# Objective
Another clippy-lint fix: the goal is so that `ci lints` actually
displays the problems that a contributor caused, and not a bunch of
existing stuff in the repo. (when run on nightly)
## Solution
This fixes all but the `clippy::needless_lifetimes` lint, which will
result in substantially more fixes and be in other PR(s). I also
explicitly allow `non_local_definitions` since it is [not working
correctly, but will be
fixed](https://github.com/rust-lang/rust/issues/131643).
A few things were manually fixed: for example, some places had an
explicitly defined `div_ceil` function that was used, which is no longer
needed since this function is stable on unsigned integers. Also, empty
lines in doc comments were handled individually.
## Testing
I ran `cargo clippy --workspace --all-targets --all-features --fix
--allow-staged` with the `clippy::needless_lifetimes` lint marked as
`allow` in `Cargo.toml` to avoid fixing that too. It now passes with all
but the listed lint.
# Objective
#15320 is a particularly painful breaking change, and the new
`RenderEntity` in particular is very noisy, with a lot of `let entity =
entity.id()` spam.
## Solution
Implement `WorldQuery`, `QueryData` and `ReadOnlyQueryData` for
`RenderEntity` and `WorldEntity`.
These work the same as the `Entity` impls from a user-facing
perspective: they simply return an owned (copied) `Entity` identifier.
This dramatically reduces noise and eases migration.
Under the hood, these impls defer to the implementations for `&T` for
everything other than the "call .id() for the user" bit, as they involve
read-only access to component data. Doing it this way (as opposed to
implementing a custom fetch, as tried in the first commit) dramatically
reduces the maintenance risk of complex unsafe code outside of
`bevy_ecs`.
To make this easier (and encourage users to do this themselves!), I've
made `ReadFetch` and `WriteFetch` slightly more public: they're no
longer `doc(hidden)`. This is a good change, since trying to vendor the
logic is much worse than just deferring to the existing tested impls.
## Testing
I've run a handful of rendering examples (breakout, alien_cake_addict,
auto_exposure, fog_volumes, box_shadow) and nothing broke.
## Follow-up
We should lint for the uses of `&RenderEntity` and `&MainEntity` in
queries: this is just less nice for no reason.
---------
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
# Objective
In the Render World, there are a number of collections that are derived
from Main World entities and are used to drive rendering. The most
notable are:
- `VisibleEntities`, which is generated in the `check_visibility` system
and contains visible entities for a view.
- `ExtractedInstances`, which maps entity ids to asset ids.
In the old model, these collections were trivially kept in sync -- any
extracted phase item could look itself up because the render entity id
was guaranteed to always match the corresponding main world id.
After #15320, this became much more complicated, and was leading to a
number of subtle bugs in the Render World. The main rendering systems,
i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a
similar pattern:
```rust
for visible_entity in visible_entities.iter::<With<Mesh2d>>() {
let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
continue;
};
// Look some more stuff up and specialize the pipeline...
let bin_key = Opaque2dBinKey {
pipeline: pipeline_id,
draw_function: draw_opaque_2d,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material_2d.get_bind_group_id().0,
};
opaque_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching),
);
}
```
In this case, `visible_entities` and `render_mesh_instances` are both
collections that are created and keyed by Main World entity ids, and so
this lookup happens to work by coincidence. However, there is a major
unintentional bug here: namely, because `visible_entities` is a
collection of Main World ids, the phase item being queued is created
with a Main World id rather than its correct Render World id.
This happens to not break mesh rendering because the render commands
used for drawing meshes do not access the `ItemQuery` parameter, but
demonstrates the confusion that is now possible: our UI phase items are
correctly being queued with Render World ids while our meshes aren't.
Additionally, this makes it very easy and error prone to use the wrong
entity id to look up things like assets. For example, if instead we
ignored visibility checks and queued our meshes via a query, we'd have
to be extra careful to use `&MainEntity` instead of the natural
`Entity`.
## Solution
Make all collections that are derived from Main World data use
`MainEntity` as their key, to ensure type safety and avoid accidentally
looking up data with the wrong entity id:
```rust
pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>;
```
Additionally, we make all `PhaseItem` be able to provide both their Main
and Render World ids, to allow render phase implementors maximum
flexibility as to what id should be used to look up data.
You can think of this like tracking at the type level whether something
in the Render World should use it's "primary key", i.e. entity id, or
needs to use a foreign key, i.e. `MainEntity`.
## Testing
##### TODO:
This will require extensive testing to make sure things didn't break!
Additionally, some extraction logic has become more complicated and
needs to be checked for regressions.
## Migration Guide
With the advent of the retained render world, collections that contain
references to `Entity` that are extracted into the render world have
been changed to contain `MainEntity` in order to prevent errors where a
render world entity id is used to look up an item by accident. Custom
rendering code may need to be changed to query for `&MainEntity` in
order to look up the correct item from such a collection. Additionally,
users who implement their own extraction logic for collections of main
world entity should strongly consider extracting into a different
collection that uses `MainEntity` as a key.
