# Objective
Fixes#15941
## Solution
Created https://crates.io/crates/variadics_please and moved the code
there; updating references
`bevy_utils/macros` is deleted.
## Testing
cargo check
## Migration Guide
Use `variadics_please::{all_tuples, all_tuples_with_size}` instead of
`bevy::utils::{all_tuples, all_tuples_with_size}`.
# Objective
Animating component fields requires too much boilerplate at the moment:
```rust
#[derive(Reflect)]
struct FontSizeProperty;
impl AnimatableProperty for FontSizeProperty {
type Component = TextFont;
type Property = f32;
fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> {
Some(&mut component.font_size)
}
}
animation_clip.add_curve_to_target(
animation_target_id,
AnimatableKeyframeCurve::new(
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
.into_iter()
.zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]),
)
.map(AnimatableCurve::<FontSizeProperty, _>::from_curve)
.expect("should be able to build translation curve because we pass in valid samples"),
);
```
## Solution
This adds `AnimatedField` and an `animated_field!` macro, enabling the
following:
```rust
animation_clip.add_curve_to_target(
animation_target_id,
AnimatableCurve::new(
animated_field!(TextFont::font_size),
AnimatableKeyframeCurve::new(
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
.into_iter()
.zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]),
)
.expect(
"should be able to build translation curve because we pass in valid samples",
),
),
);
```
This required reworking the internals a bit, namely stripping out a lot
of the `Reflect` usage, as that implementation was fundamentally
incompatible with the `AnimatedField` pattern. `Reflect` was being used
in this context just to downcast traits. But we can get downcasting
behavior without the `Reflect` requirement by implementing `Downcast`
for `AnimationCurveEvaluator`.
This also reworks "evaluator identity" to support either a (Component /
Field) pair, or a TypeId. This allows properties to reuse evaluators,
even if they have different accessor methods. The "contract" here is
that for a given (Component / Field) pair, the accessor will return the
same value. Fields are identified by their Reflect-ed field index. The
(TypeId, usize) is prehashed and cached to optimize for lookup speed.
This removes the built-in hard-coded TranslationCurve / RotationCurve /
ScaleCurve in favor of AnimatableField.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Alternative to #16450
# Objective
detailed_trace! in its current form does not work (and breaks CI)
## Solution
Fix detailed_trace by checking for the feature properly, adding it to
the correct crates, and removing it from the incorrect crates
# Objective
- Contributes to #15460
## Solution
- Made `web-time` a `wasm32`-only dependency.
- Moved time-related exports to its own module for clarity.
- Feature-gated allocator requirements for `hashbrown` behind `alloc`.
- Enabled compile-time RNG for `ahash` (runtime RNG will preferentially
used in `std` environments)
- Made `thread_local` optional by feature-gating the `Parallel` type.
## Testing
- Ran CI locally.
- `cargo build -p bevy_utils --target "x86_64-unknown-none"
--no-default-features`
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Goal is to minimize bevy_utils #11478
## Solution
- Move the file short_name wholesale into bevy_reflect
## Testing
- Unit tests
- CI
## Migration Guide
- References to `bevy_utils::ShortName` should instead now be
`bevy_reflect::ShortName`.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
> Rust 1.81 released the #[expect(...)] attribute, which works like
#[allow(...)] but throws a warning if the lint isn't raised. This is
preferred to #[allow(...)] because it tells us when it can be removed.
- Adopts the parts of #15118 that are complete, and updates the branch
so it can be merged.
- There were a few conflicts, let me know if I misjudged any of 'em.
Alice's
[recommendation](https://github.com/bevyengine/bevy/issues/15059#issuecomment-2349263900)
seems well-taken, let's do this crate by crate now that @BD103 has done
the lion's share of this!
(Relates to, but doesn't yet completely finish #15059.)
