# Objective
Fix typos throughout the project.
## Solution
[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.
Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).
## Unsolved
`bevy_reflect_derive` has
[typo](1b51053f19/crates/bevy_reflect/bevy_reflect_derive/src/type_path.rs (L76))
in enum variant name that I didn't fix. Enum is `pub(crate)`, so there
shouldn't be any trouble if fixed. However, code is tightly coupled with
macro usage, so I decided to leave it for more experienced contributor
just in case.
# Objective
Improve the `bevy_audio` API to make it more user-friendly and
ECS-idiomatic. This PR is a first-pass at addressing some of the most
obvious (to me) problems. In the interest of keeping the scope small,
further improvements can be done in future PRs.
The current `bevy_audio` API is very clunky to work with, due to how it
(ab)uses bevy assets to represent audio sinks.
The user needs to write a lot of boilerplate (accessing
`Res<Assets<AudioSink>>`) and deal with a lot of cognitive overhead
(worry about strong vs. weak handles, etc.) in order to control audio
playback.
Audio playback is initiated via a centralized `Audio` resource, which
makes it difficult to keep track of many different sounds playing in a
typical game.
Further, everything carries a generic type parameter for the sound
source type, making it difficult to mix custom sound sources (such as
procedurally generated audio or unofficial formats) with regular audio
assets.
Let's fix these issues.
## Solution
Refactor `bevy_audio` to a more idiomatic ECS API. Remove the `Audio`
resource. Do everything via entities and components instead.
Audio playback data is now stored in components:
- `PlaybackSettings`, `SpatialSettings`, `Handle<AudioSource>` are now
components. The user inserts them to tell Bevy to play a sound and
configure the initial playback parameters.
- `AudioSink`, `SpatialAudioSink` are now components instead of special
magical "asset" types. They are inserted by Bevy when it actually begins
playing the sound, and can be queried for by the user in order to
control the sound during playback.
Bundles: `AudioBundle` and `SpatialAudioBundle` are available to make it
easy for users to play sounds. Spawn an entity with one of these bundles
(or insert them to a complex entity alongside other stuff) to play a
sound.
Each entity represents a sound to be played.
There is also a new "auto-despawn" feature (activated using
`PlaybackSettings`), which, if enabled, tells Bevy to despawn entities
when the sink playback finishes. This allows for "fire-and-forget" sound
playback. Users can simply
spawn entities whenever they want to play sounds and not have to worry
about leaking memory.
## Unsolved Questions
I think the current design is *fine*. I'd be happy for it to be merged.
It has some possibly-surprising usability pitfalls, but I think it is
still much better than the old `bevy_audio`. Here are some discussion
questions for things that we could further improve. I'm undecided on
these questions, which is why I didn't implement them. We should decide
which of these should be addressed in this PR, and what should be left
for future PRs. Or if they should be addressed at all.
### What happens when sounds start playing?
Currently, the audio sink components are inserted and the bundle
components are kept. Should Bevy remove the bundle components? Something
else?
The current design allows an entity to be reused for playing the same
sound with the same parameters repeatedly. This is a niche use case I'd
like to be supported, but if we have to give it up for a simpler design,
I'd be fine with that.
### What happens if users remove any of the components themselves?
As described above, currently, entities can be reused. Removing the
audio sink causes it to be "detached" (I kept the old `Drop` impl), so
the sound keeps playing. However, if the audio bundle components are not
removed, Bevy will detect this entity as a "queued" sound entity again
(has the bundle compoenents, without a sink component), just like before
playing the sound the first time, and start playing the sound again.
This behavior might be surprising? Should we do something different?
### Should mutations to `PlaybackSettings` be applied to the audio sink?
We currently do not do that. `PlaybackSettings` is just for the initial
settings when the sound starts playing. This is clearly documented.
Do we want to keep this behavior, or do we want to allow users to use
`PlaybackSettings` instead of `AudioSink`/`SpatialAudioSink` to control
sounds during playback too?
I think I prefer for them to be kept separate. It is not a bad mental
model once you understand it, and it is documented.
### Should `AudioSink` and `SpatialAudioSink` be unified into a single
component type?
They provide a similar API (via the `AudioSinkPlayback` trait) and it
might be annoying for users to have to deal with both of them. The
unification could be done using an enum that is matched on internally by
the methods. Spatial audio has extra features, so this might make it
harder to access. I think we shouldn't.
### Automatic synchronization of spatial sound properties from
Transforms?
Should Bevy automatically apply changes to Transforms to spatial audio
entities? How do we distinguish between listener and emitter? Which one
does the transform represent? Where should the other one come from?
Alternatively, leave this problem for now, and address it in a future
PR. Or do nothing, and let users deal with it, as shown in the
`spatial_audio_2d` and `spatial_audio_3d` examples.
---
## Changelog
Added:
- `AudioBundle`/`SpatialAudioBundle`, add them to entities to play
sounds.
Removed:
- The `Audio` resource.
- `AudioOutput` is no longer `pub`.
Changed:
- `AudioSink`, `SpatialAudioSink` are now components instead of assets.
## Migration Guide
// TODO: write a more detailed migration guide, after the "unsolved
questions" are answered and this PR is finalized.
