type_t::variable: {

View file

@ -581,10 +581,10 @@ wcstring summary_command(const job_ref_t &j, const process_ptr_t &p = nullptr) {
// Arguments are the signal name and description.
int sig = p->status.signal_code();
buffer.push_back(L' ');
buffer.append(escape_string(sig2wcs(sig)));
buffer.append(escape_string(std::move(*sig2wcs(sig))));
buffer.push_back(L' ');
buffer.append(escape_string(signal_get_desc(sig)));
buffer.append(escape_string(std::move(*signal_get_desc(sig))));
// If we have multiple processes, we also append the pid and argv.
if (j->processes.size() > 1) {

View file

@ -21,407 +21,10 @@
#include "topic_monitor.h"
#include "wutil.h" // IWYU pragma: keep
/// Struct describing an entry for the lookup table used to convert between signal names and signal
/// ids, etc.
struct lookup_entry {
/// Signal id.
int signal;
/// Signal name.
const wchar_t *name;
/// Signal description.
const wchar_t *desc;
};
/// Lookup table used to convert between signal names and signal ids, etc.
static const struct lookup_entry signal_table[] = {
#ifdef SIGHUP
{SIGHUP, L"SIGHUP", N_(L"Terminal hung up")},
#endif
#ifdef SIGINT
{SIGINT, L"SIGINT", N_(L"Quit request from job control (^C)")},
#endif
#ifdef SIGQUIT
{SIGQUIT, L"SIGQUIT", N_(L"Quit request from job control with core dump (^\\)")},
#endif
#ifdef SIGILL
{SIGILL, L"SIGILL", N_(L"Illegal instruction")},
#endif
#ifdef SIGTRAP
{SIGTRAP, L"SIGTRAP", N_(L"Trace or breakpoint trap")},
#endif
#ifdef SIGABRT
{SIGABRT, L"SIGABRT", N_(L"Abort")},
#endif
#ifdef SIGBUS
{SIGBUS, L"SIGBUS", N_(L"Misaligned address error")},
#endif
#ifdef SIGFPE
{SIGFPE, L"SIGFPE", N_(L"Floating point exception")},
#endif
#ifdef SIGKILL
{SIGKILL, L"SIGKILL", N_(L"Forced quit")},
#endif
#ifdef SIGUSR1
{SIGUSR1, L"SIGUSR1", N_(L"User defined signal 1")},
#endif
#ifdef SIGUSR2
{SIGUSR2, L"SIGUSR2", N_(L"User defined signal 2")},
#endif
#ifdef SIGSEGV
{SIGSEGV, L"SIGSEGV", N_(L"Address boundary error")},
#endif
#ifdef SIGPIPE
{SIGPIPE, L"SIGPIPE", N_(L"Broken pipe")},
#endif
#ifdef SIGALRM
{SIGALRM, L"SIGALRM", N_(L"Timer expired")},
#endif
#ifdef SIGTERM
{SIGTERM, L"SIGTERM", N_(L"Polite quit request")},
#endif
#ifdef SIGCHLD
{SIGCHLD, L"SIGCHLD", N_(L"Child process status changed")},
#endif
#ifdef SIGCONT
{SIGCONT, L"SIGCONT", N_(L"Continue previously stopped process")},
#endif
#ifdef SIGSTOP
{SIGSTOP, L"SIGSTOP", N_(L"Forced stop")},
#endif
#ifdef SIGTSTP
{SIGTSTP, L"SIGTSTP", N_(L"Stop request from job control (^Z)")},
#endif
#ifdef SIGTTIN
{SIGTTIN, L"SIGTTIN", N_(L"Stop from terminal input")},
#endif
#ifdef SIGTTOU
{SIGTTOU, L"SIGTTOU", N_(L"Stop from terminal output")},
#endif
#ifdef SIGURG
{SIGURG, L"SIGURG", N_(L"Urgent socket condition")},
#endif
#ifdef SIGXCPU
{SIGXCPU, L"SIGXCPU", N_(L"CPU time limit exceeded")},
#endif
#ifdef SIGXFSZ
{SIGXFSZ, L"SIGXFSZ", N_(L"File size limit exceeded")},
#endif
#ifdef SIGVTALRM
{SIGVTALRM, L"SIGVTALRM", N_(L"Virtual timer expired")},
#endif
#ifdef SIGPROF
{SIGPROF, L"SIGPROF", N_(L"Profiling timer expired")},
#endif
#ifdef SIGWINCH
{SIGWINCH, L"SIGWINCH", N_(L"Window size change")},
#endif
#ifdef SIGWIND
{SIGWIND, L"SIGWIND", N_(L"Window size change")},
#endif
#ifdef SIGIO
{SIGIO, L"SIGIO", N_(L"I/O on asynchronous file descriptor is possible")},
#endif
#ifdef SIGPWR
{SIGPWR, L"SIGPWR", N_(L"Power failure")},
#endif
#ifdef SIGSYS
{SIGSYS, L"SIGSYS", N_(L"Bad system call")},
#endif
#ifdef SIGINFO
{SIGINFO, L"SIGINFO", N_(L"Information request")},
#endif
#ifdef SIGSTKFLT
{SIGSTKFLT, L"SISTKFLT", N_(L"Stack fault")},
#endif
#ifdef SIGEMT
{SIGEMT, L"SIGEMT", N_(L"Emulator trap")},
#endif
#ifdef SIGIOT
{SIGIOT, L"SIGIOT", N_(L"Abort (Alias for SIGABRT)")},
#endif
#ifdef SIGUNUSED
{SIGUNUSED, L"SIGUNUSED", N_(L"Unused signal")},
#endif
};
/// Test if \c name is a string describing the signal named \c canonical.
static int match_signal_name(const wchar_t *canonical, const wchar_t *name) {
if (wcsncasecmp(name, L"sig", const_strlen("sig")) == 0) name += 3;
return wcscasecmp(canonical + const_strlen("sig"), name) == 0;
}
int wcs2sig(const wchar_t *str) {
for (const auto &data : signal_table) {
if (match_signal_name(data.name, str)) {
return data.signal;
}
}
int res = fish_wcstoi(str);
if (errno || res < 0) return -1;
return res;
}
const wchar_t *sig2wcs(int sig) {
for (const auto &data : signal_table) {
if (data.signal == sig) {
return data.name;
}
}
return _(L"Unknown");
}
const wchar_t *signal_get_desc(int sig) {
for (const auto &data : signal_table) {
if (data.signal == sig) {
return _(data.desc);
}
}
return _(L"Unknown");
}
/// Store the "main" pid. This allows us to reliably determine if we are in a forked child.
static const pid_t s_main_pid = getpid();
/// It's possible that we receive a signal after we have forked, but before we have reset the signal
/// handlers (or even run the pthread_atfork calls). In that event we will do something dumb like
/// swallow SIGINT. Ensure that doesn't happen. Check if we are the main fish process; if not, reset
/// and re-raise the signal. \return whether we re-raised the signal.
static bool reraise_if_forked_child(int sig) {
// Don't use is_forked_child: it relies on atfork handlers which may have not yet run.
if (getpid() == s_main_pid) {
return false;
}
signal(sig, SIG_DFL);
raise(sig);
return true;
}
/// The cancellation signal we have received.
/// Of course this is modified from a signal handler.
static volatile relaxed_atomic_t<sig_atomic_t> s_cancellation_signal{0};
void signal_clear_cancel() { s_cancellation_signal = 0; }
int signal_check_cancel() { return s_cancellation_signal; }
/// The single signal handler. By centralizing signal handling we ensure that we can never install
/// the "wrong" signal handler (see #5969).
static void fish_signal_handler(int sig, siginfo_t *info, void *context) {
