This commit adds support for *multidraw*, which is a feature that allows
multiple meshes to be drawn in a single drawcall. `wgpu` currently
implements multidraw on Vulkan, so this feature is only enabled there.
Multiple meshes can be drawn at once if they're in the same vertex and
index buffers and are otherwise placed in the same bin. (Thus, for
example, at present the materials and textures must be identical, but
see #16368.) Multidraw is a significant performance improvement during
the draw phase because it reduces the number of rebindings, as well as
the number of drawcalls.
This feature is currently only enabled when GPU culling is used: i.e.
when `GpuCulling` is present on a camera. Therefore, if you run for
example `scene_viewer`, you will not see any performance improvements,
because `scene_viewer` doesn't add the `GpuCulling` component to its
camera.
Additionally, the multidraw feature is only implemented for opaque 3D
meshes and not for shadows or 2D meshes. I plan to make GPU culling the
default and to extend the feature to shadows in the future. Also, in the
future I suspect that polyfilling multidraw on APIs that don't support
it will be fruitful, as even without driver-level support use of
multidraw allows us to avoid expensive `wgpu` rebindings.
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
This patch adds the infrastructure necessary for Bevy to support
*bindless resources*, by adding a new `#[bindless]` attribute to
`AsBindGroup`.
Classically, only a single texture (or sampler, or buffer) can be
attached to each shader binding. This means that switching materials
requires breaking a batch and issuing a new drawcall, even if the mesh
is otherwise identical. This adds significant overhead not only in the
driver but also in `wgpu`, as switching bind groups increases the amount
of validation work that `wgpu` must do.
*Bindless resources* are the typical solution to this problem. Instead
of switching bindings between each texture, the renderer instead
supplies a large *array* of all textures in the scene up front, and the
material contains an index into that array. This pattern is repeated for
buffers and samplers as well. The renderer now no longer needs to switch
binding descriptor sets while drawing the scene.
Unfortunately, as things currently stand, this approach won't quite work
for Bevy. Two aspects of `wgpu` conspire to make this ideal approach
unacceptably slow:
1. In the DX12 backend, all binding arrays (bindless resources) must
have a constant size declared in the shader, and all textures in an
array must be bound to actual textures. Changing the size requires a
recompile.
2. Changing even one texture incurs revalidation of all textures, a
process that takes time that's linear in the total size of the binding
array.
This means that declaring a large array of textures big enough to
encompass the entire scene is presently unacceptably slow. For example,
if you declare 4096 textures, then `wgpu` will have to revalidate all
4096 textures if even a single one changes. This process can take
multiple frames.
To work around this problem, this PR groups bindless resources into
small *slabs* and maintains a free list for each. The size of each slab
for the bindless arrays associated with a material is specified via the
`#[bindless(N)]` attribute. For instance, consider the following
declaration:
```rust
#[derive(AsBindGroup)]
#[bindless(16)]
struct MyMaterial {
#[buffer(0)]
color: Vec4,
#[texture(1)]
#[sampler(2)]
diffuse: Handle<Image>,
}
```
The `#[bindless(N)]` attribute specifies that, if bindless arrays are
supported on the current platform, each resource becomes a binding array
of N instances of that resource. So, for `MyMaterial` above, the `color`
attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`,
the `diffuse` texture is exposed to the shader as
`binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is
exposed to the shader as `binding_array<sampler, 16>`. Inside the
material's vertex and fragment shaders, the applicable index is
available via the `material_bind_group_slot` field of the `Mesh`
structure. So, for instance, you can access the current color like so:
```wgsl
// `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted
// to `storage` in bindless mode.
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
...
}
```
Note that portable shader code can't guarantee that the current platform
supports bindless textures. Indeed, bindless mode is only available in
Vulkan and DX12. The `BINDLESS` shader definition is available for your
use to determine whether you're on a bindless platform or not. Thus a
portable version of the shader above would look like:
```wgsl
#ifdef BINDLESS
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
#else // BINDLESS
@group(2) @binding(0) var<uniform> material_color: Color;
#endif // BINDLESS
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
#ifdef BINDLESS
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
#else // BINDLESS
let color = material_color;
#endif // BINDLESS
...
}
```
Importantly, this PR *doesn't* update `StandardMaterial` to be bindless.
So, for example, `scene_viewer` will currently not run any faster. I
intend to update `StandardMaterial` to use bindless mode in a follow-up
patch.
A new example, `shaders/shader_material_bindless`, has been added to
demonstrate how to use this new feature.
Here's a Tracy profile of `submit_graph_commands` of this patch and an
additional patch (not submitted yet) that makes `StandardMaterial` use
bindless. Red is those patches; yellow is `main`. The scene was Bistro
Exterior with a hack that forces all textures to opaque. You can see a
1.47x mean speedup.
![Screenshot 2024-11-12
161713](https://github.com/user-attachments/assets/4334b362-42c8-4d64-9cfb-6835f019b95c)
## Migration Guide
* `RenderAssets::prepare_asset` now takes an `AssetId` parameter.
