Commit graph

273 commits

Author SHA1 Message Date
bjorn3
6d6bc2a8b4 Merge AppBuilder into App (#2531)
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.

You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.

Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
2021-07-27 20:21:06 +00:00
Carter Anderson
4ac2ed7cc6 pipelined rendering proof of concept 2021-07-24 16:43:37 -07:00
Carter Anderson
e167a1d9cf Relicense Bevy under the dual MIT or Apache-2.0 license (#2509)
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.

* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
  * Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive. 
  * People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach. 
  * I like keeping the root clean and noise free
  * There is precedent for putting the apache and mit license text in sub folders (amethyst) 
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.

As a follow-up we should update the website to properly describe the new license.

Closes #2373
2021-07-23 21:11:51 +00:00
Gilbert Röhrbein
10b0b1ad40 docs: add hint that texture atlas padding is between tiles (#2447)
I struggled with some sprite sheet animation which was like drifting from right to left.
This PR documents the current behaviour that the padding which is used on slicing a texture into a texture atlas, is assumed to be only between tiles. In my case I had some padding also on the right side of the texture.
2021-07-12 20:29:28 +00:00
François
c2722f713a expose texture/image conversions as From/TryFrom (#2175)
fixes #2169 

Instead of having custom methods with reduced visibility, implement `From<image::DynamicImage> for Texture` and `TryFrom<Texture> for image::DynamicImage`
2021-06-08 02:26:51 +00:00
Paweł Grabarz
189df30a83 use bytemuck crate instead of Byteable trait (#2183)
This gets rid of multiple unsafe blocks that we had to maintain ourselves, and instead depends on library that's commonly used and supported by the ecosystem. We also get support for glam types for free.

There is still some things to clear up with the `Bytes` trait, but that is a bit more substantial change and can be done separately. Also there are already separate efforts to use `crevice` crate, so I've just added that as a TODO.
2021-05-17 22:29:10 +00:00
Jonas Matser
d1f40148fd Allows a number of clippy lints and fixes 2 (#1999)
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-05-14 20:37:32 +00:00
Federico Rinaldi
b4f80c29ee Add module level documentation for collide_aabb (#2152)
Related to #2105.

Doc comments are present on the `collide` function, but not on the module level.
2021-05-14 18:45:31 +00:00
jak6jak
809877ade6 official 2D examples linked in rustdoc (#2081)
I linked to examples within the rustdoc for the 2d examples as per issue #1934
2021-05-05 18:45:49 +00:00
dependabot[bot]
2390bee647 Update rectangle-pack requirement from 0.3 to 0.4 (#2086)
Updates the requirements on [rectangle-pack](https://github.com/chinedufn/rectangle-pack) to permit the latest version.
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a href="https://github.com/chinedufn/rectangle-pack/commits">compare view</a></li>
</ul>
</details>
<br />


Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
- `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)


</details>
2021-05-03 21:20:35 +00:00
François
afaf4ad3da update for wgpu 0.8 (#1959)
Changes to get Bevy to compile with wgpu master.

With this, on a Mac:
* 2d examples look fine
* ~~3d examples crash with an error specific to metal about a compilation error~~
* 3d examples work fine after enabling feature `wgpu/cross`


Feature `wgpu/cross` seems to be needed only on some platforms, not sure how to know which. It was introduced in https://github.com/gfx-rs/wgpu-rs/pull/826
2021-05-02 20:45:25 +00:00
Lucas Rocha
b1ed28e17e Hide re-exported docs (#1985)
Solves #1957 

Co-authored-by: caelumLaron <caelum.laron@gmail.com>
2021-04-27 18:29:33 +00:00
Carter Anderson
97d8e4e179 Release 0.5.0 (#1835) 2021-04-06 18:48:48 +00:00
Carter Anderson
bf053218bf Disable frustum culling and add warning (#1761)
Frustum culling has some pretty major gaps right now (such as not supporting sprite transform scaling and not taking into account projections). It should be disabled by default until it provides a solid experience across all bevy use cases.
2021-03-25 22:05:28 +00:00
Aaron Winter
b65ec82d46 Frustum Culling (for Sprites) (#1492)
This PR adds two systems to the sprite module that culls Sprites and AtlasSprites that are not within the camera's view.
This is achieved by removing / adding a new  `Viewable` Component dynamically.