Before:
```rust
/// Need to store handles somewhere
#[derive(Resource)]
struct MyMusic {
sink: Handle<AudioSink>,
}
fn play_music(
asset_server: Res<AssetServer>,
audio: Res<Audio>,
audio_sinks: Res<Assets<AudioSink>>,
mut commands: Commands,
) {
let weak_handle = audio.play_with_settings(
asset_server.load("music.ogg"),
PlaybackSettings::LOOP.with_volume(0.5),
);
// upgrade to strong handle and store it
commands.insert_resource(MyMusic {
sink: audio_sinks.get_handle(weak_handle),
});
}
fn toggle_pause_music(
audio_sinks: Res<Assets<AudioSink>>,
mymusic: Option<Res<MyMusic>>,
) {
if let Some(mymusic) = &mymusic {
if let Some(sink) = audio_sinks.get(&mymusic.sink) {
sink.toggle();
}
}
}
```
Now:
```rust
/// Marker component for our music entity
#[derive(Component)]
struct MyMusic;
fn play_music(
mut commands: Commands,
asset_server: Res<AssetServer>,
) {
commands.spawn((
AudioBundle::from_audio_source(asset_server.load("music.ogg"))
.with_settings(PlaybackSettings::LOOP.with_volume(0.5)),
MyMusic,
));
}
fn toggle_pause_music(
// `AudioSink` will be inserted by Bevy when the audio starts playing
query_music: Query<&AudioSink, With<MyMusic>>,
) {
if let Ok(sink) = query.get_single() {
sink.toggle();
}
}
```
# Objective
Currently, `DynamicScene`s extract all components listed in the given
(or the world's) type registry. This acts as a quasi-filter of sorts.
However, it can be troublesome to use effectively and lacks decent
control.
For example, say you need to serialize only the following component over
the network:
```rust
#[derive(Reflect, Component, Default)]
#[reflect(Component)]
struct NPC {
name: Option<String>
}
```
To do this, you'd need to:
1. Create a new `AppTypeRegistry`
2. Register `NPC`
3. Register `Option<String>`
If we skip Step 3, then the entire scene might fail to serialize as
`Option<String>` requires registration.
Not only is this annoying and easy to forget, but it can leave users
with an impossible task: serializing a third-party type that contains
private types.
Generally, the third-party crate will register their private types
within a plugin so the user doesn't need to do it themselves. However,
this means we are now unable to serialize _just_ that type— we're forced
to allow everything!
## Solution
Add the `SceneFilter` enum for filtering components to extract.
This filter can be used to optionally allow or deny entire sets of
components/resources. With the `DynamicSceneBuilder`, users have more
control over how their `DynamicScene`s are built.
To only serialize a subset of components, use the `allow` method:
```rust
let scene = builder
.allow::<ComponentA>()
.allow::<ComponentB>()
.extract_entity(entity)
.build();
```
To serialize everything _but_ a subset of components, use the `deny`
method:
```rust
let scene = builder
.deny::<ComponentA>()
.deny::<ComponentB>()
.extract_entity(entity)
.build();
```
Or create a custom filter:
```rust
let components = HashSet::from([type_id]);
let filter = SceneFilter::Allowlist(components);
// let filter = SceneFilter::Denylist(components);
let scene = builder
.with_filter(Some(filter))
.extract_entity(entity)
.build();
```
Similar operations exist for resources:
<details>
<summary>View Resource Methods</summary>
To only serialize a subset of resources, use the `allow_resource`
method:
```rust
let scene = builder
.allow_resource::<ResourceA>()
.extract_resources()
.build();
```
To serialize everything _but_ a subset of resources, use the
`deny_resource` method:
```rust
let scene = builder
.deny_resource::<ResourceA>()
.extract_resources()
.build();
```
Or create a custom filter:
```rust
let resources = HashSet::from([type_id]);
let filter = SceneFilter::Allowlist(resources);
// let filter = SceneFilter::Denylist(resources);
let scene = builder
.with_resource_filter(Some(filter))
.extract_resources()
.build();
```
</details>
### Open Questions
- [x] ~~`allow` and `deny` are mutually exclusive. Currently, they
overwrite each other. Should this instead be a panic?~~ Took @soqb's
suggestion and made it so that the opposing method simply removes that
type from the list.
- [x] ~~`DynamicSceneBuilder` extracts entity data as soon as
`extract_entity`/`extract_entities` is called. Should this behavior
instead be moved to the `build` method to prevent ordering mixups (e.g.
`.allow::<Foo>().extract_entity(entity)` vs
`.extract_entity(entity).allow::<Foo>()`)? The tradeoff would be
iterating over the given entities twice: once at extraction and again at
build.~~ Based on the feedback from @Testare it sounds like it might be
better to just keep the current functionality (if anything we can open a
separate PR that adds deferred methods for extraction, so the
choice/performance hit is up to the user).
- [ ] An alternative might be to remove the filter from
`DynamicSceneBuilder` and have it as a separate parameter to the
extraction methods (either in the existing ones or as added
`extract_entity_with_filter`-type methods). Is this preferable?
- [x] ~~Should we include constructors that include common types to
allow/deny? For example, a `SceneFilter::standard_allowlist` that
includes things like `Parent` and `Children`?~~ Consensus suggests we
should. I may split this out into a followup PR, though.
- [x] ~~Should we add the ability to remove types from the filter
regardless of whether an allowlist or denylist (e.g.
`filter.remove::<Foo>()`)?~~ See the first list item
- [x] ~~Should `SceneFilter` be an enum? Would it make more sense as a
struct that contains an `is_denylist` boolean?~~ With the added
`SceneFilter::None` state (replacing the need to wrap in an `Option` or
rely on an empty `Denylist`), it seems an enum is better suited now
- [x] ~~Bikeshed: Do we like the naming convention? Should we instead
use `include`/`exclude` terminology?~~ Sounds like we're sticking with
`allow`/`deny`!