* Bin keys now have Bevy-specific material bind group indices instead of
`wgpu` material bind group IDs, as part of the bindless change. Use the
new `MaterialBindGroupAllocator` to map from bind group index to bind
group ID.
# Objective
We currently use special "floating" constructors for `EasingCurve`,
`FunctionCurve`, and `ConstantCurve` (ex: `easing_curve`). This erases
the type being created (and in general "what is happening"
structurally), for very minimal ergonomics improvements. With rare
exceptions, we prefer normal `X::new()` constructors over floating `x()`
constructors in Bevy. I don't think this use case merits special casing
here.
## Solution
Add `EasingCurve::new()`, use normal constructors everywhere, and remove
the floating constructors.
I think this should land in 0.15 in the interest of not breaking people
later.
# Objective
Fixes#15940
## Solution
Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.
## Testing
Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.
## Migration Guide
Use `bevy_image` instead of `bevy_render::texture` items.
---------
Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.
## Solution
- expose the compilation option wgpu gives us
## Testing
- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems
---
</details>
## Migration Guide
- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
# Objective
- Immediate mode gizmos don't have a main world entity but the phase
items require `MainEntity` since #15756
## Solution
- Add a dummy `MainEntity` component.
## Testing
Both the `3d_gizmos` and `2d_gizmos` examples show gizmos again
# Objective
In the Render World, there are a number of collections that are derived
from Main World entities and are used to drive rendering. The most
notable are:
- `VisibleEntities`, which is generated in the `check_visibility` system
and contains visible entities for a view.
- `ExtractedInstances`, which maps entity ids to asset ids.
In the old model, these collections were trivially kept in sync -- any
extracted phase item could look itself up because the render entity id
was guaranteed to always match the corresponding main world id.
After #15320, this became much more complicated, and was leading to a
number of subtle bugs in the Render World. The main rendering systems,
i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a
similar pattern:
```rust
for visible_entity in visible_entities.iter::<With<Mesh2d>>() {
let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
continue;
};
// Look some more stuff up and specialize the pipeline...
let bin_key = Opaque2dBinKey {
pipeline: pipeline_id,
draw_function: draw_opaque_2d,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material_2d.get_bind_group_id().0,
};
opaque_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching),
);
}
```
In this case, `visible_entities` and `render_mesh_instances` are both
collections that are created and keyed by Main World entity ids, and so
this lookup happens to work by coincidence. However, there is a major
unintentional bug here: namely, because `visible_entities` is a
collection of Main World ids, the phase item being queued is created
with a Main World id rather than its correct Render World id.
This happens to not break mesh rendering because the render commands
used for drawing meshes do not access the `ItemQuery` parameter, but
demonstrates the confusion that is now possible: our UI phase items are
correctly being queued with Render World ids while our meshes aren't.
Additionally, this makes it very easy and error prone to use the wrong
entity id to look up things like assets. For example, if instead we
ignored visibility checks and queued our meshes via a query, we'd have
to be extra careful to use `&MainEntity` instead of the natural
`Entity`.
## Solution
Make all collections that are derived from Main World data use
`MainEntity` as their key, to ensure type safety and avoid accidentally
looking up data with the wrong entity id:
```rust
pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>;
```
Additionally, we make all `PhaseItem` be able to provide both their Main
and Render World ids, to allow render phase implementors maximum
flexibility as to what id should be used to look up data.
You can think of this like tracking at the type level whether something
in the Render World should use it's "primary key", i.e. entity id, or
needs to use a foreign key, i.e. `MainEntity`.
## Testing
##### TODO:
This will require extensive testing to make sure things didn't break!
Additionally, some extraction logic has become more complicated and
needs to be checked for regressions.
## Migration Guide
With the advent of the retained render world, collections that contain
references to `Entity` that are extracted into the render world have
been changed to contain `MainEntity` in order to prevent errors where a
render world entity id is used to look up an item by accident. Custom
rendering code may need to be changed to query for `&MainEntity` in
order to look up the correct item from such a collection. Additionally,
users who implement their own extraction logic for collections of main
world entity should strongly consider extracting into a different
collection that uses `MainEntity` as a key.
Additionally, render phases now require specifying both the `Entity` and
`MainEntity` for a given `PhaseItem`. Custom render phases should ensure
`MainEntity` is available when queuing a phase item.
# Objective
If a `Resource` implements `FromWorld` or `Default`, it's nicer to be
able to write:
```rust
let foo = world.get_resource_or_init::<Foo>();
```
Rather than:
```rust
let foo = world.get_resource_or_insert_with(Foo::default);
```
The latter is also not possible if a type implements `FromWorld` only,
and not `Default`.
## Solution
Added:
```rust
impl World {
pub fn get_resource_or_init<R: Resource + FromWorld>(&mut self) -> Mut<'_, R>;
}
```
Turns out all current in-engine uses of `get_resource_or_insert_with`
are exactly the above, so they've also been replaced.
## Testing
- Added a doc-test.
- Also added a doc-test for `World::get_resource_or_insert_with`.