Some of the render queries now use a `With<Viewable>` filter to only process the sprites that are actually on screen, which improves performance drastically for scene swith a large amount of sprites off-screen.

https://streamable.com/vvzh2u

This scene shows a map with a 320x320 tiles, with a grid size of 64p.
This is exactly 102400 Sprites in the entire scene.

Without this PR, this scene runs with 1 to 4 FPS.

With this PR..
.. at 720p, there are around 600 visible sprites and runs at ~215 FPS
.. at 1440p there are around 2000 visible sprites and runs at ~135 FPS

The Systems this PR adds take around 1.2ms (with 100K+ sprites in the scene)

Note:
This is only implemented for Sprites and AtlasTextureSprites.
There is no culling for 3D in this PR.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-03-24 21:29:53 +00:00
François
248ec1ed95 update rectangle-pack to latest release (#1742)
update to release of rectangle-pack  0.3.0 after #1741
2021-03-24 00:21:37 +00:00
François
9ae56e8604 update for rectangle-pack 0.2.1 (fix CI) (#1741)
crate `rectangle-pack` just published version 0.2.1 with a breaking change: c9ecd58f7a

I also opened an issue on their repo so that they are aware of it: https://github.com/chinedufn/rectangle-pack/issues/3
2021-03-23 19:07:33 +00:00
Jonas Matser
cd8025d0a7 Remove remaining camerapos bindings (#1708)
Fixes #1706

@JeanMertz already solved it. I just ran all examples and tests.
2021-03-22 18:10:35 +00:00
Jonas Matser
45b2db7070 Rebase of existing PBR work (#1554)
This is a rebase of StarArawns PBR work from #261 with IngmarBitters work from #1160 cherry-picked on top.

I had to make a few minor changes to make some intermediate commits compile and the end result is not yet 100% what I expected, so there's a bit more work to do.

Co-authored-by: John Mitchell <toasterthegamer@gmail.com>
Co-authored-by: Ingmar Bitter <ingmar.bitter@gmail.com>
2021-03-20 03:22:33 +00:00
Carter Anderson
dd4a196329 Flexible camera bindings (#1689)
Alternative to #1203 and #1611

Camera bindings have historically been "hacked in". They were _required_ in all shaders and only supported a single Mat4. PBR (#1554) requires the CameraView matrix, but adding this using the "hacked" method forced users to either include all possible camera data in a single binding (#1203) or include all possible bindings (#1611).

This approach instead assigns each "active camera" its own RenderResourceBindings, which are populated by CameraNode. The PassNode then retrieves (and initializes) the relevant bind groups for all render pipelines used by visible entities. 

* Enables any number of camera bindings , including zero (with any set or binding number ... set 0 should still be used to avoid rebinds).
* Renames Camera binding to CameraViewProj
* Adds CameraView binding
2021-03-19 20:36:40 +00:00
François
107dd73687 update ColorMaterial when Texture changed (#1461)
fixes #1161, fixes #1243

this adds two systems:
- first is keeping an hashmap of textures and their containing color materials, then listening to events on textures to select color materials that should be updated
- second is chained to send a modified event for all color materials that need updating
2021-03-17 19:53:24 +00:00
François
75ae20dc4a use std clamp instead of Bevy's (#1644)
Rust std's `clamp` has been stabilised in 1.50: https://github.com/rust-lang/rust/issues/44095

This is already the minimum supported version, so no change there 👍
2021-03-13 18:07:14 +00:00
Carter Anderson
b17f8a4bce format comments (#1612)
Uses the new unstable comment formatting features added to rustfmt.toml.
2021-03-11 00:27:30 +00:00
Nathan Stocks
faeccd7a09 Reflection cleanup (#1536)
This is an effort to provide the correct `#[reflect_value(...)]` attributes where they are needed.  

Supersedes #1533 and resolves #1528.