UNUSED(info);
UNUSED(context);
// Ensure we preserve errno.
const int saved_errno = errno;
// Check if we are a forked child.
if (reraise_if_forked_child(sig)) {
errno = saved_errno;
return;
}
// Check if fish script cares about this.
const bool observed = event_is_signal_observed(sig);
if (observed) {
event_enqueue_signal(sig);
}
// Do some signal-specific stuff.
switch (sig) {
#ifdef SIGWINCH
case SIGWINCH:
// Respond to a winch signal by telling the termsize container.
termsize_handle_winch();
break;
#endif
case SIGHUP:
// Exit unless the signal was trapped.
if (!observed) {
reader_sighup();
}
topic_monitor_principal().post(topic_t::sighupint);
break;
case SIGTERM:
// Handle sigterm. The only thing we do is restore the front process ID, then die.
if (!observed) {
restore_term_foreground_process_group_for_exit();
signal(SIGTERM, SIG_DFL);
raise(SIGTERM);
}
break;
case SIGINT:
// Cancel unless the signal was trapped.
if (!observed) {
s_cancellation_signal = SIGINT;
}
reader_handle_sigint();
topic_monitor_principal().post(topic_t::sighupint);
break;
case SIGCHLD:
// A child process stopped or exited.
topic_monitor_principal().post(topic_t::sigchld);
break;
case SIGALRM:
// We have a sigalarm handler that does nothing. This is used in the signal torture
// test, to verify that we behave correctly when receiving lots of irrelevant signals.
break;
}
errno = saved_errno;
}
void signal_reset_handlers() {
struct sigaction act;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = SIG_DFL;
for (const auto &data : signal_table) {
if (data.signal == SIGHUP) {
struct sigaction oact;
sigaction(SIGHUP, nullptr, &oact);
if (oact.sa_handler == SIG_IGN) continue;
}
sigaction(data.signal, &act, nullptr);
}
}
static void set_interactive_handlers() {
struct sigaction act, oact;
act.sa_flags = 0;
oact.sa_flags = 0;
sigemptyset(&act.sa_mask);
// Interactive mode. Ignore interactive signals. We are a shell, we know what is best for
// the user.
act.sa_handler = SIG_IGN;
sigaction(SIGTSTP, &act, nullptr);
sigaction(SIGTTOU, &act, nullptr);
// We don't ignore SIGTTIN because we might send it to ourself.
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGTTIN, &act, nullptr);
// SIGTERM restores the terminal controlling process before dying.
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGTERM, &act, nullptr);
sigaction(SIGHUP, nullptr, &oact);
if (oact.sa_handler == SIG_DFL) {
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGHUP, &act, nullptr);
}
// SIGALARM as part of our signal torture test
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGALRM, &act, nullptr);
#ifdef SIGWINCH
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGWINCH, &act, nullptr);
#endif
}
/// Sets up appropriate signal handlers.
void signal_set_handlers(bool interactive) {
struct sigaction act;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
// Ignore SIGPIPE. We'll detect failed writes and deal with them appropriately. We don't want
// this signal interrupting other syscalls or terminating us.
act.sa_sigaction = nullptr;
act.sa_handler = SIG_IGN;
sigaction(SIGPIPE, &act, nullptr);
// Ignore SIGQUIT.
act.sa_handler = SIG_IGN;
sigaction(SIGQUIT, &act, nullptr);
// Apply our SIGINT handler.
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGINT, &act, nullptr);
// Whether or not we're interactive we want SIGCHLD to not interrupt restartable syscalls.
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO | SA_RESTART;
if (sigaction(SIGCHLD, &act, nullptr)) {
wperror(L"sigaction");
FATAL_EXIT();
}
if (interactive) {
set_interactive_handlers();
}
#ifdef FISH_TSAN_WORKAROUNDS
// Work around the following TSAN bug:
// The structure containing signal information for a thread is lazily allocated by TSAN.
// It is possible for the same thread to receive two allocations, if the signal handler
// races with other allocation paths (e.g. a blocking call). This results in the first signal
// being potentially dropped.
// The workaround is to send ourselves a SIGCHLD signal now, to force the allocation to happen.
// As no child is associated with this signal, it is OK if it is dropped, so long as the
// allocation happens.
(void)kill(getpid(), SIGCHLD);
#endif
}
void signal_set_handlers_once(bool interactive) {
static std::once_flag s_noninter_once;
std::call_once(s_noninter_once, signal_set_handlers, false);
static std::once_flag s_inter_once;
if (interactive) std::call_once(s_inter_once, set_interactive_handlers);
}
void signal_handle(int sig) {
struct sigaction act;
// These should always be handled.
if ((sig == SIGINT) || (sig == SIGQUIT) || (sig == SIGTSTP) || (sig == SIGTTIN) ||
(sig == SIGTTOU) || (sig == SIGCHLD))
return;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
act.sa_sigaction = &fish_signal_handler;
sigaction(sig, &act, nullptr);
}
void get_signals_with_handlers(sigset_t *set) {
sigemptyset(set);
for (const auto &data : signal_table) {
struct sigaction act = {};
sigaction(data.signal, nullptr, &act);
// If SIGHUP is being ignored (e.g., because were were run via `nohup`) don't reset it.
// We don't special case other signals because if they're being ignored that shouldn't
// affect processes we spawn. They should get the default behavior for those signals.
if (data.signal == SIGHUP && act.sa_handler == SIG_IGN) continue;
if (act.sa_handler != SIG_DFL) sigaddset(set, data.signal);
}
}
/// Ensure we did not inherit any blocked signals. See issue #3964.
void signal_unblock_all() {
sigset_t iset;
sigemptyset(&iset);
sigprocmask(SIG_SETMASK, &iset, nullptr);
extern "C" {
void get_signals_with_handlers_ffi(sigset_t *set);
}
void get_signals_with_handlers(sigset_t *set) { get_signals_with_handlers_ffi(set); }
sigchecker_t::sigchecker_t(topic_t signal) : topic_(signal) {
// Call check() to update our generation.