# Objective
Fixes#15741
## Solution
- Copied the feature gates of a type to where the type is used.
## Testing
- `cargo check` works now using only the bevy_dev_tools feature
# Objective
Fixes#15560
Fixes (most of) #15570
Currently a lot of examples (and presumably some user code) depend on
toggling certain render features by adding/removing a single component
to an entity, e.g. `SpotLight` to toggle a light. Because of the
retained render world this no longer works: Extract will add any new
components, but when it is removed the entity persists unchanged in the
render world.
## Solution
Add `SyncComponentPlugin<C: Component>` that registers
`SyncToRenderWorld` as a required component for `C`, and adds a
component hook that will clear all components from the render world
entity when `C` is removed. We add this plugin to
`ExtractComponentPlugin` which fixes most instances of the problem. For
custom extraction logic we can manually add `SyncComponentPlugin` for
that component.
We also rename `WorldSyncPlugin` to `SyncWorldPlugin` so we start a
naming convention like all the `Extract` plugins.
In this PR I also fixed a bunch of breakage related to the retained
render world, stemming from old code that assumed that `Entity` would be
the same in both worlds.
I found that using the `RenderEntity` wrapper instead of `Entity` in
data structures when referring to render world entities makes intent
much clearer, so I propose we make this an official pattern.
## Testing
Run examples like
```
cargo run --features pbr_multi_layer_material_textures --example clearcoat
cargo run --example volumetric_fog
```
and see that they work, and that toggles work correctly. But really we
should test every single example, as we might not even have caught all
the breakage yet.
---
## Migration Guide
The retained render world notes should be updated to explain this edge
case and `SyncComponentPlugin`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
# Objective
Several of our APIs (namely gizmos and bounding) use isometries on
current Bevy main. This is nicer than separate properties in a lot of
cases, but users have still expressed usability concerns.
One problem is that in a lot of cases, you only care about e.g.
translation, so you end up with this:
```rust
gizmos.cross_2d(
Isometry2d::from_translation(Vec2::new(-160.0, 120.0)),
12.0,
FUCHSIA,
);
```
The isometry adds quite a lot of length and verbosity, and isn't really
that relevant since only the translation is important here.
It would be nice if you could use the translation directly, and only
supply an isometry if both translation and rotation are needed. This
would make the following possible:
```rust
gizmos.cross_2d(Vec2::new(-160.0, 120.0), 12.0, FUCHSIA);
```
removing a lot of verbosity.
## Solution
Implement `From<Vec2>` and `From<Rot2>` for `Isometry2d`, and
`From<Vec3>`, `From<Vec3A>`, and `From<Quat>` for `Isometry3d`. These
are lossless conversions that fit the semantics of `From`.
This makes the proposed API possible! The methods must now simply take
an `impl Into<IsometryNd>`, and this works:
```rust
gizmos.cross_2d(Vec2::new(-160.0, 120.0), 12.0, FUCHSIA);
```
# Objective
- The capsule gizmo uses straight lines for the upper and lower circle
which looks pretty ugly.
## Solution
- Use the circle gizmo instead
---
## Showcase
**BEFORE**
![3d_gizmos_sy3CmKUvKO](https://github.com/user-attachments/assets/be014de4-751e-4b40-b814-b5b97bb72031)
**AFTER**
![3d_gizmos_nyADBAUJHg](https://github.com/user-attachments/assets/539ff765-f9d8-4afe-9ac6-41fe83e94e94)
(the circles are red for demonstration purposes only)
# Notes
I also tried using 3d arcs instead of circles but it looks like arcs
need a lot more computation for an almost identical end result. Circles
seem much simpler. The only thing I'm unsure about is if the rotation
stuff is correct. It worked in my testing though.
- Adopted from #14449
- Still fixes#12144.
## Migration Guide
The retained render world is a complex change: migrating might take one
of a few different forms depending on the patterns you're using.
For every example, we specify in which world the code is run. Most of
the changes affect render world code, so for the average Bevy user who's
using Bevy's high-level rendering APIs, these changes are unlikely to
affect your code.
### Spawning entities in the render world
Previously, if you spawned an entity with `world.spawn(...)`,
`commands.spawn(...)` or some other method in the rendering world, it
would be despawned at the end of each frame. In 0.15, this is no longer
the case and so your old code could leak entities. This can be mitigated
by either re-architecting your code to no longer continuously spawn
entities (like you're used to in the main world), or by adding the
`bevy_render::world_sync::TemporaryRenderEntity` component to the entity
you're spawning. Entities tagged with `TemporaryRenderEntity` will be
removed at the end of each frame (like before).
### Extract components with `ExtractComponentPlugin`
```
// main world
app.add_plugins(ExtractComponentPlugin::<ComponentToExtract>::default());
```
`ExtractComponentPlugin` has been changed to only work with synced
entities. Entities are automatically synced if `ComponentToExtract` is
added to them. However, entities are not "unsynced" if any given
`ComponentToExtract` is removed, because an entity may have multiple
components to extract. This would cause the other components to no
longer get extracted because the entity is not synced.