Additionally, render phases now require specifying both the `Entity` and
`MainEntity` for a given `PhaseItem`. Custom render phases should ensure
`MainEntity` is available when queuing a phase item.
# Objective
- Closes#15716
- Closes#15718
## Solution
- Replace `Handle<MeshletMesh>` with a new `MeshletMesh3d` component
- As expected there were some random things that needed fixing:
- A couple tests were storing handles just to prevent them from being
dropped I believe, which seems to have been unnecessary in some.
- The `SpriteBundle` still had a `Handle<Image>` field. I've removed
this.
- Tests in `bevy_sprite` incorrectly added a `Handle<Image>` field
outside of the `Sprite` component.
- A few examples were still inserting `Handle`s, switched those to their
corresponding wrappers.
- 2 examples that were still querying for `Handle<Image>` were changed
to query `Sprite`
## Testing
- I've verified that the changed example work now
## Migration Guide
`Handle` can no longer be used as a `Component`. All existing Bevy types
using this pattern have been wrapped in their own semantically
meaningful type. You should do the same for any custom `Handle`
components your project needs.
The `Handle<MeshletMesh>` component is now `MeshletMesh3d`.
The `WithMeshletMesh` type alias has been removed. Use
`With<MeshletMesh3d>` instead.
# Objective
- Another step towards #15716
- Remove trait implementations that are dependent on `Handle<T>` being a
`Component`
## Solution
- Remove unused `ExtractComponent` trait implementation for `Handle<T>`
- Remove unused `ExtractInstance` trait implementation for `AssetId`
- Although the `ExtractInstance` trait wasn't used, the `AssetId`s were
being stored inside of `ExtractedInstances` which has an
`ExtractInstance` trait bound on its contents.
I've upgraded the `RenderMaterialInstances` type alias to be its own
resource, identical to `ExtractedInstances<AssetId<M>>` to get around
that with minimal breakage.
## Testing
Tested `many_cubes`, rendering did not explode
# Objective
- Closes#15752
Calling the functions `App::observe` and `World::observe` doesn't make
sense because you're not "observing" the `App` or `World`, you're adding
an observer that listens for an event that occurs *within* the `World`.
We should rename them to better fit this.
## Solution
Renames:
- `App::observe` -> `App::add_observer`
- `World::observe` -> `World::add_observer`
- `Commands::observe` -> `Commands::add_observer`
- `EntityWorldMut::observe_entity` -> `EntityWorldMut::observe`
(Note this isn't a breaking change as the original rename was introduced
earlier this cycle.)
## Testing
Reusing current tests.
# Objective
Getting closer to the end! Another part of the required components
migration: reflection probes.
## Solution
As per the [proposal added by
Cart](https://hackmd.io/@bevy/required_components/%2FNmpIh0tGSiayGlswbfcEzw)
(Proposal 2), make `LightProbe` require `Transform` and `Visibility`,
and deprecate `ReflectionProbeBundle`.
Note that this proposal wasn't officially blessed yet, but it is the
only existing one that really works, so I implemented it here for
consideration.
## Testing
I ran the reflection probe example, and it appears to work.
---
## Migration Guide
`ReflectionProbeBundle` has been deprecated in favor of inserting the
`LightProbe` and `EnvironmentMapLight` components directly. Inserting
them will now automatically insert `Transform` and `Visibility`
components.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fixes#15285
## Solution
`winit` sends resized to zero events when the window is minimized only
on Windows OS(rust-windowing/winit#2015).
This makes updating window viewport size to `(0, 0)` and panicking when
calculating aspect ratio.
~~So, just skip these kinds of events - resizing to (0, 0) when the
window is minimized - on Windows OS~~
Idially, the camera extraction excludes the cameras whose target size
width or height is zero here;
25bfa80e60/crates/bevy_render/src/camera/camera.rs (L1060-L1074)
but it seems that winit event loop sends resize events after extraction
and before post update schedule, so they might panics before the
extraction filters them out.
Alternatively, it might be possible to change event loop evaluating
order or defer them to the right schedule but I'm afraid that it might
cause some breaking changes, so just skip rendering logics for such
windows and they will be all filtered out by the extractions on the next
frame and thereafter.
## Testing
Running the example in the original issue and minimizing causes panic,
or just running `tests/window/minimising.rs` with `cargo run --example
minimising` panics without this PR and doesn't panics with this PR.
I think that we should run it in CI on Windows OS btw
# Objective
Fixes#15560
Fixes (most of) #15570
Currently a lot of examples (and presumably some user code) depend on
toggling certain render features by adding/removing a single component
to an entity, e.g. `SpotLight` to toggle a light. Because of the
retained render world this no longer works: Extract will add any new
components, but when it is removed the entity persists unchanged in the
render world.
## Solution
Add `SyncComponentPlugin<C: Component>` that registers
`SyncToRenderWorld` as a required component for `C`, and adds a
component hook that will clear all components from the render world
entity when `C` is removed. We add this plugin to
`ExtractComponentPlugin` which fixes most instances of the problem. For
custom extraction logic we can manually add `SyncComponentPlugin` for
that component.