Crates this _doesn't_ cover:
- bevy_input
- bevy_gilrs
- bevy_window
- bevy_winit
- bevy_state
- bevy_render
- bevy_picking
- bevy_core_pipeline
- bevy_sprite
- bevy_text
- bevy_pbr
- bevy_ui
- bevy_gltf
- bevy_gizmos
- bevy_dev_tools
- bevy_internal
- bevy_dylib
---------
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
Co-authored-by: Antony <antony.m.3012@gmail.com>
`ShortName` is lazily evaluated and does not allocate, instead providing
`Display` and `Debug` implementations which write directly to a
formatter using the original algorithm. When using `ShortName` in format
strings (`panic`, `dbg`, `format`, etc.) you can directly use the
`ShortName` type. If you require a `String`, simply call
`ShortName(...).to_string()`.
# Objective
- Remove the requirement for allocation when using `get_short_name`
## Solution
- Added new type `ShortName` which wraps a name and provides its own
`Debug` and `Display` implementations, using the original
`get_short_name` algorithm without the need for allocating.
- Removed `get_short_name`, as `ShortName(...)` is more performant and
ergonomic.
- Added `ShortName::of::<T>` method to streamline the common use-case
for name shortening.
## Testing
- CI
## Migration Guide
### For `format!`, `dbg!`, `panic!`, etc.
```rust
// Before
panic!("{} is too short!", get_short_name(name));
// After
panic!("{} is too short!", ShortName(name));
```
### Need a `String` Value
```rust
// Before
let short: String = get_short_name(name);
// After
let short: String = ShortName(name).to_string();
```
## Notes
`ShortName` lazily evaluates, and directly writes to a formatter via
`Debug` and `Display`, which removes the need to allocate a `String`
when printing a shortened type name. Because the implementation has been
moved into the `fmt` method, repeated printing of the `ShortName` type
may be less performant than converting it into a `String`. However, no
instances of this are present in Bevy, and the user can get the original
behaviour by calling `.to_string()` at no extra cost.
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Adjust `bevy_utils` to make it `no_std` compatible
- Partially replaces #6581
- Contributes to #8161
- Contributes to #6370
## Solution
Added `alloc` and `std` features to `bevy_utils` (`std` is enabled by
default), allowing the crate's use in `no_std` contexts.
## Testing
- CI passed locally.
- Used `bevy_utils` in a `no_std` crate as an experiment and compiled
successfully.
## Migration Guide
If you were importing `bevy_utils` and setting `default_features` to
`false`, but relying on elements which are now gated behind the `std` or
`alloc` features, include the relevant feature in your `Cargo.toml`.
## Notes
- Bevy already includes a single `no_std` crate, `bevy_ptr`, so there is
precedent for this change.
- As `bevy_utils` is widely used across the rest of Bevy, further work
to make Bevy `no_std` compatible would be blocked on this crate, if such
work was to be undertaken.
- Most of the changes in this PR are just the removal of an unnecessary
call to `to_string()` within unit tests.
Enabled `check-private-items` in `clippy.toml` and then fixed the
resulting errors. Most of these were simply misformatted and of the
remaining:
- ~Added `#[allow(clippy::missing_safety_doc)]` to~ Removed unsafe from
a pair of functions in `bevy_utils/futures` which are only unsafe so
that they can be passed to a function which requires `unsafe fn`
- Removed `unsafe` from `UnsafeWorldCell::observers` as from what I can
tell it is always safe like `components`, `bundles` etc. (this should be
checked)
- Added safety docs to:
- `Bundles::get_storage_unchecked`: Based on the function that writes to
`dynamic_component_storages`
- `Bundles::get_storages_unchecked`: Based on the function that writes
to `dynamic_bundle_storages`
- `QueryIterationCursor::init_empty`: Duplicated from `init`
- `QueryIterationCursor::peek_last`: Thanks Giooschi (also added
internal unsafe blocks)
- `tests::drop_ptr`: Moved safety comment out to the doc string
This lint would also apply to `missing_errors_doc`, `missing_panics_doc`
and `unnecessary_safety_doc` if we chose to enable any of those at some
point, although there is an open
[issue](https://github.com/rust-lang/rust-clippy/issues/13074) to
separate these options.