So be careful when only removing extracted components from entities in
the render world, because it might leave an entity behind in the render
world. The solution here is to avoid only removing extracted components
and instead despawn the entire entity.
### Manual extraction using `Extract<Query<(Entity, ...)>>`
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(Entity, &Clusters, &Camera)>>,
) {
for (entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(entity).insert(...);
}
}
```
One of the primary consequences of the retained rendering world is that
there's no longer a one-to-one mapping from entity IDs in the main world
to entity IDs in the render world. Unlike in Bevy 0.14, Entity 42 in the
main world doesn't necessarily map to entity 42 in the render world.
Previous code which called `get_or_spawn(main_world_entity)` in the
render world (`Extract<Query<(Entity, ...)>>` returns main world
entities). Instead, you should use `&RenderEntity` and
`render_entity.id()` to get the correct entity in the render world. Note
that this entity does need to be synced first in order to have a
`RenderEntity`.
When performing manual abstraction, this won't happen automatically
(like with `ExtractComponentPlugin`) so add a `SyncToRenderWorld` marker
component to the entities you want to extract.
This results in the following code:
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(&RenderEntity, &Clusters, &Camera)>>,
) {
for (render_entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(render_entity.id()).insert(...);
}
}
// in main world, when spawning
world.spawn(Clusters::default(), Camera::default(), SyncToRenderWorld)
```
### Looking up `Entity` ids in the render world
As previously stated, there's now no correspondence between main world
and render world `Entity` identifiers.
Querying for `Entity` in the render world will return the `Entity` id in
the render world: query for `MainEntity` (and use its `id()` method) to
get the corresponding entity in the main world.
This is also a good way to tell the difference between synced and
unsynced entities in the render world, because unsynced entities won't
have a `MainEntity` component.
---------
Co-authored-by: re0312 <re0312@outlook.com>
Co-authored-by: re0312 <45868716+re0312@users.noreply.github.com>
Co-authored-by: Periwink <charlesbour@gmail.com>
Co-authored-by: Anselmo Sampietro <ans.samp@gmail.com>
Co-authored-by: Emerson Coskey <56370779+ecoskey@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
The goal of this PR is to introduce `SystemParam` validation in order to
reduce runtime panics.
Fixes#15265
## Solution
`SystemParam` now has a new method `validate_param(...) -> bool`, which
takes immutable variants of `get_param` arguments. The returned value
indicates whether the parameter can be acquired from the world. If
parameters cannot be acquired for a system, it won't be executed,
similarly to run conditions. This reduces panics when using params like
`Res`, `ResMut`, etc. as well as allows for new, ergonomic params like
#15264 or #15302.
Param validation happens at the level of executors. All validation
happens directly before executing a system, in case of normal systems
they are skipped, in case of conditions they return false.
Warning about system skipping is primitive and subject to change in
subsequent PRs.
## Testing
Two executor tests check that all executors:
- skip systems which have invalid parameters:
- piped systems get skipped together,
- dependent systems still run correctly,
- skip systems with invalid run conditions:
- system conditions have invalid parameters,
- system set conditions have invalid parameters.
# Objective
- Fixes#15236
## Solution
- Use bevy_math::ops instead of std floating point operations.
## Testing
- Did you test these changes? If so, how?
Unit tests and `cargo run -p ci -- test`
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Execute `cargo run -p ci -- test` on Windows.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Windows
## Migration Guide
- Not a breaking change
- Projects should use bevy math where applicable
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
- Crate-level prelude modules, such as `bevy_ecs::prelude`, are plagued
with inconsistency! Let's fix it!
## Solution
Format all preludes based on the following rules:
1. All preludes should have brief documentation in the format of:
> The _name_ prelude.
>
> This includes the most common types in this crate, re-exported for
your convenience.
2. All documentation should be outer, not inner. (`///` instead of
`//!`.)
3. No prelude modules should be annotated with `#[doc(hidden)]`. (Items
within them may, though I'm not sure why this was done.)
## Testing
- I manually searched for the term `mod prelude` and updated all
occurrences by hand. 🫠
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
As discussed in https://github.com/bevyengine/bevy/issues/7386, system
order ambiguities within `DefaultPlugins` are a source of bugs in the
engine and badly pollute diagnostic output for users.
We should eliminate them!
This PR is an alternative to #15027: with all external ambiguities
silenced, this should be much less prone to merge conflicts and the test
output should be much easier for authors to understand.
Note that system order ambiguities are still permitted in the
`RenderApp`: these need a bit of thought in terms of how to test them,
and will be fairly involved to fix. While these aren't *good*, they'll
generally only cause graphical bugs, not logic ones.
## Solution
All remaining system order ambiguities have been resolved.
Review this PR commit-by-commit to see how each of these problems were
fixed.
## Testing
`cargo run --example ambiguity_detection` passes with no panics or
logging!