We also rename `WorldSyncPlugin` to `SyncWorldPlugin` so we start a
naming convention like all the `Extract` plugins.
In this PR I also fixed a bunch of breakage related to the retained
render world, stemming from old code that assumed that `Entity` would be
the same in both worlds.
I found that using the `RenderEntity` wrapper instead of `Entity` in
data structures when referring to render world entities makes intent
much clearer, so I propose we make this an official pattern.
## Testing
Run examples like
```
cargo run --features pbr_multi_layer_material_textures --example clearcoat
cargo run --example volumetric_fog
```
and see that they work, and that toggles work correctly. But really we
should test every single example, as we might not even have caught all
the breakage yet.
---
## Migration Guide
The retained render world notes should be updated to explain this edge
case and `SyncComponentPlugin`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
# Objective
- Prepare for streaming by storing vertex data per-meshlet, rather than
per-mesh (this means duplicating vertices per-meshlet)
- Compress vertex data to reduce the cost of this
## Solution
The important parts are in from_mesh.rs, the changes to the Meshlet type
in asset.rs, and the changes in meshlet_bindings.wgsl. Everything else
is pretty secondary/boilerplate/straightforward changes.
- Positions are quantized in centimeters with a user-provided power of 2
factor (ideally auto-determined, but that's a TODO for the future),
encoded as an offset relative to the minimum value within the meshlet,
and then stored as a packed list of bits using the minimum number of
bits needed for each vertex position channel for that meshlet
- E.g. quantize positions (lossly, throws away precision that's not
needed leading to using less bits in the bitstream encoding)
- Get the min/max quantized value of each X/Y/Z channel of the quantized
positions within a meshlet
- Encode values relative to the min value of the meshlet. E.g. convert
from [min, max] to [0, max - min]
- The new max value in the meshlet is (max - min), which only takes N
bits, so we only need N bits to store each channel within the meshlet
(lossless)
- We can store the min value and that it takes N bits per channel in the
meshlet metadata, and reconstruct the position from the bitstream
- Normals are octahedral encoded and than snorm2x16 packed and stored as
a single u32.
- Would be better to implement the precise variant of octhedral encoding
for extra precision (no extra decode cost), but decided to keep it
simple for now and leave that as a followup
- Tried doing a quantizing and bitstream encoding scheme like I did for
positions, but struggled to get it smaller. Decided to go with this for
simplicity for now
- UVs are uncompressed and take a full 64bits per vertex which is
expensive
- In the future this should be improved
- Tangents, as of the previous PR, are not explicitly stored and are
instead derived from screen space gradients
- While I'm here, split up MeshletMeshSaverLoader into two separate
types
Other future changes include implementing a smaller encoding of triangle
data (3 u8 indices = 24 bits per triangle currently), and more
disk-oriented compression schemes.
References:
* "A Deep Dive into UE5's Nanite Virtualized Geometry"
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf#page=128
(also available on youtube)
* "Towards Practical Meshlet Compression"
https://arxiv.org/pdf/2404.06359
* "Vertex quantization in Omniforce Game Engine"
https://daniilvinn.github.io/2024/05/04/omniforce-vertex-quantization.html
## Testing
- Did you test these changes? If so, how?
- Converted the stanford bunny, and rendered it with a debug material
showing normals, and confirmed that it's identical to what's on main.
EDIT: See additional testing in the comments below.
- Are there any parts that need more testing?
- Could use some more size comparisons on various meshes, and testing
different quantization factors. Not sure if 4 is a good default. EDIT:
See additional testing in the comments below.
- Also did not test runtime performance of the shaders. EDIT: See
additional testing in the comments below.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Use my unholy script, replacing the meshlet example
https://paste.rs/7xQHk.rs (must make MeshletMesh fields pub instead of
pub crate, must add lz4_flex as a dev-dependency) (must compile with
meshlet and meshlet_processor features, mesh must have only positions,
normals, and UVs, no vertex colors or tangents)
---
## Migration Guide
- TBD by JMS55 at the end of the release
The previous fixes were breaking pretty much everything on main due to
naga-oil complaining about the OIT shader not being loaded, since
apparently webgl is a default feature. This fix is a bit messier, but
properly warns the user and is probably what we should have gone for in
the first place.
# Objective
- Alpha blending can easily fail in many situations and requires sorting
on the cpu
## Solution
- Implement order independent transparency (OIT) as an alternative to
alpha blending
- The implementation uses 2 passes
- The first pass records all the fragments colors and position to a
buffer that is the size of N layers * the render target resolution.
- The second pass sorts the fragments, blends them and draws them to the
screen. It also currently does manual depth testing because early-z
fails in too many cases in the first pass.
## Testing
- We've been using this implementation at foresight in production for
many months now and we haven't had any issues related to OIT.