View file

@ -5,44 +5,13 @@
#include <csignal>
#include <cstdint>
/// Get the integer signal value representing the specified signal, or -1 of no signal was found.
int wcs2sig(const wchar_t *str);
/// Get string representation of a signal.
const wchar_t *sig2wcs(int sig);
/// Returns a description of the specified signal.
const wchar_t *signal_get_desc(int sig);
/// Set all signal handlers to SIG_DFL.
void signal_reset_handlers();
/// Set signal handlers to fish default handlers.
void signal_set_handlers(bool interactive);
/// Latch function. This sets signal handlers, but only the first time it is called.
void signal_set_handlers_once(bool interactive);
/// Tell fish what to do on the specified signal.
///
/// \param sig The signal to specify the action of
void signal_handle(int sig);
/// Ensure we did not inherit any blocked signals. See issue #3964.
void signal_unblock_all();
#if INCLUDE_RUST_HEADERS
#include "signal.rs.h"
#endif
/// Returns signals with non-default handlers.
void get_signals_with_handlers(sigset_t *set);
/// \return the most recent cancellation signal received by the fish process.
/// Currently only SIGINT is considered a cancellation signal.
/// This is thread safe.
int signal_check_cancel();
/// Set the cancellation signal to zero.
/// In generally this should only be done in interactive sessions.
void signal_clear_cancel();
enum class topic_t : uint8_t;
/// A sigint_detector_t can be used to check if a SIGINT (or SIGHUP) has been delivered.
class sigchecker_t {