# Objective
- Add gizmos integration for the new `Curve` things in the math lib
## Solution
- Add the following methods
- `curve_2d(curve, sample_times, color)`
- `curve_3d(curve, sample_times, color)`
- `curve_gradient_2d(curve, sample_times_with_colors)`
- `curve_gradient_3d(curve, sample_times_with_colors)`
## Testing
- I added examples of the 2D and 3D variants of the gradient curve
gizmos to the gizmos examples.
## Showcase
### 2D
![image](https://github.com/user-attachments/assets/01a75706-a7b4-4fc5-98d5-18018185c877)
```rust
let domain = Interval::EVERYWHERE;
let curve = function_curve(domain, |t| Vec2::new(t, (t / 25.0).sin() * 100.0));
let resolution = ((time.elapsed_seconds().sin() + 1.0) * 50.0) as usize;
let times_and_colors = (0..=resolution)
.map(|n| n as f32 / resolution as f32)
.map(|t| (t - 0.5) * 600.0)
.map(|t| (t, TEAL.mix(&HOT_PINK, (t + 300.0) / 600.0)));
gizmos.curve_gradient_2d(curve, times_and_colors);
```
### 3D
![image](https://github.com/user-attachments/assets/3fd23983-1ec9-46cd-baed-5b5e2dc935d0)
```rust
let domain = Interval::EVERYWHERE;
let curve = function_curve(domain, |t| {
(Vec2::from((t * 10.0).sin_cos())).extend(t - 6.0)
});
let resolution = ((time.elapsed_seconds().sin() + 1.0) * 100.0) as usize;
let times_and_colors = (0..=resolution)
.map(|n| n as f32 / resolution as f32)
.map(|t| t * 5.0)
.map(|t| (t, TEAL.mix(&HOT_PINK, t / 5.0)));
gizmos.curve_gradient_3d(curve, times_and_colors);
```
# Objective
With the current implementation of `Plane3d` gizmos, it's really hard to
get a good feeling for big planes. Usually I tend to add more axes as a
user but that doesn't scale well and is pretty wasteful. It's hard to
recognize the plane in the distance here. Especially if there would've
been other rendered objects in the scene
![image](https://github.com/user-attachments/assets/b65b7015-c08c-46d7-aa27-c7c0d49b2021)
## Solution
- Since we got grid gizmos in the mean time, I went ahead and just
reused them here.
## Testing
I added an instance of the new `Plane3D` to the `3d_gizmos.rs` example.
If you want to look at it you need to look around a bit. I didn't
position it in the center since that was too crowded already.
---
## Showcase
![image](https://github.com/user-attachments/assets/e4982afe-7296-416c-9801-7dd85cd975c1)
## Migration Guide
The optional builder methods on
```rust
gizmos.primitive_3d(&Plane3d { }, ...);
```
changed from
- `segment_length`
- `segment_count`
- `axis_count`
to
- `cell_count`
- `spacing`
# Objective
- Fixes#14841
## Solution
- Compute BufferSlice size manually and use it for comparison in
`TrackedRenderPass`
## Testing
- Gizmo example does not crash with #14721 (without system ordering),
and `slice` computes correct size there
---
## Migration Guide
- `TrackedRenderPass::set_vertex_buffer` function has been modified to
update vertex buffers when the same buffer with the same offset is
provided, but its size has changed. Some existing code may rely on the
previous behavior, which did not update the vertex buffer in this
scenario.
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Since https://github.com/bevyengine/bevy/pull/14731 is merged, it
unblocked a few utility methods for 2D arcs. In 2D the pendant to
`long_arc_3d_between` and `short_arc_3d_between` are missing. Since
`arc_2d` can be a bit hard to use, this PR is trying to plug some holes
in the `arcs` API.
## Solution
Implement
- `long_arc_2d_between(center, from, tp, color)`
- `short_arc_2d_between(center, from, tp, color)`
## Testing
- There are new doc tests
- The `2d_gizmos` example has been extended a bit to include a few more
arcs which can easily be checked with respect to the grid
---
## Showcase
![image](https://github.com/user-attachments/assets/b90ad8b1-86c2-4304-a481-4f9a5246c457)
Code related to the screenshot (from outer = first line to inner = last
line)
```rust
my_gizmos.arc_2d(Isometry2d::IDENTITY, FRAC_PI_2, 80.0, ORANGE_RED);
my_gizmos.short_arc_2d_between(Vec2::ZERO, Vec2::X * 40.0, Vec2::Y * 40.0, ORANGE_RED);
my_gizmos.long_arc_2d_between(Vec2::ZERO, Vec2::X * 20.0, Vec2::Y * 20.0, ORANGE_RED);
```
# Objective
- Solves the last bullet in and closes#14319
- Make better use of the `Isometry` types
- Prevent issues like #14655
- Probably simplify and clean up a lot of code through the use of Gizmos
as well (i.e. the 3D gizmos for cylinders circles & lines don't connect
well, probably due to wrong rotations)
## Solution
- go through the `bevy_gizmos` crate and give all methods a slight
workover
## Testing
- For all the changed examples I run `git switch main && cargo rr
--example <X> && git switch <BRANCH> && cargo rr --example <X>` and
compare the visual results
- Check if all doc tests are still compiling
- Check the docs in general and update them !!!