---
## Showcase
![image](https://github.com/user-attachments/assets/157f3e32-adaf-4782-b25b-c10313b9bc43)
![image](https://github.com/user-attachments/assets/bef23258-0c22-4b67-a0b8-48a9f571c44f)
## Future work
- Add an example showing how to use OIT for a custom material
- Next step would be to implement a per-pixel linked list to reduce
memory use
- I'd also like to investigate using a BinnedRenderPhase instead of a
SortedRenderPhase. If it works, it would make the transparent pass
significantly faster.
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
Currently, it's possible for the `collect_meshes_for_gpu_building`
system to run after `set_mesh_motion_vector_flags`. This will cause
those motion vector flags to be overwritten, which will cause the shader
to ignore the motion vectors for skinned meshes, which will cause
graphical artifacts.
This patch corrects the issue by forcing `set_mesh_motion_vector_flags`
to run after `collect_meshes_for_gpu_building`.
# Objective
After merging retained rendering world #15320, we now have a good way of
creating a link between worlds (*HIYAA intensifies*). This means that
`get_or_spawn` is no longer necessary for that function. Entity should
be opaque as the warning above `get_or_spawn` says. This is also part of
#15459.
I'm deprecating `get_or_spawn_batch` in a different PR in order to keep
the PR small in size.
## Solution
Deprecate `get_or_spawn` and replace it with `get_entity` in most
contexts. If it's possible to query `&RenderEntity`, then the entity is
synced and `render_entity.id()` is initialized in the render world.
## Migration Guide
If you are given an `Entity` and you want to do something with it, use
`Commands.entity(...)` or `World.entity(...)`. If instead you want to
spawn something use `Commands.spawn(...)` or `World.spawn(...)`. If you
are not sure if an entity exists, you can always use `get_entity` and
match on the `Option<...>` that is returned.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Yet another PR for migrating stuff to required components. This time,
cameras!
## Solution
As per the [selected
proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected),
deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d`
and `Camera3d`.
Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning,
as suggested by Cart [on
Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273).
I would personally like cameras to work a bit differently and be split
into a few more components, to avoid some footguns and confusing
semantics, but that is more controversial, and shouldn't block this core
migration.
## Testing
I ran a few 2D and 3D examples, and tried cameras with and without
render graphs.
---
## Migration Guide
`Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of
`Camera2d` and `Camera3d`. Inserting them will now also insert the other
components required by them automatically.
# Objective
Fixes#15525
The deferred and mesh pipelines tonemapping LUT bindings were
accidentally out of sync, breaking deferred rendering.
As noted in the issue it's still broken on wasm due to hitting a texture
limit.
## Solution
Add constants for these instead of hardcoding them.
## Testing
Test with `cargo run --example deferred_rendering` and see it works, run
the same on main and see it crash.
Early implementation. I still have to fix the documentation and consider
writing a small migration guide.
Questions left to answer:
* [x] should thickness be an overridable constant?
* [x] is there a better way to implement `Eq`/`Hash` for `SSAOMethod`?
* [x] do we want to keep the linear sampler for the depth texture?
* [x] is there a better way to separate the logic than preprocessor
macros?
![vbao](https://github.com/bevyengine/bevy/assets/4136413/2a8a0389-2add-4c2e-be37-e208e52dcd25)
## Migration guide
SSAO algorithm was changed from GTAO to VBAO (visibility bitmasks). A
new field, `constant_object_thickness`, was added to
`ScreenSpaceAmbientOcclusion`. `ScreenSpaceAmbientOcclusion` also lost
its `Eq` and `Hash` implementations.
---------
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
As discussed in #15521
- Partial revert of #14897, reverting the change to the methods to
consume `self`
- The `insert_if` method is kept
The migration guide of #14897 should be removed
Closes#15521
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Again, a step forward in the migration to required components: a bunch
of camera rendering cormponents!
Note that this does not include the camera components themselves yet,
because the naming and API for `Camera` hasn't been fully decided yet.
## Solution
As per the [selected
proposals](https://hackmd.io/@bevy/required_components/%2FpiqD9GOdSFKZZGzzh3C7Uw):
- Deprecate `MotionBlurBundle` in favor of the `MotionBlur` component
- Deprecate `TemporalAntiAliasBundle` in favor of the
`TemporalAntiAliasing` component
- Deprecate `ScreenSpaceAmbientOcclusionBundle` in favor of the
`ScreenSpaceAmbientOcclusion` component
- Deprecate `ScreenSpaceReflectionsBundle` in favor of the
`ScreenSpaceReflections` component
---
## Migration Guide
`MotionBlurBundle`, `TemporalAntiAliasBundle`,
`ScreenSpaceAmbientOcclusionBundle`, and `ScreenSpaceReflectionsBundle`
have been deprecated in favor of the `MotionBlur`,
`TemporalAntiAliasing`, `ScreenSpaceAmbientOcclusion`, and
`ScreenSpaceReflections` components instead. Inserting them will now
also insert the other components required by them automatically.
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Another part of the migration to required components: fog volumes!
## Solution
Deprecate `FogVolumeBundle` and make `FogVolume` require `Transform` and
`Visibility`, as per the [chosen
proposal](https://hackmd.io/@bevy/required_components/%2FcO7JPSAQR5G0J_j5wNwtOQ).