- [x] ~~Does this feature need a new example? Do we simply include it in
the existing one (maybe even as a comment?)? Should this be done in a
followup PR instead?~~ Example will be added in a followup PR
### Followup Tasks
- [ ] Add a dedicated `SceneFilter` example
- [ ] Possibly add default types to the filter (e.g. deny things like
`ComputedVisibility`, allow `Parent`, etc)
---
## Changelog
- Added the `SceneFilter` enum for filtering components and resources
when building a `DynamicScene`
- Added methods:
- `DynamicSceneBuilder::with_filter`
- `DynamicSceneBuilder::allow`
- `DynamicSceneBuilder::deny`
- `DynamicSceneBuilder::allow_all`
- `DynamicSceneBuilder::deny_all`
- `DynamicSceneBuilder::with_resource_filter`
- `DynamicSceneBuilder::allow_resource`
- `DynamicSceneBuilder::deny_resource`
- `DynamicSceneBuilder::allow_all_resources`
- `DynamicSceneBuilder::deny_all_resources`
- Removed methods:
- `DynamicSceneBuilder::from_world_with_type_registry`
- `DynamicScene::from_scene` and `DynamicScene::from_world` no longer
require an `AppTypeRegistry` reference
## Migration Guide
- `DynamicScene::from_scene` and `DynamicScene::from_world` no longer
require an `AppTypeRegistry` reference:
```rust
// OLD
let registry = world.resource::<AppTypeRegistry>();
let dynamic_scene = DynamicScene::from_world(&world, registry);
// let dynamic_scene = DynamicScene::from_scene(&scene, registry);
// NEW
let dynamic_scene = DynamicScene::from_world(&world);
// let dynamic_scene = DynamicScene::from_scene(&scene);
```
- Removed `DynamicSceneBuilder::from_world_with_type_registry`. Now the
registry is automatically taken from the given world:
```rust
// OLD
let registry = world.resource::<AppTypeRegistry>();
let builder = DynamicSceneBuilder::from_world_with_type_registry(&world,
registry);
// NEW
let builder = DynamicSceneBuilder::from_world(&world);
```
# Objective
After the UI layout is computed when the coordinates are converted back
from physical coordinates to logical coordinates the `UiScale` is
ignored. This results in a confusing situation where we have two
different systems of logical coordinates.
Example:
```rust
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, update)
.run();
}
fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) {
ui_scale.scale = 4.;
commands.spawn(Camera2dBundle::default());
commands.spawn(NodeBundle {
style: Style {
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
width: Val::Percent(100.),
..Default::default()
},
..Default::default()
})
.with_children(|builder| {
builder.spawn(NodeBundle {
style: Style {
width: Val::Px(100.),
height: Val::Px(100.),
..Default::default()
},
background_color: Color::MAROON.into(),
..Default::default()
}).with_children(|builder| {
builder.spawn(TextBundle::from_section("", TextStyle::default());
});
});
}
fn update(
mut text_query: Query<(&mut Text, &Parent)>,
node_query: Query<Ref<Node>>,
) {
for (mut text, parent) in text_query.iter_mut() {
let node = node_query.get(parent.get()).unwrap();
if node.is_changed() {
text.sections[0].value = format!("size: {}", node.size());
}
}
}
```
result:
![Bevy App 30_05_2023
16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732)
We asked for a 100x100 UI node but the Node's size is multiplied by the
value of `UiScale` to give a logical size of 400x400.
## Solution
Divide the output physical coordinates by `UiScale` in
`ui_layout_system` and multiply the logical viewport size by `UiScale`
when creating the projection matrix for the UI's `ExtractedView` in
`extract_default_ui_camera_view`.
---
## Changelog
* The UI layout's physical coordinates are divided by both the window
scale factor and `UiScale` when converting them back to logical
coordinates. The logical size of Ui nodes now matches the values given
to their size constraints.
* Multiply the logical viewport size by `UiScale` before creating the
projection matrix for the UI's `ExtractedView` in
`extract_default_ui_camera_view`.
* In `ui_focus_system` the cursor position returned from `Window` is
divided by `UiScale`.
* Added a scale factor parameter to `Node::physical_size` and
`Node::physical_rect`.
* The example `viewport_debug` now uses a `UiScale` of 2. to ensure that
viewport coordinates are working correctly with a non-unit `UiScale`.
## Migration Guide
Physical UI coordinates are now divided by both the `UiScale` and the
window's scale factor to compute the logical sizes and positions of UI
nodes.
This ensures that UI Node size and position values, held by the `Node`
and `GlobalTransform` components, conform to the same logical coordinate
system as the style constraints from which they are derived,
irrespective of the current `scale_factor` and `UiScale`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
The current mobile example produces an APK of 1.5 Gb.
- Running the example on a real device takes significant time (around
one minute just to copy the file over USB to my phone).
- Default virtual devices in Android studio run out of space after the
first install. This can of course be solved/configured, but it causes
unnecessary friction.
- One impression could be, that Bevy produces bloated APKs. 1.5Gb is
even double the size of debug builds for desktop examples.
## Solution
- Strip the debug symbols of the shared libraries before they are copied
to the APK
APK size after this change: 200Mb
Copy time on my machine: ~8s
## Considered alternative
APKs built in release mode are only 50Mb in size, but require setting up
signing for the profile and compile longer.