---
## Migration Guide
The gizmos methods function signature changes as follows:
- 2D
- if it took `position` & `rotation_angle` before ->
`Isometry2d::new(position, Rot2::radians(rotation_angle))`
- if it just took `position` before ->
`Isometry2d::from_translation(position)`
- 3D
- if it took `position` & `rotation` before ->
`Isometry3d::new(position, rotation)`
- if it just took `position` before ->
`Isometry3d::from_translation(position)`
# Objective
`arc_2d` wasn't actually doing what the docs were saying. The arc wasn't
offset by what was previously `direction_angle` but by `direction_angle
- arc_angle / 2.0`. This meant that the arcs center was laying on the
`Vec2::Y` axis and then it was offset. This was probably done to fit the
behavior of the `Arc2D` primitive. I would argue that this isn't
desirable for the plain `arc_2d` gizmo method since
- a) the docs get longer to explain the weird centering
- b) the mental model the user has to know gets bigger with more
implicit assumptions
given the code
```rust
my_gizmos.arc_2d(Vec2::ZERO, 0.0, FRAC_PI_2, 75.0, ORANGE_RED);
```
we get
![image](https://github.com/user-attachments/assets/84894c6d-42e4-451b-b3e2-811266486ede)
where after the fix with
```rust
my_gizmos.arc_2d(Isometry2d::IDENTITY, FRAC_PI_2, 75.0, ORANGE_RED);
```
we get
![image](https://github.com/user-attachments/assets/16b0aba0-f7b5-4600-ac49-a22be0315c40)
To get the same result with the previous implementation you would have
to randomly add `arc_angle / 2.0` to the `direction_angle`.
```rust
my_gizmos.arc_2d(Vec2::ZERO, FRAC_PI_4, FRAC_PI_2, 75.0, ORANGE_RED);
```
This makes constructing similar helping functions as they already exist
in 3D like
- `long_arc_2d_between`
- `short_arc_2d_between`
much harder.
## Solution
- Make the arc really start at `Vec2::Y * radius` in counter-clockwise
direction + offset by an angle as the docs state it
- Use `Isometry2d` instead of `position : Vec2` and `direction_angle :
f32` to reduce the chance of messing up rotation/translation
- Adjust the docs for the changes above
- Adjust the gizmo rendering of some primitives
## Testing
- check `2d_gizmos.rs` and `render_primitives.rs` examples
## Migration Guide
- users have to adjust their usages of `arc_2d`:
- before:
```rust
arc_2d(
pos,
angle,
arc_angle,
radius,
color
)
```
- after:
```rust
arc_2d(
// this `+ arc_angle * 0.5` quirk is only if you want to preserve the
previous behavior
// with the new API.
// feel free to try to fix this though since your current calls to this
function most likely
// involve some computations to counter-act that quirk in the first
place
Isometry2d::new(pos, Rot2::radians(angle + arc_angle * 0.5),
arc_angle,
radius,
color
)
```
# Objective
- Gizmo rendering on WebGPU has been fixed by #14653, but gizmo joints
still cause error
(https://github.com/bevyengine/bevy/issues/14696#issuecomment-2283689669)
when enabled.
## Solution
- Applies the same fix as #14653 to Gizmo joints.
I'm noob and just copied their solution, please correct me if I did
something wrong.
## Testing
- Tested 2d-gizmos and 3d-gizmos examples in WebGPU on Chrome. No
rendering errors, and the gizmo joints are apparently rendered ok.
# Objective
- Fixes#14873, see that issue for a whole lot of context
## Solution
- Add a blessed system set for this stuff. See [this Discord
discussion](https://discord.com/channels/691052431525675048/749335865876021248/1276262931327094908).
Note that the gizmo systems,
[LWIM](https://github.com/Leafwing-Studios/leafwing-input-manager/pull/522/files#diff-9b59ee4899ad0a5d008889ea89a124a7291316532e42f9f3d6ae842b906fb095R154)
and now a new plugin I'm working on are all already ordering against
`run_fixed_main_schedule`, so having a dedicated system set should be
more robust and hopefully also more discoverable.
---
## ~~Showcase~~
~~I can add a little video of a smooth camera later if this gets merged
:)~~
Apparently a release note is not needed, so I'll leave it out. See the
changes in the fixed timestep example for usage showcase and the video
in #14873 for a more or less accurate video of the effect (it does not
use the same solution though, so it is not quite the same)
## Migration Guide
[run_fixed_main_schedule](https://docs.rs/bevy/latest/bevy/time/fn.run_fixed_main_schedule.html)
is no longer public. If you used to order against it, use the new
dedicated `RunFixedMainLoopSystem` system set instead. You can replace
your usage of `run_fixed_main_schedule` one for one by
`RunFixedMainLoopSystem::FixedMainLoop`, but it is now more idiomatic to
place your systems in either
`RunFixedMainLoopSystem::BeforeFixedMainLoop` or
`RunFixedMainLoopSystem::AfterFixedMainLoop`
Old:
```rust
app.add_systems(
RunFixedMainLoop,
some_system.before(run_fixed_main_schedule)
);
```
New:
```rust
app.add_systems(
RunFixedMainLoop,
some_system.in_set(RunFixedMainLoopSystem::BeforeFixedMainLoop)
);
```
---------
Co-authored-by: Tau Gärtli <git@tau.garden>
# Objective
When trying to test a gizmos change I ran `cargo test -p bevy_gizmos`
and the output had a lot of noise from warnings and failed doc errors.