---
## Migration Guide
Replace all insertions of `FogVolumeBundle` with the `Visibility`
component. The other components required by it will now be inserted
automatically.
# Objective
- First step towards #15558
## Solution
- Rename `get_vertex_buffer_data` to `create_packed_vertex_buffer_data`
to make it clear that it is not "free" and actually allocates
- Compute length analytically for preallocation instead of creating the
buffer to get its length and immediately discard it
- Use existing vertex attribute size calculation method to reduce code
duplication
- Fix a bug where mesh index data was being replaced by unnecessarily
newly created mesh vertex data in some cases
- Overall reduces mesh copies by two. We still have plenty to go, but
these were the easy ones.
## Testing
- I ran 3d_scene, lighting, and many_cubes, they look fine.
- Benchmarks would be nice, but this is very obviously a win in perf and
correctness.
---
## Migration Guide
- `Mesh::create_packed_vertex_buffer_data` has been renamed
`Mesh::create_packed_vertex_buffer_data` to reflect the fact that it
copies data and allocates.
## Showcase
- look mom, less copies
# Objective
Another step in the migration to required components: lights!
Note that this does not include `EnvironmentMapLight` or reflection
probes yet, because their API hasn't been fully chosen yet.
## Solution
As per the [selected
proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg):
- Deprecate `PointLightBundle` in favor of the `PointLight` component
- Deprecate `SpotLightBundle` in favor of the `PointLight` component
- Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight`
component
## Testing
I ran some examples with lights.
---
## Migration Guide
`PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have
been deprecated. Use the `PointLight`, `SpotLight`, and
`DirectionalLight` components instead. Adding them will now insert the
other components required by them automatically.
# Objective
Fixes#15541
A bunch of lifetimes were added during the Assets V2 rework, but after
moving to async traits in #12550 they can be elided. That PR mentions
that this might be the case, but apparently it wasn't followed up on at
the time.
~~I ended up grepping for `<'a` and finding a similar case in
`bevy_reflect` which I also fixed.~~ (edit: that one was needed
apparently)
Note that elided lifetimes are unstable in `impl Trait`. If that gets
stabilized then we can elide even more.
## Solution
Remove the extra lifetimes.
## Testing
Everything still compiles. If I have messed something up there is a
small risk that some user code stops compiling, but all the examples
still work at least.
---
## Migration Guide
The traits `AssetLoader`, `AssetSaver` and `Process` traits from
`bevy_asset` now use elided lifetimes. If you implement these then
remove the named lifetime.
- Adopted from #14449
- Still fixes#12144.
## Migration Guide
The retained render world is a complex change: migrating might take one
of a few different forms depending on the patterns you're using.
For every example, we specify in which world the code is run. Most of
the changes affect render world code, so for the average Bevy user who's
using Bevy's high-level rendering APIs, these changes are unlikely to
affect your code.
### Spawning entities in the render world
Previously, if you spawned an entity with `world.spawn(...)`,
`commands.spawn(...)` or some other method in the rendering world, it
would be despawned at the end of each frame. In 0.15, this is no longer
the case and so your old code could leak entities. This can be mitigated
by either re-architecting your code to no longer continuously spawn
entities (like you're used to in the main world), or by adding the
`bevy_render::world_sync::TemporaryRenderEntity` component to the entity
you're spawning. Entities tagged with `TemporaryRenderEntity` will be
removed at the end of each frame (like before).
### Extract components with `ExtractComponentPlugin`
```
// main world
app.add_plugins(ExtractComponentPlugin::<ComponentToExtract>::default());
```
`ExtractComponentPlugin` has been changed to only work with synced
entities. Entities are automatically synced if `ComponentToExtract` is
added to them. However, entities are not "unsynced" if any given
`ComponentToExtract` is removed, because an entity may have multiple
components to extract. This would cause the other components to no
longer get extracted because the entity is not synced.
So be careful when only removing extracted components from entities in
the render world, because it might leave an entity behind in the render
world. The solution here is to avoid only removing extracted components
and instead despawn the entire entity.
### Manual extraction using `Extract<Query<(Entity, ...)>>`
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(Entity, &Clusters, &Camera)>>,
) {
for (entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(entity).insert(...);
}
}
```
One of the primary consequences of the retained rendering world is that
there's no longer a one-to-one mapping from entity IDs in the main world
to entity IDs in the render world. Unlike in Bevy 0.14, Entity 42 in the
main world doesn't necessarily map to entity 42 in the render world.
Previous code which called `get_or_spawn(main_world_entity)` in the
render world (`Extract<Query<(Entity, ...)>>` returns main world
entities). Instead, you should use `&RenderEntity` and
`render_entity.id()` to get the correct entity in the render world. Note
that this entity does need to be synced first in order to have a
`RenderEntity`.
When performing manual abstraction, this won't happen automatically
(like with `ExtractComponentPlugin`) so add a `SyncToRenderWorld` marker
component to the entities you want to extract.