---

I am working under the following assumptions (thanks to @bjorn3 and @Davier for advice here):

- Any `enum` that derives `Reflect` and one or more of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } needs a `#[reflect_value(...)]` attribute containing the same subset of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } that is present on the derive.
- Same as above for `struct` and `#[reflect(...)]`, respectively.
- If a `struct` is used as a component, it should also have `#[reflect(Component)]`
- All reflected types should be registered in their plugins

I treated the following as components (added `#[reflect(Component)]` if necessary):
- `bevy_render`
  - `struct RenderLayers`
- `bevy_transform`
  - `struct GlobalTransform`
  - `struct Parent`
  - `struct Transform`
- `bevy_ui`
  - `struct Style`

Not treated as components:
- `bevy_math`
  - `struct Size<T>`
  - `struct Rect<T>`
  - Note: The updates for `Size<T>` and `Rect<T>` in `bevy::math::geometry` required using @Davier's suggestion to add `+ PartialEq` to the trait bound. I then registered the specific types used over in `bevy_ui` such as `Size<Val>`, etc. in `bevy_ui`'s plugin, since `bevy::math` does not contain a plugin.
- `bevy_render`
  - `struct Color`
  - `struct PipelineSpecialization`
  - `struct ShaderSpecialization`
  - `enum PrimitiveTopology`
  - `enum IndexFormat`

Not Addressed:
- I am not searching for components in Bevy that are _not_ reflected. So if there are components that are not reflected that should be reflected, that will need to be figured out in another PR.
- I only added `#[reflect(...)]` or `#[reflect_value(...)]` entries for the set of four traits { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } _if they were derived via `#[derive(...)]`_. I did not look for manual trait implementations of the same set of four, nor did I consider any traits outside the four.  Are those other possibilities something that needs to be looked into?
2021-03-09 23:39:41 +00:00
François
58d687b86d fix flip of contributor bird (#1573)
Since 89217171b4, some birds in example `contributors` where not colored.

Fix is to use `flip_x` of `Sprite` instead of setting `transform.scale.x` to `-1` as described in #1407.


It may be an unintended side effect, as now we can't easily display a colored sprite while changing it's scale from `1` to `-1`, we would have to change it's scale from `1` to `0`, then flip it, then change scale from `0` to `1`.
2021-03-07 19:50:19 +00:00
Carter Anderson
3a2a68852c Bevy ECS V2 (#1525)
# Bevy ECS V2

This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:

* Complete World rewrite
* Multiple component storage types:
    * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
    * Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
    * Configure component storage type
    * Retrieve information about component size/type/name/layout/send-ness/etc
    * Components are uniquely identified by a densely packed ComponentId
    * TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
    * With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
    * Entity reservation uses a normal world reference instead of unsafe transmute
    * QuerySets no longer transmute lifetimes
    * Made traits "unsafe" where relevant
    * More thorough safety docs
* WorldCell
    * Exposes safe mutable access to multiple resources at a time in a World 
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` 
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default 
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)

Fixes #1320

## `World` Rewrite

This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!

(the only shared code between the projects is the entity id allocator, which is already basically ideal)

A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.

## Component Storage (The Problem)

Two ECS storage paradigms have gained a lot of traction over the years:

* **Archetypal ECS**: 
    * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
    * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
    * Enables super-fast Query iteration due to its cache-friendly data layout
    * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
    * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
    * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
    * Adding/removing components is a cheap, constant time operation 

Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.

Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:

1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize

Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.

## Hybrid Component Storage (The Solution)

In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):

* **Tables** (aka "archetypal" storage)
    * The default storage. If you don't configure anything, this is what you get
    * Fast iteration by default
    * Slower add/remove operations
* **Sparse Sets**
    * Opt-in
    * Slower iteration
    * Faster add/remove operations

These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":

```rust
world.register_component(
    ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```

## Archetypes

Archetypes are now "just metadata" ... they no longer store components directly. They do store:

* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
    * Archetypes are uniquely defined by their component layouts
    * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
    * For now each archetype has exactly one table (which can have no components),
    * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
        * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
        * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
    * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
    * used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)  

## The "Archetype Graph"

Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.

The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.

Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.

As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.

## Stateful Queries

World queries are now stateful. This allows us to:

1. Cache archetype (and table) matches
    * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
    * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
    * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)

As a result, the direct `World` query api now looks like this:

```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```

Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).