# Objective
`EntityHash` and related types were moved from `bevy_utils` to
`bevy_ecs` in #11498, but seemed to have been accidentally reintroduced
a week later in #11707.
## Solution
Remove the old leftover code.
---
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity`.
# Objective
- Crate-level prelude modules, such as `bevy_ecs::prelude`, are plagued
with inconsistency! Let's fix it!
## Solution
Format all preludes based on the following rules:
1. All preludes should have brief documentation in the format of:
> The _name_ prelude.
>
> This includes the most common types in this crate, re-exported for
your convenience.
2. All documentation should be outer, not inner. (`///` instead of
`//!`.)
3. No prelude modules should be annotated with `#[doc(hidden)]`. (Items
within them may, though I'm not sure why this was done.)
## Testing
- I manually searched for the term `mod prelude` and updated all
occurrences by hand. 🫠
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/14975
## Solution
- Replace usages of `bevy_utils::CowArc` with `atomicow::CowArc`
- Remove bevy_utils::CowArc
## Testing
- `bevy_asset` test suite continues to pass.
---
## Migration Guide
`bevy_utils::CowArc` has moved to a new crate called
[atomicow](https://crates.io/crates/atomicow).
# Objective
Fixes#14782
## Solution
Enable the lint and fix all upcoming hints (`--fix`). Also tried to
figure out the false-positive (see review comment). Maybe split this PR
up into multiple parts where only the last one enables the lint, so some
can already be merged resulting in less many files touched / less
potential for merge conflicts?
Currently, there are some cases where it might be easier to read the
code with the qualifier, so perhaps remove the import of it and adapt
its cases? In the current stage it's just a plain adoption of the
suggestions in order to have a base to discuss.
## Testing
`cargo clippy` and `cargo run -p ci` are happy.
# Objective
- Fixes#10478
## Solution
Generalised `From/Into` implementations over `&str` and `Option<&str>`
for `AssetSourceId` and `AssetPath` across all lifetimes, not just
static. To maintain access to the `'static`-only specialisation, these
types (and `CowArc`) now include an `as_static` method which will apply
the specialisation.
```rust
// Snipped from `AssetApp`
fn register_asset_source(
&mut self,
id: impl Into<AssetSourceId<'static>>,
// ^^^^^^^
// | as_static is only available for 'static lifetimes
source: AssetSourceBuilder,
) -> &mut Self {
let id = id.into().as_static();
// ^^^^^^ ^^^^^^^^^
// | | Specialized (internally storing CowArc::Static)
// | Generic Into (internally storing CowArc::Borrowed)
// ...
}
```
This post-fix specialisation is available here because the actual
specialisation performed is only a marker for if/when modification or
ownership is required, making the transform a very cheap operation. For
cleanliness, I've also added `from_static`, which wraps this behaviour
in a clean shorthand designed to replace `from` calls.
---
## Changelog
- Generalised the following implementations over a generic lifetime:
- `From<&'static str> for AssetSourceId<'static>`
- `From<Option<&'static str>> for AssetSourceId<'static>`
- `From<&'static str> for AssetPath<'static>`
- `From<&'static Path> for AssetPath<'static>`
- Added `as_static` specialisation to:
- `CowArc`
- `AssetSourceId`
- `AssetPath`
- Added `from_static` specialised constructor to:
- `AssetSourceId`
- `AssetPath`
## Migration Guide
In areas where these implementations where being used, you can now add
`from_static` in order to get the original specialised implementation
which avoids creating an `Arc` internally.
```rust
// Before
let asset_path = AssetPath::from("my/path/to/an/asset.ext");
// After
let asset_path = AssetPath::from_static("my/path/to/an/asset.ext");
```
To be clear, this is only required if you wish to maintain the
performance benefit that came with the specialisation. Existing code is
_not_ broken by this change.
# Objective
- `Parallel::drain()` has an unused type parameter `B` than can be
removed.
- Caught [on
Discord](https://discord.com/channels/691052431525675048/692572690833473578/1259004180560085003)
by Andrew, thanks!
## Solution
- Remove it! :)
## Testing
- `Parallel::drain()` should still function exactly the same.