# Objective
The setup code in `animated_fox` uses a `done` boolean to avoid running
the `play` logic repetitively.
It is a common pattern, but it just work with exactly one fox, and
misses an even more common pattern.
When a user modifies the code to try it with several foxes, they are
confused as to why it doesn't work (#8996).
## Solution
The more common pattern is to use `Added<AnimationPlayer>` as a query
filter.
This both reduces complexity and naturally extend the setup code to
handle several foxes, added at any time.
# Objective
**This implementation is based on
https://github.com/bevyengine/rfcs/pull/59.**
---
Resolves#4597
Full details and motivation can be found in the RFC, but here's a brief
summary.
`FromReflect` is a very powerful and important trait within the
reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to
be formed into Real ones (e.g., `Vec<i32>`, etc.).
This mainly comes into play concerning deserialization, where the
reflection deserializers both return a `Box<dyn Reflect>` that almost
always contain one of these Dynamic representations of a Real type. To
convert this to our Real type, we need to use `FromReflect`.
It also sneaks up in other ways. For example, it's a required bound for
`T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`.
It's also required by all fields of an enum as it's used as part of the
`Reflect::apply` implementation.
So in other words, much like `GetTypeRegistration` and `Typed`, it is
very much a core reflection trait.
The problem is that it is not currently treated like a core trait and is
not automatically derived alongside `Reflect`. This makes using it a bit
cumbersome and easy to forget.
## Solution
Automatically derive `FromReflect` when deriving `Reflect`.
Users can then choose to opt-out if needed using the
`#[reflect(from_reflect = false)]` attribute.
```rust
#[derive(Reflect)]
struct Foo;
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Bar;
fn test<T: FromReflect>(value: T) {}
test(Foo); // <-- OK
test(Bar); // <-- Panic! Bar does not implement trait `FromReflect`
```
#### `ReflectFromReflect`
This PR also automatically adds the `ReflectFromReflect` (introduced in
#6245) registration to the derived `GetTypeRegistration` impl— if the
type hasn't opted out of `FromReflect` of course.
<details>
<summary><h4>Improved Deserialization</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
And since we can do all the above, we might as well improve
deserialization. We can now choose to deserialize into a Dynamic type or
automatically convert it using `FromReflect` under the hood.
`[Un]TypedReflectDeserializer::new` will now perform the conversion and
return the `Box`'d Real type.
`[Un]TypedReflectDeserializer::new_dynamic` will work like what we have
now and simply return the `Box`'d Dynamic type.
```rust
// Returns the Real type
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
// Returns the Dynamic type
let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
```
</details>
---
## Changelog
* `FromReflect` is now automatically derived within the `Reflect` derive
macro
* This includes auto-registering `ReflectFromReflect` in the derived
`GetTypeRegistration` impl
* ~~Renamed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped**
* ~~Changed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to automatically convert the
deserialized output using `FromReflect`~~ **Descoped**
## Migration Guide
* `FromReflect` is now automatically derived within the `Reflect` derive
macro. Items with both derives will need to remove the `FromReflect`
one.
```rust
// OLD
#[derive(Reflect, FromReflect)]
struct Foo;
// NEW
#[derive(Reflect)]
struct Foo;
```
If using a manual implementation of `FromReflect` and the `Reflect`
derive, users will need to opt-out of the automatic implementation.
```rust
// OLD
#[derive(Reflect)]
struct Foo;
impl FromReflect for Foo {/* ... */}
// NEW
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Foo;
impl FromReflect for Foo {/* ... */}
```
<details>
<summary><h4>Removed Migrations</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
* The reflect deserializers now perform a `FromReflect` conversion
internally. The expected output of `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` is no longer a Dynamic (e.g.,
`DynamicList`), but its Real counterpart (e.g., `Vec<i32>`).
```rust
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
// OLD
let output: DynamicStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
// NEW
let output: SomeStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
```
Alternatively, if this behavior isn't desired, use the
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic` methods instead:
```rust
// OLD
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
// NEW
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
```
</details>
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
operate on naga IR directly to improve handling of shader modules.
- give codespan reporting into imported modules
- allow glsl to be used from wgsl and vice-versa
the ultimate objective is to make it possible to
- provide user hooks for core shader functions (to modify light
behaviour within the standard pbr pipeline, for example)
- make automatic binding slot allocation possible
but ... since this is already big, adds some value and (i think) is at
feature parity with the existing code, i wanted to push this now.
## Solution
i made a crate called naga_oil (https://github.com/robtfm/naga_oil -
unpublished for now, could be part of bevy) which manages modules by
- building each module independantly to naga IR
- creating "header" files for each supported language, which are used to
build dependent modules/shaders
- make final shaders by combining the shader IR with the IR for imported
modules
then integrated this into bevy, replacing some of the existing shader
processing stuff. also reworked examples to reflect this.
## Migration Guide
shaders that don't use `#import` directives should work without changes.
the most notable user-facing difference is that imported
functions/variables/etc need to be qualified at point of use, and
there's no "leakage" of visible stuff into your shader scope from the
imports of your imports, so if you used things imported by your imports,
you now need to import them directly and qualify them.
the current strategy of including/'spreading' `mesh_vertex_output`
directly into a struct doesn't work any more, so these need to be
modified as per the examples (e.g. color_material.wgsl, or many others).
mesh data is assumed to be in bindgroup 2 by default, if mesh data is
bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1`
needs to be added to the pipeline shader_defs.