However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.

## Stateful SystemParams

Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). 

SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.

Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).

(credit goes to @DJMcNab for the initial idea and draft pr here #1364)

## Configurable SystemParams

@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:

```rust

fn foo(value: Local<usize>) {    
}

app.add_system(foo.system().config(|c| c.0 = Some(10)));
```

## Uber Fast "for_each" Query Iterators

Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. 

```rust
fn system(query: Query<(&A, &mut B)>) {
    // you now have the option to do this for a speed boost
    query.for_each_mut(|(a, mut b)| {
    });

    // however normal iterators are still available
    for (a, mut b) in query.iter_mut() {
    }
}
```

I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.

We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).

## Component Metadata

`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.

## Significantly Cheaper `Access<T>`

We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.

This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.

## Merged Resources into World

Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).

Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.

I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).

This pr merges Resources into World:

```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```

Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.

_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!

## WorldCell

WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:

```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```

This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.

World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. 

WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. 

The api is currently limited to resource access, but it can and should be extended to queries / entity component access.

## Resource Scopes

WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!

Instead developers can use a "resource scope"

```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```

This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.

If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.

## Query Conflicts Use ComponentId Instead of ArchetypeComponentId

For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:

```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```

But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```

The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.

In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.

To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.

## EntityRef / EntityMut

World entity operations on `main` require that the user passes in an `entity` id to each operation:

```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```

This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).

These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:

```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
    .insert(A) // insert a single component into the entity
    .insert_bundle((B, C)) // insert a bundle of components into the entity
    .id() // id returns the Entity id

// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
    .insert(D)
    .insert_bundle(SomeBundle::default());
{
    // returns EntityRef (or panics if the entity does not exist)
    let d = world.entity(entity)
        .get::<D>() // gets the D component
        .unwrap();
    // world.get still exists for ergonomics
    let d = world.get::<D>(entity).unwrap();
}

// These variants return Options if you want to check existence instead of panicing 
world.get_entity_mut(entity)
    .unwrap()
    .insert(E);

if let Some(entity_ref) = world.get_entity(entity) {
    let d = entity_ref.get::<D>().unwrap();
}
```

This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.

## Safety Improvements

* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs

## RemovedComponents SystemParam

The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:

```rust
fn system(removed: RemovedComponents<T>) {
    for entity in removed.iter() {
    }
} 
```

## Simpler Bundle implementation

Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.

## Unified WorldQuery and QueryFilter types

(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)

WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).

QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.

This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.

## More Granular Modules

World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).

## Remaining Draft Work (to be done in this pr)

* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
    * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
    * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~

## Potential Future Work

* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
    * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
    * this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
    * would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
    * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
    * fixedbitset could have a const constructor 
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity) 
    * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
    * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
    * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
    * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
    * this is basically just "systems" so maybe it's not worth it
* Add more world ops
    * `world.clear()`
    * `world.reserve<T: Bundle>(count: usize)`
 * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
 * Adapt Commands apis for consistency with new World apis 

## Benchmarks

key:

* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)

### Simple Insert (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)

### Simpler Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)

### Fragment Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)

### Sparse Fragmented Iter

Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes

![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
 
### Schedule (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)

### Add Remove Component (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)


### Add Remove Component Big

Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed

![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)


### Get Component

Looks up a single component value a large number of times

![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
Zicklag
89217171b4 Add Sprite Flipping (#1407)
OK, here's my attempt at sprite flipping. There are a couple of points that I need review/help on, but I think the UX is about ideal:

```rust
        .spawn(SpriteBundle {
            material: materials.add(texture_handle.into()),
            sprite: Sprite {
                // Flip the sprite along the x axis
                flip: SpriteFlip { x: true, y: false },
                ..Default::default()
            },
            ..Default::default()
        });
```

Now for the issues. The big issue is that for some reason, when flipping the UVs on the sprite, there is a light "bleeding" or whatever you call it where the UV tries to sample past the texture boundry and ends up clipping. This is only noticed when resizing the window, though. You can see a screenshot below.

![image](https://user-images.githubusercontent.com/25393315/107098172-397aaa00-67d4-11eb-8e02-c90c820cd70e.png)

I am quite baffled why the texture sampling is overrunning like it is and could use some guidance if anybody knows what might be wrong.

The other issue, which I just worked around, is that I had to remove the `#[render_resources(from_self)]` annotation from the Spritesheet because the `SpriteFlip` render resource wasn't being picked up properly in the shader when using it. I'm not sure what the cause of that was, but by removing the annotation and re-organizing the shader inputs accordingly the problem was fixed.

I'm not sure if this is the most efficient way to do this or if there is a better way, but I wanted to try it out if only for the learning experience. Let me know what you think!
2021-03-03 19:26:45 +00:00
Alexander Sepity
c2a427f1a3
Non-string labels (#1423 continued) (#1473)
Non-string labels
2021-02-18 13:20:37 -08:00
Rob Parrett
110ff77db9
Fix regression causing "flipped" sprites to be invisible (#1399)
Regressed in 81809c71ce
2021-02-04 20:17:11 -08:00
François
6b8f8a7ed0
Texture atlas format and conversion (#1365)
* can specify texture format for a texture atlas
* add automatic conversion
2021-02-01 11:30:11 -08:00
Zhixing Zhang
81809c71ce
Update to wgpu-rs 0.7 (#542)
Update to wgpu-rs 0.7
2021-01-31 20:06:42 -08:00
Nathan Jeffords
b8fb462eff
Text2d render quality (#1171)
improve quality of text2d rendering

* remove coordinate tweaking in sprite-sheet shader
* fixes glyph shimmering of animated text
* reposition glyph before passing it to ab_glyph to normalize its rendering

The result of layout of sequence of glyphs causes individuals to have fractional positions, but since glyph renderings are reused for future instances of that glyph, this produces errors. This change accepts the errors but repositions the glyph to "0, 0" in an effort to get the cleanest possible rendering.
2021-01-01 15:36:00 -06:00
Matthias Seiffert
030ccf1984
Derive Clone for SpriteSheetBundle and SpriteBundle (#1177)
* Derive Clone for TextureAtlasSprite and SpriteSheetBundle

* Derive Clone for Sprite and SpriteBundle
2021-01-01 14:52:09 -06:00
Carter Anderson
3b2c6ce49b
release 0.4.0 (#1093) 2020-12-19 13:28:00 -06:00
Carter Anderson
841755aaf2
Adopt a Fetch pattern for SystemParams (#1074) 2020-12-15 21:57:16 -08:00
Carter Anderson
7ab0eeece0
Break out Visible component from Draw (#1034)
Break out Visible component from Draw
2020-12-09 13:38:48 -08:00
Carter Anderson
704a116778
fix scene loading (#988) 2020-12-03 13:57:36 -08:00
Joshua J. Bouw
b8f8d468db
ChangeTextureAtlasBuilder into expected Builder conventions (#969)
* Change`TextureAtlasBuilder` into expected Builder conventions
2020-12-02 20:54:13 -08:00
Joshua J. Bouw
9f4c8b1b9a
Fix errors and panics to typical Rust conventions (#968)
Fix errors and panics to typical Rust conventions
2020-12-02 11:31:16 -08:00
Carter Anderson
b5ffab7135
Renderer Optimization Round 1 (#958)
* only update global transforms when they (or their ancestors) have changed