---
## Changelog
- Removed unused type parameter in `Parallel::drain()`.
## Migration Guide
The type parameter of `Parallel::drain()` was unused, so it is now
removed. If you were manually specifying it, you can remove the bounds.
```rust
// 0.14
// Create a `Parallel` and give it a value.
let mut parallel: Parallel<Vec<u8>> = Parallel::default();
*parallel.borrow_local_mut() = vec![1, 2, 3];
for v in parallel.drain::<u8>() {
// ...
}
// 0.15
let mut parallel: Parallel<Vec<u8>> = Parallel::default();
*parallel.borrow_local_mut() = vec![1, 2, 3];
// Remove the type parameter.
for v in parallel.drain() {
// ...
}
```
# Objective
- Fixes#13703
## Solution
- Added `mappings` to the `EntityMapper` trait, which returns an
iterator over currently tracked `Entity` to `Entity` mappings.
- Added `DynEntityMapper` as an [object
safe](https://doc.rust-lang.org/reference/items/traits.html#object-safety)
alternative to `EntityMapper`.
- Added `assert_object_safe` as a helper for ensuring traits are object
safe.
## Testing
- Added new unit test `entity_mapper_iteration` which tests the
`SceneEntityMapper` implementation of `EntityMapper::mappings`.
- Added unit tests to ensure `DynEntityMapper`, `DynEq` and `DynHash`
are object safe.
- Passed CI on my Windows 10 development environment
---
## Changelog
- Added `mappings` to `EntityMapper` trait.
## Migration Guide
- If you are implementing `EntityMapper` yourself, you can use the below
as a stub implementation:
```rust
fn mappings(&self) -> impl Iterator<Item = (Entity, Entity)> {
unimplemented!()
}
```
- If you were using `EntityMapper` as a trait object (`dyn
EntityMapper`), instead use `dyn DynEntityMapper` and its associated
methods.
## Notes
- The original issue proposed returning a `Vec` from `EntityMapper`
instead of an `impl Iterator` to preserve its object safety. This is a
simpler option, but also forces an allocation where it isn't strictly
needed. I've opted for this split into `DynEntityMapper` and
`EntityMapper` as it's been done several times across Bevy already, and
provides maximum flexibility to users.
- `assert_object_safe` is an empty function, since the assertion
actually happens once you try to use a `dyn T` for some trait `T`. I
have still added this function to clearly document what object safety is
within Bevy, and to create a standard way to communicate that a given
trait must be object safe.
- Other traits should have tests added to ensure object safety, but I've
left those off to avoid cluttering this PR further.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- bevy usually use `Parallel::scope` to collect items from `par_iter`,
but `scope` will be called with every satifified items. it will cause a
lot of unnecessary lookup.
## Solution
- similar to Rayon ,we introduce `for_each_init` for `par_iter` which
only be invoked when spawn a task for a group of items.
---
## Changelog
- added `for_each_init`
## Performance
`check_visibility ` in `many_foxes `
![image](https://github.com/bevyengine/bevy/assets/45868716/030c41cf-0d2f-4a36-a071-35097d93e494)
~40% performance gain in `check_visibility`.
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Improve the code quality of the multithreaded executor.
## Solution
* Remove some unused variables.
* Use `Mutex::get_mut` where applicable instead of locking.
* Use a `startup_systems` FixedBitset to pre-compute the starting
systems instead of building it bit-by-bit on startup.
* Instead of using `FixedBitset::clear` and `FixedBitset::union_with`,
use `FixedBitset::clone_from` instead, which does only a single copy and
will not allocate if the target bitset has a large enough allocation.
* Replace the `Mutex` around `Conditions` with `SyncUnsafeCell`, and add
a `Context::try_lock` that forces it to be synchronized fetched
alongside the executor lock.
This might produce minimal performance gains, but the focus here is on
the code quality improvements.
# Objective
- Attempts to solve two items from
https://github.com/bevyengine/bevy/issues/11478.