This results in the following code:
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(&RenderEntity, &Clusters, &Camera)>>,
) {
for (render_entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(render_entity.id()).insert(...);
}
}
// in main world, when spawning
world.spawn(Clusters::default(), Camera::default(), SyncToRenderWorld)
```
### Looking up `Entity` ids in the render world
As previously stated, there's now no correspondence between main world
and render world `Entity` identifiers.
Querying for `Entity` in the render world will return the `Entity` id in
the render world: query for `MainEntity` (and use its `id()` method) to
get the corresponding entity in the main world.
This is also a good way to tell the difference between synced and
unsynced entities in the render world, because unsynced entities won't
have a `MainEntity` component.
---------
Co-authored-by: re0312 <re0312@outlook.com>
Co-authored-by: re0312 <45868716+re0312@users.noreply.github.com>
Co-authored-by: Periwink <charlesbour@gmail.com>
Co-authored-by: Anselmo Sampietro <ans.samp@gmail.com>
Co-authored-by: Emerson Coskey <56370779+ecoskey@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
* Save 16 bytes per vertex by calculating tangents in the shader at
runtime, rather than storing them in the vertex data.
* Based on https://jcgt.org/published/0009/03/04,
https://www.jeremyong.com/graphics/2023/12/16/surface-gradient-bump-mapping.
* Fixed visbuffer resolve to use the updated algorithm that flips ddy
correctly
* Added some more docs about meshlet material limitations, and some
TODOs about transforming UV coordinates for the future.
![image](https://github.com/user-attachments/assets/222d8192-8c82-4d77-945d-53670a503761)
For testing add a normal map to the bunnies with StandardMaterial like
below, and then test that on both main and this PR (make sure to
download the correct bunny for each). Results should be mostly
identical.
```rust
normal_map_texture: Some(asset_server.load_with_settings(
"textures/BlueNoise-Normal.png",
|settings: &mut ImageLoaderSettings| settings.is_srgb = false,
)),
```
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
> Rust 1.81 released the #[expect(...)] attribute, which works like
#[allow(...)] but throws a warning if the lint isn't raised. This is
preferred to #[allow(...)] because it tells us when it can be removed.
- Adopts the parts of #15118 that are complete, and updates the branch
so it can be merged.
- There were a few conflicts, let me know if I misjudged any of 'em.
Alice's
[recommendation](https://github.com/bevyengine/bevy/issues/15059#issuecomment-2349263900)
seems well-taken, let's do this crate by crate now that @BD103 has done
the lion's share of this!
(Relates to, but doesn't yet completely finish #15059.)
Crates this _doesn't_ cover:
- bevy_input
- bevy_gilrs
- bevy_window
- bevy_winit
- bevy_state
- bevy_render
- bevy_picking
- bevy_core_pipeline
- bevy_sprite
- bevy_text
- bevy_pbr
- bevy_ui
- bevy_gltf
- bevy_gizmos
- bevy_dev_tools
- bevy_internal
- bevy_dylib
---------
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
Co-authored-by: Antony <antony.m.3012@gmail.com>
[*Percentage-closer soft shadows*] are a technique from 2004 that allow
shadows to become blurrier farther from the objects that cast them. It
works by introducing a *blocker search* step that runs before the normal
shadow map sampling. The blocker search step detects the difference
between the depth of the fragment being rasterized and the depth of the
nearby samples in the depth buffer. Larger depth differences result in a
larger penumbra and therefore a blurrier shadow.
To enable PCSS, fill in the `soft_shadow_size` value in
`DirectionalLight`, `PointLight`, or `SpotLight`, as appropriate. This
shadow size value represents the size of the light and should be tuned
as appropriate for your scene. Higher values result in a wider penumbra
(i.e. blurrier shadows).
When using PCSS, temporal shadow maps
(`ShadowFilteringMethod::Temporal`) are recommended. If you don't use
`ShadowFilteringMethod::Temporal` and instead use
`ShadowFilteringMethod::Gaussian`, Bevy will use the same technique as
`Temporal`, but the result won't vary over time. This produces a rather
noisy result. Doing better would likely require downsampling the shadow
map, which would be complex and slower (and would require PR #13003 to
land first).
In addition to PCSS, this commit makes the near Z plane for the shadow
map configurable on a per-light basis. Previously, it had been hardcoded
to 0.1 meters. This change was necessary to make the point light shadow
map in the example look reasonable, as otherwise the shadows appeared
far too aliased.
A new example, `pcss`, has been added. It demonstrates the
percentage-closer soft shadow technique with directional lights, point
lights, spot lights, non-temporal operation, and temporal operation. The
assets are my original work.
Both temporal and non-temporal shadows are rather noisy in the example,
and, as mentioned before, this is unavoidable without downsampling the
depth buffer, which we can't do yet. Note also that the shadows don't
look particularly great for point lights; the example simply isn't an
ideal scene for them. Nevertheless, I felt that the benefits of the
ability to do a side-by-side comparison of directional and point lights
outweighed the unsightliness of the point light shadows in that example,
so I kept the point light feature in.
Fixes#3631.