* only update render resource nodes when they have changed (quality check plz)

* only update entity mesh specialization when mesh (or mesh component) has changed

* only update sprite size when changed

* remove stale bind groups

* fix setting size of loading sprites

* store unmatched render resource binding results

* reduce state changes

* cargo fmt + clippy

* remove cached "NoMatch" results when new bindings are added to RenderResourceBindings

* inline current_entity in world_builder

* try creating bind groups even when they havent changed

* render_resources_node: update all entities when resized

* fmt
2020-12-01 13:17:48 -08:00
Andre Kuehne
0b818d7b32
Fix collision detection by calculating positive penetration depth. (#966) 2020-12-01 00:33:52 -08:00
Carter Anderson
72b2fc9843
Bevy Reflection (#926)
Bevy Reflection
2020-11-27 16:39:59 -08:00
Duncan
46fac78774
Extend the Texture asset type to support 3D data (#903)
Extend the Texture asset type to support 3D data

Textures are still loaded from images as 2D, but they can be reshaped
according to how the render pipeline would like to use them.

Also add an example of how this can be used with the texture2DArray uniform type.
2020-11-22 12:04:47 -08:00
rod-salazar
85ecab8bb9
Tweaks to TextureAtlasBuilder.finish() (#887)
Tweaks to TextureAtlasBuilder.finish()
2020-11-21 12:55:25 -08:00
Joshua J. Bouw
b4a864ba5a
Replace Bytes with Byteable for TextureAtlasSprite (#874)
Replace Bytes with Byteable for TextureAtlasSprite
2020-11-21 11:48:10 -08:00
bjorn3
d6eb647451
Misc cleanups (#879)
* Remove cfg!(feature = "metal-auto-capture")

This cfg! has existed since the initial commit, but the corresponding
feature has never been part of Cargo.toml

* Remove unnecessary handle_create_window_events call

* Remove EventLoopProxyPtr wrapper

* Remove unnecessary statics

* Fix unrelated deprecation warning to fix CI
2020-11-17 13:40:18 -08:00
Carter Anderson
3a6f6de277
System Inputs, Outputs, Chaining, and Registration Ergo (#876)
System Inputs, Outputs, Chaining, and Registration Ergo
2020-11-16 18:18:00 -08:00
Carter Anderson
7628f4a64e
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle (#863)
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle
2020-11-15 20:32:23 -08:00
Mariusz Kryński
60fa2d5f93
delegate layout reflection to RenderResourceContext (#691)
* delegate layout reflection to RenderResourceContext
Also:
 * auto-reflect DynamicBindings
 * use RenderPipeline::new, update dynamic_bindings

linting.

* add dynamic binding generation

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2020-11-10 13:20:05 -08:00
Carter Anderson
ebcdc9fb8c
Flexible ECS System Params (#798)
system params can be in any order, faster compiles, remove foreach
2020-11-08 12:34:05 -08:00
Carter Anderson
9afe196f16
release: 0.3.0 (#783) 2020-11-03 13:34:00 -08:00
Carter Anderson
1d4a95db62
ecs: ergonomic query.iter(), remove locks, add QuerySets (#741) 2020-10-29 23:39:55 -07:00
Carter Anderson
c32e637384
Asset system rework and GLTF scene loading (#693) 2020-10-18 13:48:15 -07:00
David Ackerman
7ba45849f3
Add default for texture format (#675) 2020-10-16 11:44:31 -07:00
M
9c48e5cccb
Add a way to specify padding/ margins between sprites in a TextureAtlas. (#460)
Add a way to specify padding between sprites in a TextureAtlas
2020-10-14 20:49:07 -07:00
Carter Anderson
df64e1fc92
upgrade rectangle pack (#673) 2020-10-12 18:12:17 -07:00
Grayson Burton
354d71cc1f
The Great Debuggening (#632)
The Great Debuggening
2020-10-08 11:43:01 -07:00
Carter Anderson
74dba5f36b
release: 0.2.1 (#533) 2020-09-20 15:58:32 -07:00
Carter Anderson
ba5af4dd56
release: 0.2.0 (#520) 2020-09-19 15:29:08 -07:00