# Objective
In Bevy 10.1 and before, the only way to enable text wrapping was to set
a local `Val::Px` width constraint on the text node itself.
`Val::Percent` constraints and constraints on the text node's ancestors
did nothing.
#7779 fixed those problems. But perversely displaying unwrapped text is
really difficult now, and requires users to nest each `TextBundle` in a
`NodeBundle` and apply `min_width` and `max_width` constraints. Some
constructions may even need more than one layer of nesting. I've seen
several people already who have really struggled with this when porting
their projects to main in advance of 0.11.
## Solution
Add a `NoWrap` variant to the `BreakLineOn` enum.
If `NoWrap` is set, ignore any constraints on the width for the text and
call `TextPipeline::queue_text` with a width bound of `f32::INFINITY`.
---
## Changelog
* Added a `NoWrap` variant to the `BreakLineOn` enum.
* If `NoWrap` is set, any constraints on the width for the text are
ignored and `TextPipeline::queue_text` is called with a width bound of
`f32::INFINITY`.
* Changed the `size` field of `FixedMeasure` to `pub`. This shouldn't
have been private, it was always intended to have `pub` visibility.
* Added a `with_no_wrap` method to `TextBundle`.
## Migration Guide
`bevy_text::text::BreakLineOn` has a new variant `NoWrap` that disables
text wrapping for the `Text`.
Text wrapping can also be disabled using the `with_no_wrap` method of
`TextBundle`.
`Style` flattened `size`, `min_size` and `max_size` to its root struct,
causing compilation errors.
I uncommented the code to avoid further silent error not caught by CI,
but hid the view to keep the same behaviour.
# Objective
- Fixes#4922
## Solution
- Add an example that maps a custom texture on a 3D mesh.
---
## Changelog
> Added the texture itself (confirmed with mod on discord before it
should be ok) to the assets folder, added to the README and Cargo.toml.
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Sélène Amanita <134181069+Selene-Amanita@users.noreply.github.com>
# Objective
- Add morph targets to `bevy_pbr` (closes#5756) & load them from glTF
- Supersedes #3722
- Fixes#6814
[Morph targets][1] (also known as shape interpolation, shape keys, or
blend shapes) allow animating individual vertices with fine grained
controls. This is typically used for facial expressions. By specifying
multiple poses as vertex offset, and providing a set of weight of each
pose, it is possible to define surprisingly realistic transitions
between poses. Blending between multiple poses also allow composition.
Morph targets are part of the [gltf standard][2] and are a feature of
Unity and Unreal, and babylone.js, it is only natural to implement them
in bevy.
## Solution
This implementation of morph targets uses a 3d texture where each pixel
is a component of an animated attribute. Each layer is a different
target. We use a 2d texture for each target, because the number of
attribute×components×animated vertices is expected to always exceed the
maximum pixel row size limit of webGL2. It copies fairly closely the way
skinning is implemented on the CPU side, while on the GPU side, the
shader morph target implementation is a relatively trivial detail.
We add an optional `morph_texture` to the `Mesh` struct. The
`morph_texture` is built through a method that accepts an iterator over
attribute buffers.
The `MorphWeights` component, user-accessible, controls the blend of
poses used by mesh instances (so that multiple copy of the same mesh may
have different weights), all the weights are uploaded to a uniform
buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256
poses.
More literature:
* Old babylone.js implementation (vertex attribute-based):
https://www.eternalcoding.com/dev-log-1-morph-targets/
* Babylone.js implementation (similar to ours):
https://www.youtube.com/watch?v=LBPRmGgU0PE
* GPU gems 3:
https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits
* Development discord thread
https://discord.com/channels/691052431525675048/1083325980615114772https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258
## Acknowledgements
* Thanks to `storytold` for sponsoring the feature
* Thanks to `superdump` and `james7132` for guidance and help figuring
out stuff
## Future work
- Handling of less and more attributes (eg: animated uv, animated
arbitrary attributes)
- Dynamic pose allocation (so that zero-weighted poses aren't uploaded
to GPU for example, enables much more total poses)
- Better animation API, see #8357
----
## Changelog
- Add morph targets to bevy meshes
- Support up to 64 poses per mesh of individually up to 116508 vertices,
animation currently strictly limited to the position, normal and tangent
attributes.
- Load a morph target using `Mesh::set_morph_targets`
- Add `VisitMorphTargets` and `VisitMorphAttributes` traits to
`bevy_render`, this allows defining morph targets (a fairly complex and
nested data structure) through iterators (ie: single copy instead of
passing around buffers), see documentation of those traits for details
- Add `MorphWeights` component exported by `bevy_render`
- `MorphWeights` control mesh's morph target weights, blending between
various poses defined as morph targets.
- `MorphWeights` are directly inherited by direct children (single level
of hierarchy) of an entity. This allows controlling several mesh
primitives through a unique entity _as per GLTF spec_.
- Add `MorphTargetNames` component, naming each indices of loaded morph
targets.
- Load morph targets weights and buffers in `bevy_gltf`
- handle morph targets animations in `bevy_animation` (previously, it
was a `warn!` log)
- Add the `MorphStressTest.gltf` asset for morph targets testing, taken
from the glTF samples repo, CC0.