This was because I didn't have all of the features enabled.
## Solution
I admit this might be pedantic, and am happy if the concensus is to
reject it. Although it does reduce the lines of code, testing noise, and
the amount of code compiled. I don't think it affects the complexity of
public code, and it doesn't change much to the complexity of internal
code.
I've removed un-needed `bevy_render` imports in all of the gizmos docs
examples, there's probably other unnecessary ones there too, but I
haven't looked exhaustively. It isn't needed for those docs, and isn't
available except in a subset of `cfg` combinations.
I've also made several of the `use` statements slightly more specific. I
shouldn't have changed the public interfaces, except that
`GizmoMeshConfig` requires either `bevy_sprite` or `bevy_pbr`, as it
does nothing without them.
I've also avoided adding some systems and plugins in situations where
they can't work. An example of this is where the `light` module depends
on `all(feature = "bevy_pbr", feature = "bevy_render")`, but it has
`use` statements that only require `bevy_render`.
## Testing
During development I ran:
```
cargo check -p bevy_gizmos && cargo check -p bevy_gizmos --features=bevy_pbr && cargo check -p bevy_gizmos --features=bevy_sprite && cargo check -p bevy_gizmos --features=bevy_render
```
Afterwards I ran this just to be sure:
```
cargo check && cargo check --features=bevy_pbr && cargo check --features=bevy_sprite && cargo check --features=bevy_render
```
Finally I ran:
```
cargo test -p bevy_gizmos && cargo test -p bevy_gizmos --features=bevy_pbr && test check -p bevy_gizmos --features=bevy_sprite && cargo test -p bevy_gizmos --features=bevy_render
```
## Migration Guide
There shouldn't be any reason to migrate, although if for some reason
you use `GizmoMeshConfig` and `bevy_render` but not `bevy_pbr` or
`bevy_sprite` (such that it does nothing), then you will get an error
that it no longer exists.
# Objective
It looks like `Gizmos::grid*` was missed in the colour migration.
## Solution
This updates the `grid` methods and implementation to use `Color`
instead of `LinearRgba`.
It looks like `ExtractedPointLight` and `ExtractedDirectionalLight` also
use `LinearRgba`, although I think in extracted structures it's probably
fine to make more assumptions about what you want?
## Testing
I ran `cargo test --all -- bevy_gizmos` and it passed.
## Migration Guide
This shouldn't be adding anything that isn't already in a migration
guide? I assume as it uses `impl Into<...>` in the public interfaces
that any users of these APIs shouldn't have to make any code changes.
# Objective
Fixes#14782
## Solution
Enable the lint and fix all upcoming hints (`--fix`). Also tried to
figure out the false-positive (see review comment). Maybe split this PR
up into multiple parts where only the last one enables the lint, so some
can already be merged resulting in less many files touched / less
potential for merge conflicts?
Currently, there are some cases where it might be easier to read the
code with the qualifier, so perhaps remove the import of it and adapt
its cases? In the current stage it's just a plain adoption of the
suggestions in order to have a base to discuss.
## Testing
`cargo clippy` and `cargo run -p ci` are happy.
# Objective
- Fixes#14655
## Solution
Rotation should happen first as this is more easier to conceptualize in
the mind: We rotate around the coordinate origin `Vec3::ZERO` and then
we just shift the geometry so that its center is exactly on the
specified position
## Testing && Showcase
Code:
```rust
gizmos.grid(
Vec3::ONE * 10.0,
Quat::from_rotation_x(PI / 3. * 2.),
UVec2::splat(20),
Vec2::new(2., 2.),
PURPLE,
);
gizmos.sphere(Vec3::ONE * 10.0, Quat::default(), 1.0, PURPLE);
```
Before picture:
![image](https://github.com/user-attachments/assets/7fea2e71-e62b-4763-9f9f-7a1ecd630ada)
After picture:
![image](https://github.com/user-attachments/assets/899dad64-010a-4e4b-86ae-53b85fef0bbc)
## Migration Guide
- Users might have to double check their already existing calls to all
the `grid` methods. It should be more intuitive now though.
# Objective
The changes made in https://github.com/bevyengine/bevy/pull/12252
introduced an previously fixed bug in webgpu rendering.
## Solution
This fix is based on https://github.com/bevyengine/bevy/pull/8910 and
applies the same vertex buffer layout assignment for the LineGizmo
Pipeline.
## Testing
- Tested the 3D Gizmo example in webgpu and webgl environments
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
This PR is based on top of #12982
# Objective
- Mesh2d currently only has an alpha blended phase. Most sprites don't
need transparency though.