Marek Legris
474bb5403e
Transform Rewrite (#374)
Remove individual Translation / Rotation / Scale components in favor of a combined Transform component
2020-09-14 14:00:32 -07:00
Smite Rust
a9ce7f4e82
update dependencies (#470) 2020-09-10 12:54:24 -07:00
Sergey Minakov
52ae217b16
Resize mode for Sprite component (#430)
Adds a 'resize_mode' field for 'Sprite'.
This allows different resize handling based on 'SpriteResizeMode' enum value.
2020-09-08 12:04:22 -07:00
Carter Anderson
413caae7bb resolve errors from latest clippy version 2020-09-07 15:00:03 -07:00
Robbie Davenport
4aabe983ec
Switch usage of std HashMap/HashSet default hasher, to aHash algo (#258)
switch to ahash for HashMaps and HashSets via a new bevy_utils crate
2020-08-28 17:08:51 -07:00
Grant Moyer
e6a57bad25
Fix sprite clipping at same depth (#385) 2020-08-28 16:45:54 -07:00
Xavientois
0ae74a4a4d
Some examples of documentation (#338) 2020-08-24 17:57:10 -07:00
Carter Anderson
b925e22949 0.1.3 upgrade 2020-08-22 10:16:52 -07:00
kaflu
2dadc86fb0
Change CullMode to none for sprites (#241)
With `CullMode::Back`, a sprite image that is rotated in x,y plane won't display properly

Co-authored-by: kaflu <kaflu@users.noreply.github.com>
2020-08-21 19:52:31 -07:00
Carter Anderson
7c3b49cb6f upgrade to latest wgpu 2020-08-21 18:36:32 -07:00
Victor "multun" Collod
c38420f1e9 enforce clippy for all target and features 2020-08-16 07:20:06 -07:00
Carter Anderson
34752a27bd add "0.1" version to all bevy crate references 2020-08-09 17:39:28 -07:00
Carter Anderson
9aee5323e1 add crate metadata 2020-08-09 17:24:27 -07:00
Carter Anderson
3d09459813 add more doc comments and clean up some public exports 2020-08-09 16:13:04 -07:00
Carter Anderson
f963cd41dc app: rename AppPlugin to Plugin 2020-08-07 20:22:17 -07:00
Carter Anderson
ccf81edd8f render: add atlas padding support to work around MSAA artifacts, disable MSAA by default 2020-07-30 14:38:13 -07:00
Carter Anderson
2929197d9b render: add RenderPass queries. move ui to its own pass 2020-07-28 20:11:27 -07:00
Thomas Herzog
4cf0f53eae use TextureFormat for Textures
This commit also inserts debug asserts that texture data roughly respects
the format.
2020-07-26 22:08:15 +02:00
Carter Anderson
0c2e26ddde Revert "ecs: remove &mut requirement on query iterators"
This reverts commit 6dc1d07cbc.
2020-07-21 20:12:15 -07:00
Carter Anderson
6dc1d07cbc ecs: remove &mut requirement on query iterators 2020-07-20 13:59:51 -07:00
Carter Anderson
b5d3f7e794 use right handed coordinate system in 3d 2020-07-20 01:33:30 -07:00
Carter Anderson
19fe299f5a ecs: use Mut<T> tracking pointer everywhere 2020-07-18 02:09:55 -07:00
Carter Anderson
81df34adcf finish up import simplification 2020-07-16 19:38:21 -07:00
Carter Anderson
f742ce3ef2 app: simplify app imports 2020-07-16 18:47:51 -07:00
Carter Anderson
b12c4d0a48 render: simplify imports and cleanup prelude 2020-07-16 18:26:21 -07:00
Carter Anderson
196bde64e3 cargo fmt 2020-07-16 17:23:50 -07:00
Carter Anderson
1110f9b877 create bevy_math crate and move math types there 2020-07-16 17:11:52 -07:00
Carter Anderson
c81ab99dac cargo fmt 2020-07-10 01:37:06 -07:00
Carter Anderson
950e50bbb1 Bevy ECS migration 2020-07-10 01:06:21 -07:00
Carter Anderson
5787bcb2c5 legion: upgrade 2020-06-27 14:32:50 -07:00
Carter Anderson
7441ac1a01 add breakout example game 2020-06-26 22:04:56 -07:00
Carter Anderson
5e1f81037d sprite: add sprite sheet floating point error correction 2020-06-26 13:07:33 -07:00
Carter Anderson
69925f0817 render: multi-window cameras ready to go!
passes now bind camera buffers and cameras can now be assigned non-primary windows
2020-06-25 23:04:08 -07:00
Carter Anderson