- Add morph target manipulation to `scene_viewer`
- Separate the animation code in `scene_viewer` from the rest of the
code, reducing `#[cfg(feature)]` noise
- Add the `morph_targets.rs` example to show off how to manipulate morph
targets, loading `MorpStressTest.gltf`
## Migration Guide
- (very specialized, unlikely to be touched by 3rd parties)
- `MeshPipeline` now has a single `mesh_layouts` field rather than
separate `mesh_layout` and `skinned_mesh_layout` fields. You should
handle all possible mesh bind group layouts in your implementation
- You should also handle properly the new `MORPH_TARGETS` shader def and
mesh pipeline key. A new function is exposed to make this easier:
`setup_moprh_and_skinning_defs`
- The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are
now accessed through the `get` method.
[1]: https://en.wikipedia.org/wiki/Morph_target_animation
[2]:
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Better consistency with `add_systems`.
- Deprecating `add_plugin` in favor of a more powerful `add_plugins`.
- Allow passing `Plugin` to `add_plugins`.
- Allow passing tuples to `add_plugins`.
## Solution
- `App::add_plugins` now takes an `impl Plugins` parameter.
- `App::add_plugin` is deprecated.
- `Plugins` is a new sealed trait that is only implemented for `Plugin`,
`PluginGroup` and tuples over `Plugins`.
- All examples, benchmarks and tests are changed to use `add_plugins`,
using tuples where appropriate.
---
## Changelog
### Changed
- `App::add_plugins` now accepts all types that implement `Plugins`,
which is implemented for:
- Types that implement `Plugin`.
- Types that implement `PluginGroup`.
- Tuples (up to 16 elements) over types that implement `Plugins`.
- Deprecated `App::add_plugin` in favor of `App::add_plugins`.
## Migration Guide
- Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#6920
## Solution
From the issue discussion:
> From looking at the `AsBindGroup` derive macro implementation, the
fallback image's `TextureView` is used when the binding's
`Option<Handle<Image>>` is `None`. Because this relies on already having
a view that matches the desired binding dimensions, I think the solution
will require creating a separate `GpuImage` for each possible
`TextureViewDimension`.
---
## Changelog
Users can now rely on `FallbackImage` to work with a texture binding of
any dimension.
# Objective
This adds support for using texture atlas sprites in UI. From
discussions today in the ui-dev discord it seems this is a much wanted
feature.
This was previously attempted in #5070 by @ManevilleF however that was
blocked #5103. This work can be easily modified to support #5103 changes
after that merges.
## Solution
I created a new UI bundle that reuses the existing texture atlas
infrastructure. I create a new atlas image component to prevent it from
being drawn by the existing non-UI systems and to remove unused
parameters.
In extract I added new system to calculate the required values for the
texture atlas image, this extracts into the same resource as the
existing UI Image and Text components.
This should have minimal performance impact because if texture atlas is
not present then the exact same code path is followed. Also there should
be no unintended behavior changes because without the new components the
existing systems write the extract same resulting data.
I also added an example showing the sprite working and a system to
advance the animation on space bar presses.
Naming is hard and I would accept any feedback on the bundle name!
---
## Changelog
> Added TextureAtlasImageBundle
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
Implement borders for UI nodes.
Relevant discussion: #7785
Related: #5924, #3991
<img width="283" alt="borders"
src="https://user-images.githubusercontent.com/27962798/220968899-7661d5ec-6f5b-4b0f-af29-bf9af02259b5.PNG">
## Solution
Add an extraction function to draw the borders.
---
Can only do one colour rectangular borders due to the limitations of the
Bevy UI renderer.
Maybe it can be combined with #3991 eventually to add curved border
support.
## Changelog
* Added a component `BorderColor`.
* Added the `extract_uinode_borders` system to the UI Render App.
* Added the UI example `borders`
---------
Co-authored-by: Nico Burns <nico@nicoburns.com>
# Objective
The AccessKit PR removed the loading of the image logo from the UI
example.
It also added some alt text with `TextStyle::default()` as a child of
the logo image node.
If you give an image node a child, then its size is no longer determined
by the measurefunc that preserves its aspect ratio. Instead, its width
and height are determined by the constraints set on the node and the
size of the contents of the node. In this case, the image node is set to
have a width of 500 with no constraints on its height. So it looks at
its child node to determine what height it should take. Because the
child has `TextStyle::default` it allocates no space for the text, the
height of the image node is set to zero and the logo isn't drawn.
Fixes#8805
## Solution
Load the image, and set min_size and max_size constraints of 500 by 125
pixels.
# Objective
The goal of this PR is to receive touchpad magnification and rotation
events.
## Solution
Implement pendants for winit's `TouchpadMagnify` and `TouchpadRotate`
events.
Adjust the `mouse_input_events.rs` example to debug magnify and rotate
events.
Since winit only reports these events on macOS, the Bevy events for
touchpad magnification and rotation are currently only fired on macOS.
# Objective
Be consistent with `Resource`s and `Components` and have `Event` types
be more self-documenting.
Although not susceptible to accidentally using a function instead of a
value due to `Event`s only being initialized by their type, much of the
same reasoning for removing the blanket impl on `Resource` also applies
here.
* Not immediately obvious if a type is intended to be an event
* Prevent invisible conflicts if the same third-party or primitive types
are used as events
* Allows for further extensions (e.g. opt-in warning for missed events)
## Solution
Remove the blanket impl for the `Event` trait. Add a derive macro for
it.
---
## Changelog
- `Event` is no longer implemented for all applicable types. Add the
`#[derive(Event)]` macro for events.
## Migration Guide
* Add the `#[derive(Event)]` macro for events. Third-party types used as
events should be wrapped in a newtype.
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/8586.