- For some 2d games it can be useful to have a 2d depth buffer
## Solution
- Add an opaque phase to render Mesh2d that don't need transparency
- This phase currently uses the `SortedRenderPhase` to make it easier to
implement based on the already existing transparent phase. A follow up
PR will switch this to `BinnedRenderPhase`.
- Add a 2d depth buffer
- Use that depth buffer in the transparent phase to make sure that
sprites and transparent mesh2d are displayed correctly
## Testing
I added the mesh2d_transforms example that layers many opaque and
transparent mesh2d to make sure they all get displayed correctly. I also
confirmed it works with sprites by modifying that example locally.
---
## Changelog
- Added `AlphaMode2d`
- Added `Opaque2d` render phase
- Camera2d now have a `ViewDepthTexture` component
## Migration Guide
- `ColorMaterial` now contains `AlphaMode2d`. To keep previous
behaviour, use `AlphaMode::BLEND`. If you know your sprite is opaque,
use `AlphaMode::OPAQUE`
## Follow up PRs
- See tracking issue: #13265
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com>
# Objective
- Fixes#14142
## Solution
- Make sure a regression test is written on this case that fails for the
current code base but works with the suggested patch linked in the
aforementioned issue. After this is confirmed to be working, apply the
patch.
## Testing
- Run the regression test in both contexts, outputs were as expected.
# Objective
This PR makes `bevy_render` an optional dependency for `bevy_gizmos`,
thereby allowing `bevy_gizmos` to be used with alternative rendering
backend.
Previously `bevy_gizmos` assumes that one of `bevy_pbr` or `bevy_sprite`
will be enabled. Here we introduced a new feature named `bevy_render`
which disables all rendering-related code paths. An alternative renderer
will then take the `LineGizmo` assets (made public in this PR) and issue
draw calls on their own. A new field `config_ty` was added to
`LineGizmo` to help looking up the related configuration info.
---
## Migration Guide
No user-visible changes needed from the users.
# Objective
- Fix issue #2611
## Solution
- Add `--generate-link-to-definition` to all the `rustdoc-args` arrays
in the `Cargo.toml`s (for docs.rs)
- Add `--generate-link-to-definition` to the `RUSTDOCFLAGS` environment
variable in the docs workflow (for dev-docs.bevyengine.org)
- Document all the workspace crates in the docs workflow (needed because
otherwise only the source code of the `bevy` package will be included,
making the argument useless)
- I think this also fixes#3662, since it fixes the bug on
dev-docs.bevyengine.org, while on docs.rs it has been fixed for a while
on their side.
---
## Changelog
- The source code viewer on docs.rs now includes links to the
definitions.
# Objective
- It's possible to have errors in a draw command, but these errors are
ignored
## Solution
- Return a result with the error
## Changelog
Renamed `RenderCommandResult::Failure` to `RenderCommandResult::Skip`
Added a `reason` string parameter to `RenderCommandResult::Failure`
## Migration Guide
If you were using `RenderCommandResult::Failure` to just ignore an error
and retry later, use `RenderCommandResult::Skip` instead.
This wasn't intentional, but this PR should also help with
https://github.com/bevyengine/bevy/issues/12660 since we can turn a few
unwraps into error messages now.
---------
Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
Switches `Msaa` from being a globally configured resource to a per
camera view component.
Closes#7194
# Objective
Allow individual views to describe their own MSAA settings. For example,
when rendering to different windows or to different parts of the same
view.
## Solution
Make `Msaa` a component that is required on all camera bundles.
## Testing
Ran a variety of examples to ensure that nothing broke.
TODO:
- [ ] Make sure android still works per previous comment in
`extract_windows`.
---
## Migration Guide
`Msaa` is no longer configured as a global resource, and should be
specified on each spawned camera if a non-default setting is desired.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Bevy currently has lot of invalid intra-doc links, let's fix them!
- Also make CI test them, to avoid future regressions.
- Helps with #1983 (but doesn't fix it, as there could still be explicit
links to docs.rs that are broken)
## Solution
- Make `cargo r -p ci -- doc-check` check fail on warnings (could also
be changed to just some specific lints)
- Manually fix all the warnings (note that in some cases it was unclear
to me what the fix should have been, I'll try to highlight them in a
self-review)
Bump version after release
This PR has been auto-generated
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- Make gizmos behavior consistent across platforms
## Solution
- Use `u32` instead of `usize` for resolution/subdivisions/segments/etc
fields
---
## Changelog
- Change resolutions in gizmos from `usize` to `u32`
## Migration Guide
- All gizmos now take `u32` instead of `usize` for their
resolution/subdivision/segment counts
# Objective
- Primitives should not use poorly defined types like `usize`,
especially since they are serializable
## Solution
- Use `u32` instead of `usize`
- The generic array types do not need to be changed because this size is
not actually stored or serialized anywhere
---
## Migration Guide
- `RegularPolygon` now uses `u32` instead of `usize` for the number of
sides