## Solution
- Moved `intern` module from `bevy_utils` into `bevy_ecs` crate and
updated all relevant imports.
- Moved `label` module from `bevy_utils` into `bevy_ecs` crate and
updated all relevant imports.
---
## Migration Guide
- Replace `bevy_utils::define_label` imports with
`bevy_ecs::define_label` imports.
- Replace `bevy_utils:🏷️:DynEq` imports with
`bevy_ecs:🏷️:DynEq` imports.
- Replace `bevy_utils:🏷️:DynHash` imports with
`bevy_ecs:🏷️:DynHash` imports.
- Replace `bevy_utils::intern::Interned` imports with
`bevy_ecs::intern::Interned` imports.
- Replace `bevy_utils::intern::Internable` imports with
`bevy_ecs::intern::Internable` imports.
- Replace `bevy_utils::intern::Interner` imports with
`bevy_ecs::intern::Interner` imports.
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
- Fixes#12712
## Solution
- Move the `float_ord.rs` file to `bevy_math`
- Change any `bevy_utils::FloatOrd` statements to `bevy_math::FloatOrd`
---
## Changelog
- Moved `FloatOrd` from `bevy_utils` to `bevy_math`
## Migration Guide
- References to `bevy_utils::FloatOrd` should be changed to
`bevy_math::FloatOrd`
# Objective
Resolves#3824. `unsafe` code should be the exception, not the norm in
Rust. It's obviously needed for various use cases as it's interfacing
with platforms and essentially running the borrow checker at runtime in
the ECS, but the touted benefits of Bevy is that we are able to heavily
leverage Rust's safety, and we should be holding ourselves accountable
to that by minimizing our unsafe footprint.
## Solution
Deny `unsafe_code` workspace wide. Add explicit exceptions for the
following crates, and forbid it in almost all of the others.
* bevy_ecs - Obvious given how much unsafe is needed to achieve
performant results
* bevy_ptr - Works with raw pointers, even more low level than bevy_ecs.
* bevy_render - due to needing to integrate with wgpu
* bevy_window - due to needing to integrate with raw_window_handle
* bevy_utils - Several unsafe utilities used by bevy_ecs. Ideally moved
into bevy_ecs instead of made publicly usable.
* bevy_reflect - Required for the unsafe type casting it's doing.
* bevy_transform - for the parallel transform propagation
* bevy_gizmos - For the SystemParam impls it has.
* bevy_assets - To support reflection. Might not be required, not 100%
sure yet.
* bevy_mikktspace - due to being a conversion from a C library. Pending
safe rewrite.
* bevy_dynamic_plugin - Inherently unsafe due to the dynamic loading
nature.
Several uses of unsafe were rewritten, as they did not need to be using
them:
* bevy_text - a case of `Option::unchecked` could be rewritten as a
normal for loop and match instead of an iterator.
* bevy_color - the Pod/Zeroable implementations were replaceable with
bytemuck's derive macros.
# Objective
- `FloatOrd` currently has a different comparison behavior between its
derived `PartialOrd` impl and manually implemented `Ord` impl (The
[`Ord` doc](https://doc.rust-lang.org/std/cmp/trait.Ord.html) says this
is a logic error). This might be a problem for some `std`
containers/algorithms if they rely on both matching, and a footgun for
Bevy users.
## Solution
- Replace the `PartialEq` and `Ord` impls of `FloatOrd` with some
equivalent ones producing [better
assembly.](https://godbolt.org/z/jaWbjnMKx)
- Manually derive `PartialOrd` with the same behavior as `Ord`,
implement the comparison operators.
- Add some tests.
I first tried using a match-based implementation similar to the
`PartialOrd` impl [of the
std](https://doc.rust-lang.org/src/core/cmp.rs.html#1457) (with added
NaN ordering) but I couldn't get it to produce non-branching assembly.
The current implementation is based on [the one from the `ordered_float`
crate](3641f59e31/src/lib.rs (L121)),
adapted since it uses a different ordering. Should this be mentionned
somewhere in the code?