## Solution
- Add `preferred_theme` field to `Window` and set it when window
creation
- Add `window_theme` field to `InternalWindowState` to store current
window theme
- Expose winit `WindowThemeChanged` event
---------
Co-authored-by: hate <15314665+hate@users.noreply.github.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
I was trying to add some `Diagnostics` to have a better break down of
performance but I noticed that the current implementation uses a
`ResMut` which forces the functions to all run sequentially whereas
before they could run in parallel. This created too great a performance
penalty to be usable.
## Solution
This PR reworks how the diagnostics work with a couple of breaking
changes. The idea is to change how `Diagnostics` works by changing it to
a `SystemParam`. This allows us to hold a `Deferred` buffer of
measurements that can be applied later, avoiding the need for multiple
mutable references to the hashmap. This means we can run systems that
write diagnostic measurements in parallel.
Firstly, we rename the old `Diagnostics` to `DiagnosticsStore`. This
clears up the original name for the new interface while allowing us to
preserve more closely the original API.
Then we create a new `Diagnostics` struct which implements `SystemParam`
and contains a deferred `SystemBuffer`. This can be used very similar to
the old `Diagnostics` for writing new measurements.
```rust
fn system(diagnostics: ResMut<Diagnostics>) { diagnostics.new_measurement(ID, || 10.0)}
// changes to
fn system(mut diagnostics: Diagnostics) { diagnostics.new_measurement(ID, || 10.0)}
```
For reading the diagnostics, the user needs to change from `Diagnostics`
to `DiagnosticsStore` but otherwise the function calls are the same.
Finally, we add a new method to the `App` for registering diagnostics.
This replaces the old method of creating a startup system and adding it
manually.
Testing it, this PR does indeed allow Diagnostic systems to be run in
parallel.
## Changelog
- Change `Diagnostics` to implement `SystemParam` which allows
diagnostic systems to run in parallel.
## Migration Guide
- Register `Diagnostic`'s using the new
`app.register_diagnostic(Diagnostic::new(DIAGNOSTIC_ID,
"diagnostic_name", 10));`
- In systems for writing new measurements, change `mut diagnostics:
ResMut<Diagnostics>` to `mut diagnostics: Diagnostics` to allow the
systems to run in parallel.
- In systems for reading measurements, change `diagnostics:
Res<Diagnostics>` to `diagnostics: Res<DiagnosticsStore>`.
# Objective
- Introduce a stable alternative to
[`std::any::type_name`](https://doc.rust-lang.org/std/any/fn.type_name.html).
- Rewrite of #5805 with heavy inspiration in design.
- On the path to #5830.
- Part of solving #3327.
## Solution
- Add a `TypePath` trait for static stable type path/name information.
- Add a `TypePath` derive macro.
- Add a `impl_type_path` macro for implementing internal and foreign
types in `bevy_reflect`.
---
## Changelog
- Added `TypePath` trait.
- Added `DynamicTypePath` trait and `get_type_path` method to `Reflect`.
- Added a `TypePath` derive macro.
- Added a `bevy_reflect::impl_type_path` for implementing `TypePath` on
internal and foreign types in `bevy_reflect`.
- Changed `bevy_reflect::utility::(Non)GenericTypeInfoCell` to
`(Non)GenericTypedCell<T>` which allows us to be generic over both
`TypeInfo` and `TypePath`.
- `TypePath` is now a supertrait of `Asset`, `Material` and
`Material2d`.
- `impl_reflect_struct` needs a `#[type_path = "..."]` attribute to be
specified.
- `impl_reflect_value` needs to either specify path starting with a
double colon (`::core::option::Option`) or an `in my_crate::foo`
declaration.
- Added `bevy_reflect_derive::ReflectTypePath`.
- Most uses of `Ident` in `bevy_reflect_derive` changed to use
`ReflectTypePath`.
## Migration Guide
- Implementors of `Asset`, `Material` and `Material2d` now also need to
derive `TypePath`.
- Manual implementors of `Reflect` will need to implement the new
`get_type_path` method.
## Open Questions
- [x] ~This PR currently does not migrate any usages of
`std::any::type_name` to use `bevy_reflect::TypePath` to ease the review
process. Should it?~ Migration will be left to a follow-up PR.
- [ ] This PR adds a lot of `#[derive(TypePath)]` and `T: TypePath` to
satisfy new bounds, mostly when deriving `TypeUuid`. Should we make
`TypePath` a supertrait of `TypeUuid`? [Should we remove `TypeUuid` in
favour of
`TypePath`?](2afbd85532 (r961067892))
# Objective
- `apply_system_buffers` is an unhelpful name: it introduces a new
internal-only concept
- this is particularly rough for beginners as reasoning about how
commands work is a critical stumbling block
## Solution
- rename `apply_system_buffers` to the more descriptive `apply_deferred`
- rename related fields, arguments and methods in the internals fo
bevy_ecs for consistency
- update the docs
## Changelog
`apply_system_buffers` has been renamed to `apply_deferred`, to more
clearly communicate its intent and relation to `Deferred` system
parameters like `Commands`.