[*Percentage-closer soft shadows*]:
https://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf
## Changelog
### Added
* Percentage-closer soft shadows (PCSS) are now supported, allowing
shadows to become blurrier as they stretch away from objects. To use
them, set the `soft_shadow_size` field in `DirectionalLight`,
`PointLight`, or `SpotLight`, as applicable.
* The near Z value for shadow maps is now customizable via the
`shadow_map_near_z` field in `DirectionalLight`, `PointLight`, and
`SpotLight`.
## Screenshots
PCSS off:
![Screenshot 2024-05-24
120012](https://github.com/bevyengine/bevy/assets/157897/0d35fe98-245b-44fb-8a43-8d0272a73b86)
PCSS on:
![Screenshot 2024-05-24
115959](https://github.com/bevyengine/bevy/assets/157897/83397ef8-1317-49dd-bfb3-f8286d7610cd)
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
# Objective
- Fixes#15106
## Solution
- Trivial refactor to rename the method. The duplicate method `push` was
removed as well. This will simpify the API and make the semantics more
clear. `Add` implies that the action happens immediately, whereas in
reality, the command is queued to be run eventually.
- `ChildBuilder::add_command` has similarly been renamed to
`queue_command`.
## Testing
Unit tests should suffice for this simple refactor.
---
## Migration Guide
- `Commands::add` and `Commands::push` have been replaced with
`Commnads::queue`.
- `ChildBuilder::add_command` has been renamed to
`ChildBuilder::queue_command`.
# Objective
- Fixes#15236
## Solution
- Use bevy_math::ops instead of std floating point operations.
## Testing
- Did you test these changes? If so, how?
Unit tests and `cargo run -p ci -- test`
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Execute `cargo run -p ci -- test` on Windows.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Windows
## Migration Guide
- Not a breaking change
- Projects should use bevy math where applicable
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
The names of numerous rendering components in Bevy are inconsistent and
a bit confusing. Relevant names include:
- `AutoExposureSettings`
- `AutoExposureSettingsUniform`
- `BloomSettings`
- `BloomUniform` (no `Settings`)
- `BloomPrefilterSettings`
- `ChromaticAberration` (no `Settings`)
- `ContrastAdaptiveSharpeningSettings`
- `DepthOfFieldSettings`
- `DepthOfFieldUniform` (no `Settings`)
- `FogSettings`
- `SmaaSettings`, `Fxaa`, `TemporalAntiAliasSettings` (really
inconsistent??)
- `ScreenSpaceAmbientOcclusionSettings`
- `ScreenSpaceReflectionsSettings`
- `VolumetricFogSettings`
Firstly, there's a lot of inconsistency between `Foo`/`FooSettings` and
`FooUniform`/`FooSettingsUniform` and whether names are abbreviated or
not.
Secondly, the `Settings` post-fix seems unnecessary and a bit confusing
semantically, since it makes it seem like the component is mostly just
auxiliary configuration instead of the core *thing* that actually
enables the feature. This will be an even bigger problem once bundles
like `TemporalAntiAliasBundle` are deprecated in favor of required
components, as users will expect a component named `TemporalAntiAlias`
(or similar), not `TemporalAntiAliasSettings`.
## Solution
Drop the `Settings` post-fix from the component names, and change some
names to be more consistent.
- `AutoExposure`
- `AutoExposureUniform`
- `Bloom`
- `BloomUniform`
- `BloomPrefilter`
- `ChromaticAberration`
- `ContrastAdaptiveSharpening`
- `DepthOfField`
- `DepthOfFieldUniform`
- `DistanceFog`
- `Smaa`, `Fxaa`, `TemporalAntiAliasing` (note: we might want to change
to `Taa`, see "Discussion")
- `ScreenSpaceAmbientOcclusion`
- `ScreenSpaceReflections`
- `VolumetricFog`
I kept the old names as deprecated type aliases to make migration a bit
less painful for users. We should remove them after the next release.
(And let me know if I should just... not add them at all)
I also added some very basic docs for a few types where they were
missing, like on `Fxaa` and `DepthOfField`.
## Discussion
- `TemporalAntiAliasing` is still inconsistent with `Smaa` and `Fxaa`.
Consensus [on
Discord](https://discord.com/channels/691052431525675048/743663924229963868/1280601167209955431)
seemed to be that renaming to `Taa` would probably be fine, but I think
it's a bit more controversial, and it would've required renaming a lot
of related types like `TemporalAntiAliasNode`,
`TemporalAntiAliasBundle`, and `TemporalAntiAliasPlugin`, so I think
it's better to leave to a follow-up.
- I think `Fog` should probably have a more specific name like
`DistanceFog` considering it seems to be distinct from `VolumetricFog`.
~~This should probably be done in a follow-up though, so I just removed
the `Settings` post-fix for now.~~ (done)
---
## Migration Guide
Many rendering components have been renamed for improved consistency and
clarity.