---
## Changelog
### Fixed
- `FloatOrd` now uses the same ordering for its `PartialOrd` and `Ord`
implementations.
## Migration Guide
- If you were depending on the `PartialOrd` behaviour of `FloatOrd`, it
has changed from matching `f32` to matching `FloatOrd`'s `Ord` ordering,
never returning `None`.
# Objective
Currently the built docs only shows the logo and favicon for the top
level `bevy` crate. This makes views like
https://docs.rs/bevy_ecs/latest/bevy_ecs/ look potentially unrelated to
the project at first glance.
## Solution
Reproduce the docs attributes for every crate that Bevy publishes.
Ideally this would be done with some workspace level Cargo.toml control,
but AFAICT, such support does not exist.
# Objective
Simplify implementing some asset traits without Box::pin(async move{})
shenanigans.
Fixes (in part) https://github.com/bevyengine/bevy/issues/11308
## Solution
Use async-fn in traits when possible in all traits. Traits with return
position impl trait are not object safe however, and as AssetReader and
AssetWriter are both used with dynamic dispatch, you need a Boxed
version of these futures anyway.
In the future, Rust is [adding
](https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html)proc
macros to generate these traits automatically, and at some point in the
future dyn traits should 'just work'. Until then.... this seemed liked
the right approach given more ErasedXXX already exist, but, no clue if
there's plans here! Especially since these are public now, it's a bit of
an unfortunate API, and means this is a breaking change.
In theory this saves some performance when these traits are used with
static dispatch, but, seems like most code paths go through dynamic
dispatch, which boxes anyway.
I also suspect a bunch of the lifetime annotations on these function
could be simplified now as the BoxedFuture was often the only thing
returned which needed a lifetime annotation, but I'm not touching that
for now as traits + lifetimes can be so tricky.
This is a revival of
[pull/11362](https://github.com/bevyengine/bevy/pull/11362) after a
spectacular merge f*ckup, with updates to the latest Bevy. Just to recap
some discussion:
- Overall this seems like a win for code quality, especially when
implementing these traits, but a loss for having to deal with ErasedXXX
variants.
- `ConditionalSend` was the preferred name for the trait that might be
Send, to deal with wasm platforms.
- When reviewing be sure to disable whitespace difference, as that's 95%
of the PR.
## Changelog
- AssetReader, AssetWriter, AssetLoader, AssetSaver and Process now use
async-fn in traits rather than boxed futures.
## Migration Guide
- Custom implementations of AssetReader, AssetWriter, AssetLoader,
AssetSaver and Process should switch to async fn rather than returning a
bevy_utils::BoxedFuture.
- Simultaniously, to use dynamic dispatch on these traits you should
instead use dyn ErasedXXX.
# Objective
Make bevy_utils less of a compilation bottleneck. Tackle #11478.
## Solution
* Move all of the directly reexported dependencies and move them to
where they're actually used.
* Remove the UUID utilities that have gone unused since `TypePath` took
over for `TypeUuid`.
* There was also a extraneous bytemuck dependency on `bevy_core` that
has not been used for a long time (since `encase` became the primary way
to prepare GPU buffers).
* Remove the `all_tuples` macro reexport from bevy_ecs since it's
accessible from `bevy_utils`.
---
## Changelog
Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax,
smallvec, and thiserror).
Removed: bevy_core's reexports of bytemuck.
## Migration Guide
bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror
have been removed.
bevy_core' reexports of bytemuck's types has been removed.
Add them as dependencies in your own crate instead.
# Objective
`bevy_utils::Entry` is only useful when using
`BuildHasherDefault<AHasher>`. It would be great if we didn't have to
write out `bevy_utils::hashbrown::hash_map::Entry` whenever we want to
use a different `BuildHasher`, such as when working with
`bevy_utils::TypeIdMap`.
## Solution
Give `bevy_utils::Entry` a new optional type parameter for defining a
custom `BuildHasher`, such as `NoOpHash`. This parameter defaults to
`BuildHasherDefault<AHasher>`— the `BuildHasher` used by
`bevy_utils::HashMap`.