92c44320ee ecs: rename EntityArchetype to ComponentSet 2020-06-25 11:21:56 -07:00
Carter Anderson
1ef4fbf005 ui: rework so Nodes now use transforms and z-sort happens 2020-06-25 10:13:00 -07:00
Carter Anderson
75429f4639 render: use left-handed coordinate system and y-up 2020-06-24 15:29:10 -07:00
Carter Anderson
4ba2f72572 render: is_transparent flag. draw transparent object back-to-front and opaque objects front-to-back 2020-06-24 11:35:01 -07:00
Carter Anderson
e921ae0199 sprite: use bevy_transform types in sprite sheet entities 2020-06-22 12:35:33 -07:00
Carter Anderson
f1786ec20a sprite: use bevy_transform types in sprite entities 2020-06-22 12:14:40 -07:00
Carter Anderson
99a3ee6570 fix texture atlas bytes test 2020-06-21 18:26:11 -07:00
Carter Anderson
faacd2778d sprite: add color to TextureAtlasSprite and make Vec3 16 bytes again to account for glsl UBO layout 2020-06-21 17:43:36 -07:00
Carter Anderson
ecea30cadb text: new atlased rendering finally works!
removed old render-to-texture rendering
2020-06-20 12:40:37 -07:00
Carter Anderson
74d0055a3d render: move dynamic_bindings to PipelineSpecialization
This is a temporary step back in ergonomics as we are no longer automatically inferring dynamic bindings from RenderResourceBindings
2020-06-17 18:10:29 -07:00
Carter Anderson
e855995145 cargo fmt 2020-06-15 12:47:35 -07:00
Carter Anderson
f799d3ac93 render: add RenderPipeline and begin moving logic there 2020-06-15 00:08:50 -07:00
Carter Anderson
516cf9ddf0 text: font atlas generation. initial Drawable boilerplate. temporary font atlas debug example 2020-06-13 18:53:31 -07:00
Carter Anderson
fc4160ea41 AssetRenderResourceNodes now consume asset change events. Remove EntitiesWaitingForAssets in favor of DrawState. 2020-06-10 18:54:17 -07:00
Carter Anderson
3d07fbdc81 render: "Immediate Mode" draw api
This replaces Renderable with Draw/RenderPipelines components and makes various aspects of the renderer much simpler and legible
2020-06-09 23:16:48 -07:00
Carter Anderson
1426208e2f remove DrawTargets in favor of PassNodes and in preparation for "immediate mode" drawing api 2020-06-08 14:35:13 -07:00
Carter Anderson
be23f119d5 remove old uniform system 2020-06-07 22:32:55 -07:00
Carter Anderson
62c434274f shader_defs: new leaner shader defs. they are now separate from uniforms 2020-06-07 22:24:53 -07:00
Carter Anderson
fd8f87400d add RenderResources/RenderResource traits to replace Uniforms/Uniform 2020-06-07 19:12:41 -07:00
Carter Anderson
5add29f8cf rename LocalToWorld -> Transform and LocalToParent -> LocalTransform 2020-06-07 13:39:50 -07:00
Carter Anderson
f2b3b909b4 sprite: use rectangle_pack crate for texture atlases. rename guillotiere implementation to DynamicTextureAtlasBuilder 2020-06-07 11:30:04 -07:00
Carter Anderson
6164ea6ecc sprite: dynamically resize atlas during build 2020-06-06 16:16:58 -07:00
Carter Anderson
2705e5cbb4 add texture atlases 2020-06-06 00:12:38 -07:00
Carter Anderson
db6a365b13 saner orthographic projection 2020-06-04 17:09:24 -07:00
Carter Anderson
6eea96366d cargo fmt 2020-06-03 20:08:20 -07:00
Carter Anderson
5927bad382 sprite sheets are fully operational 2020-06-03 19:00:19 -07:00
Carter Anderson
13d56907ed sprite: more sprite sheet work (not quite operable yet) 2020-06-03 11:39:10 -07:00
Carter Anderson
5bcd594cb4 bytes: AsBytes trait, remove zerocopy, remove glam fork 2020-06-01 19:38:05 -07:00
Carter Anderson
d5d0107ada bytes: remove AsBytes in favor of Bytes 2020-06-01 14:33:00 -07:00
Carter Anderson
e68ae995f8 rename rect to quad 2020-05-31 23:39:20 -07:00
Carter Anderson
6e76296ce0 sprite: create sprite crate. center 2d camera (split from ui camera). add 2d camera movement 2020-05-30 12:31:04 -07:00