## Migration Guide
- `apply_system_buffers` has been renamed to `apply_deferred`
- the `apply_system_buffers` method on the `System` trait has been
renamed to `apply_deferred`
- the `is_apply_system_buffers` function has been replaced by
`is_apply_deferred`
- `Executor::set_apply_final_buffers` is now
`Executor::set_apply_final_deferred`
- `Schedule::apply_system_buffers` is now `Schedule::apply_deferred`
---------
Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
# Objective
- Showcase the use of `or_else()` as requested. Fixes
https://github.com/bevyengine/bevy/issues/8702
## Solution
- Add an uninitialized resource `Unused`
- Use `or_else()` to evaluate a second run condition
- Add documentation explaining how `or_else()` works
# Objective
Since #8446, example `shader_prepass` logs the following error on my mac
m1:
```
ERROR bevy_render::render_resource::pipeline_cache: failed to process shader:
error: Entry point fragment at Fragment is invalid
= Argument 1 varying error
= Capability MULTISAMPLED_SHADING is not supported
```
The example display the 3d scene but doesn't change with the preps
selected
Maybe related to this update in naga:
cc3a8ac737
## Solution
- Disable MSAA in the example, and check if it's enabled in the shader
# Objective
- fix clippy lints early to make sure CI doesn't break when they get
promoted to stable
- have a noise-free `clippy` experience for nightly users
## Solution
- `cargo clippy --fix`
- replace `filter_map(|x| x.ok())` with `map_while(|x| x.ok())` to fix
potential infinite loop in case of IO error
# Objective
Fix the examples many_buttons and many_glyphs not working on the WebGPU
examples page. Currently they both fail with the follow error:
```
panicked at 'Only FIFO/Auto* is supported on web', ..../wgpu-0.16.0/src/backend/web.rs:1162:13
```
## Solution
Change `present_mode` from `PresentMode::Immediate` to
`PresentMode::AutoNoVsync`. AutoNoVsync seems to be common mode used by
other examples of this kind.
# Objective
- Simplify API and make authoring styles easier
See:
https://github.com/bevyengine/bevy/issues/8540#issuecomment-1536177102
## Solution
- The `size`, `min_size`, `max_size`, and `gap` properties have been
replaced by `width`, `height`, `min_width`, `min_height`, `max_width`,
`max_height`, `row_gap`, and `column_gap` properties
---
## Changelog
- Flattened `Style` properties that have a `Size` value directly into
`Style`
## Migration Guide
- The `size`, `min_size`, `max_size`, and `gap` properties have been
replaced by the `width`, `height`, `min_width`, `min_height`,
`max_width`, `max_height`, `row_gap`, and `column_gap` properties. Use
the new properties instead.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
- Fix#5631
## Solution
- Wait 50ms (configurable) after the last modification event before
reloading an asset.
---
## Changelog
- `AssetPlugin::watch_for_changes` is now a `ChangeWatcher` instead of a
`bool`
- Fixed https://github.com/bevyengine/bevy/issues/5631
## Migration Guide
- Replace `AssetPlugin::watch_for_changes: true` with e.g.
`ChangeWatcher::with_delay(Duration::from_millis(200))`
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Cleanup file tree
## Solution
A mysterious mod.rs lies in the scene_viewer directory. It seems
completely useless, everything ignores it and it doesn't affect
anything.
We cruelly remove it, making the world a less whimsical place. A
dystopian drive for pure and complete order compels us to eliminate all
that is useless, for clarity and to prevent the wonder and beauty of
confusion.
# Objective
`ScheduleRunnerPlugin` was still configured via a resource, meaning
users would be able to change the settings while the app is running, but
the changes wouldn't have an effect.
## Solution
Configure plugin directly
---
## Changelog
- Changed: merged `ScheduleRunnerSettings` into `ScheduleRunnerPlugin`
## Migration Guide
- instead of inserting the `ScheduleRunnerSettings` resource, configure
the `ScheduleRunnerPlugin`
# Objective
Frustum culling for 2D components has been enabled since #7885,
Fixes#8490
## Solution
Re-introduced the comments about frustum culling in the
many_animated_sprites.rs and many_sprites.rs examples.
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Support WebGPU
- alternative to #5027 that doesn't need any async / await
- fixes#8315
- Surprise fix#7318
## Solution
### For async renderer initialisation
- Update the plugin lifecycle:
- app builds the plugin
- calls `plugin.build`
- registers the plugin
- app starts the event loop
- event loop waits for `ready` of all registered plugins in the same
order
- returns `true` by default
- then call all `finish` then all `cleanup` in the same order as
registered
- then execute the schedule
In the case of the renderer, to avoid anything async:
- building the renderer plugin creates a detached task that will send
back the initialised renderer through a mutex in a resource
- `ready` will wait for the renderer to be present in the resource
- `finish` will take that renderer and place it in the expected
resources by other plugins
- other plugins (that expect the renderer to be available) `finish` are
called and they are able to set up their pipelines
- `cleanup` is called, only custom one is still for pipeline rendering
### For WebGPU support
- update the `build-wasm-example` script to support passing `--api
webgpu` that will build the example with WebGPU support
- feature for webgl2 was always enabled when building for wasm. it's now
in the default feature list and enabled on all platforms, so check for
this feature must also check that the target_arch is `wasm32`
---
## Migration Guide
- `Plugin::setup` has been renamed `Plugin::cleanup`
- `Plugin::finish` has been added, and plugins adding pipelines should
do it in this function instead of `Plugin::build`
```rust
// Before
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>()
.init_resource::<OtherRenderResource>();
}
}
// After
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<OtherRenderResource>();
}
fn finish(&self, app: &mut App) {
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>();
}
}
```
# Objective
- Enable taking a screenshot in wasm
- Followup on #7163
## Solution
- Create a blob from the image data, generate a url to that blob, add an
`a` element to the document linking to that url, click on that element,
then revoke the url
- This will automatically trigger a download of the screenshot file in
the browser