---
## Changelog
- Added an optional third type parameter to `bevy_utils::Entry` to
specify a custom `BuildHasher`
# Objective
There's a repeating pattern of `ThreadLocal<Cell<Vec<T>>>` which is very
useful for low overhead, low contention multithreaded queues that have
cropped up in a few places in the engine. This pattern is surprisingly
useful when building deferred mutation across multiple threads, as noted
by it's use in `ParallelCommands`.
However, `ThreadLocal<Cell<Vec<T>>>` is not only a mouthful, it's also
hard to ensure the thread-local queue is replaced after it's been
temporarily removed from the `Cell`.
## Solution
Wrap the pattern into `bevy_utils::Parallel<T>` which codifies the
entire pattern and ensures the user follows the contract. Instead of
fetching indivdual cells, removing the value, mutating it, and replacing
it, `Parallel::get` returns a `ParRef<'a, T>` which contains the
temporarily removed value and a reference back to the cell, and will
write the mutated value back to the cell upon being dropped.
I would like to use this to simplify the remaining part of #4899 that
has not been adopted/merged.
---
## Changelog
TODO
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
# Objective
Bevy's animation system currently does tree traversals based on `Name`
that aren't necessary. Not only do they require in unsafe code because
tree traversals are awkward with parallelism, but they are also somewhat
slow, brittle, and complex, which manifested itself as way too many
queries in #11670.
# Solution
Divide animation into two phases: animation *advancement* and animation
*evaluation*, which run after one another. *Advancement* operates on the
`AnimationPlayer` and sets the current animation time to match the game
time. *Evaluation* operates on all animation bones in the scene in
parallel and sets the transforms and/or morph weights based on the time
and the clip.
To do this, we introduce a new component, `AnimationTarget`, which the
asset loader places on every bone. It contains the ID of the entity
containing the `AnimationPlayer`, as well as a UUID that identifies
which bone in the animation the target corresponds to. In the case of
glTF, the UUID is derived from the full path name to the bone. The rule
that `AnimationTarget`s are descendants of the entity containing
`AnimationPlayer` is now just a convention, not a requirement; this
allows us to eliminate the unsafe code.
# Migration guide
* `AnimationClip` now uses UUIDs instead of hierarchical paths based on
the `Name` component to refer to bones. This has several consequences:
- A new component, `AnimationTarget`, should be placed on each bone that
you wish to animate, in order to specify its UUID and the associated
`AnimationPlayer`. The glTF loader automatically creates these
components as necessary, so most uses of glTF rigs shouldn't need to
change.
- Moving a bone around the tree, or renaming it, no longer prevents an
`AnimationPlayer` from affecting it.
- Dynamically changing the `AnimationPlayer` component will likely
require manual updating of the `AnimationTarget` components.
* Entities with `AnimationPlayer` components may now possess descendants
that also have `AnimationPlayer` components. They may not, however,
animate the same bones.
* As they aren't specific to `TypeId`s,
`bevy_reflect::utility::NoOpTypeIdHash` and
`bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to
`bevy_reflect::utility::NoOpHash` and
`bevy_reflect::utility::NoOpHasher` respectively.
# Objective
Reduce the size of `bevy_utils`
(https://github.com/bevyengine/bevy/issues/11478)
## Solution
Move `EntityHash` related types into `bevy_ecs`. This also allows us
access to `Entity`, which means we no longer need `EntityHashMap`'s
first generic argument.
---
## Changelog
- Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` into `bevy::ecs::entity::hash` .
- Removed `EntityHashMap`'s first generic argument. It is now hardcoded
to always be `Entity`.
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`.
- Uses of `EntityHashMap` no longer have to specify the first generic
parameter. It is now hardcoded to always be `Entity`.
# Objective
- The exported hashtypes are just re-exports from hashbrown, we want to
drop that dependency and (in the future) let the user import their own
choice.
- Fixes#11717
## Solution
- Adding a deprecated tag on the re-exports, so in future releases these
can be safely removed.
# Objective
We currently over/underpromise hash stability:
- `HashMap`/`HashSet` use `BuildHasherDefault<AHasher>` instead of
`RandomState`. As a result, the hash is stable within the same run.
- [aHash isn't stable between devices (and
versions)](https://github.com/tkaitchuck/ahash?tab=readme-ov-file#goals-and-non-goals),
yet it's used for `StableHashMap`/`StableHashSet`
- the specialized hashmaps are stable
Interestingly, `StableHashMap`/`StableHashSet` aren't used by Bevy
itself (anymore).
## Solution
Add/fix documentation
## Alternatives
For `StableHashMap`/`StableHashSet`:
- remove them
- revive #7107
---
## Changelog
- added iteration stability guarantees for different hashmaps
# Objective
- Pipeline compilation is slow and blocks the frame
- Closes https://github.com/bevyengine/bevy/issues/8224
## Solution
- Compile pipelines in a Task on the AsyncComputeTaskPool
---
## Changelog
- Render/compute pipeline compilation is now done asynchronously over
multiple frames when the multi-threaded feature is enabled and on
non-wasm and non-macOS platforms
- Added `CachedPipelineState::Creating`
- Added `PipelineCache::block_on_render_pipeline()`
- Added `bevy_utils::futures::check_ready`
- Added `bevy_render/multi-threaded` cargo feature
## Migration Guide
- Match on the new `Creating` variant for exhaustive matches of
`CachedPipelineState`
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>`
- ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of
#11478~~
- ~~I haven't swapped `bevy_reflect` over because it doesn't depend on
`bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to
`bevy_utils` and then adding a dependency to that~~
- ~~this is a slight change in the public API of
`DrawFunctionsInternal`, does this need to go in the changelog?~~
## Changelog
- moved `TypeIdMap` to `bevy_utils`
- changed `DrawFunctionsInternal::indices` to `TypeIdMap`
## Migration Guide
- `TypeIdMap` now lives in `bevy_utils`
- `DrawFunctionsInternal::indices` now uses a `TypeIdMap`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.
## Solution
Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
# Objective
- Allow `HashMap<Cow<'_, T>, _>` to use `&T` as key for `HashMap::get`
- Makes `CowArc` more like `Cow`
## Solution
Implements `Borrow<T>` and `AsRef<T>` for `CowArc<T>`.
# Objective
When working within `bevy_ecs`, we can't use the `log_once` macros due
to their placement in `bevy_log` - which depends on `bevy_ecs`. All this
create does is migrate those macros to the `bevy_utils` crate, while
still re-exporting them in `bevy_log`.
created to resolve this:
https://github.com/bevyengine/bevy/pull/11417#discussion_r1458100211
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- We want to use `static_assertions` to perform precise compile time
checks at testing time. In this PR, we add those checks to make sure
that `EntityHashMap` and `PreHashMap` are `Clone` (and we replace the
more clumsy previous tests)
- Fixes#11181
(will need to be rebased once
https://github.com/bevyengine/bevy/pull/11178 is merged)
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
- `EntityHashMap`, `EntityHashSet` and `PreHashMap` are currently not
Cloneable because of a missing trivial `Clone` bound for `EntityHash`
and `PreHash`. This PR makes them Cloneable.
(the parent struct `hashbrown::HashMap` requires the `HashBuilder` to be
`Clone` for the `HashMap` to be `Clone`, see:
https://github.com/rust-lang/hashbrown/blob/master/src/map.rs#L195)
## Solution
- Add a `Clone` bound to `PreHash` and `EntityHash`
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
Fix ci hang, so we can merge pr's again.
## Solution
- switch ppa action to use mesa stable versions
https://launchpad.net/~kisak/+archive/ubuntu/turtle
- use commit from #11123
---------
Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
# Objective
- Make the implementation order consistent between all sources to fit
the order in the trait.
## Solution
- Change the implementation order.
Matches versioning & features from other Cargo.toml files in the
project.
# Objective
Resolves#10932
## Solution
Added smallvec to the bevy_utils cargo.toml and added a line to
re-export the crate. Target version and features set to match what's
used in the other bevy crates.