- `AutoExposureSettings` → `AutoExposure`
- `BloomSettings` → `Bloom`
- `BloomPrefilterSettings` → `BloomPrefilter`
- `ContrastAdaptiveSharpeningSettings` → `ContrastAdaptiveSharpening`
- `DepthOfFieldSettings` → `DepthOfField`
- `FogSettings` → `DistanceFog`
- `SmaaSettings` → `Smaa`
- `TemporalAntiAliasSettings` → `TemporalAntiAliasing`
- `ScreenSpaceAmbientOcclusionSettings` → `ScreenSpaceAmbientOcclusion`
- `ScreenSpaceReflectionsSettings` → `ScreenSpaceReflections`
- `VolumetricFogSettings` → `VolumetricFog`
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
`NoFrustumCulling` prevents meshes from being considered out of view
based on AABBs (sometimes useful for skinned meshes which don't
recalculate AABBs currently). it currently only applies for primary view
rendering, not for shadow rendering which can result in missing shadows.
## Solution
Add checks for `NoFrustumCulling` to `check_dir_light_mesh_visibility`
and `check_point_light_mesh_visibility` so that `NoFrustumCulling`
entities are rendered to all shadow views as well as all primary views.
# Objective
Make choosing of diffuse indirect lighting explicit, instead of using
numerical conditions like `all(indirect_light == vec3(0.0f))`, as using
that may lead to unwanted light leakage.
## Solution
Use an explicit `found_diffuse_indirect` condition to indicate the found
indirect lighting source.
## Testing
I have tested examples `lightmaps`, `irradiance_volumes` and
`reflection_probes`, there are no visual changes. For further testing,
consider a "cave" scene with lightmaps and irradiance volumes. In the
cave there are some purly dark occluded area, those dark area will
sample the irradiance volume, and that is easy to leak light.
Hello,
I'd like to contribute to this project by adding some useful constants
and improving the documentation for the AspectRatio struct. Here's a
summary of the changes I've made:
1. Added new constants for common aspect ratios:
- SIXTEEN_NINE (16:9)
- FOUR_THREE (4:3)
- ULTRAWIDE (21:9)
2. Enhanced the overall documentation:
- Improved module-level documentation with an overview and use cases
- Expanded explanation of the AspectRatio struct with examples
- Added detailed descriptions and examples for all methods (both
existing and new)
- Included explanations for the newly introduced constant values
- Added clarifications for From trait implementations
These changes aim to make the AspectRatio API more user-friendly and
easier to understand. The new constants provide convenient access to
commonly used aspect ratios, which I believe will be helpful in many
scenarios.
---------
Co-authored-by: Gonçalo Rica Pais da Silva <bluefinger@gmail.com>
Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
Since `StandardMaterial::emissive_exposure_weight` does not get packed
into the gbuffer in the deferred case, unpacking uses an implicit
default value for emissive's alpha channel.
This resulted in divergent behavior between the forward and deferred
renderers when using standard materials with default
emissive_exposure_weight, this value defaulting to `0.0` in the forward
case and `1.0` in the other.
This patch changes the implicit value in the deferred case to `0.0` in
order to match the behavior of the forward renderer. However, this still
does not solve the case where `emissive_exposure_weight` is not `0.0`.
### Builder changes
- Increased meshlet max vertices/triangles from 64v/64t to 255v/128t
(meshoptimizer won't allow 256v sadly). This gives us a much greater
percentage of meshlets with max triangle count (128). Still not perfect,
we still end up with some tiny <=10 triangle meshlets that never really
get simplified, but it's progress.
- Removed the error target limit. Now we allow meshoptimizer to simplify
as much as possible. No reason to cap this out, as the cluster culling
code will choose a good LOD level anyways. Again leads to higher quality
LOD trees.
- After some discussion and consulting the Nanite slides again, changed
meshlet group error from _adding_ the max child's error to the group
error, to doing `group_error = max(group_error, max_child_error)`. Error
is already cumulative between LODs as the edges we're collapsing during
simplification get longer each time.
- Bumped the 65% simplification threshold to allow up to 95% of the
original geometry (e.g. accept simplification as valid even if we only
simplified 5% of the triangles). This gives us closer to
log2(initial_meshlet_count) LOD levels, and fewer meshlet roots in the
DAG.
Still more work to be done in the future here. Maybe trying METIS for
meshlet building instead of meshoptimizer.
Using ~8 clusters per group instead of ~4 might also make a big
difference. The Nanite slides say that they have 8-32 meshlets per
group, suggesting some kind of heuristic. Unfortunately meshopt's
compute_cluster_bounds won't work with large groups atm
(https://github.com/zeux/meshoptimizer/discussions/750#discussioncomment-10562641)
so hard to test.
Based on discussion from
https://github.com/bevyengine/bevy/discussions/14998,
https://github.com/zeux/meshoptimizer/discussions/750, and discord.
### Runtime changes
- cluster:triangle packed IDs are now stored 25:7 instead of 26:6 bits,
as max triangles per cluster are now 128 instead of 64
- Hardware raster now spawns 128 * 3 vertices instead of 64 * 3 vertices
to account for the new max triangles limit
- Hardware raster now outputs NaN triangles (0 / 0) instead of
zero-positioned triangles for extra vertex invocations over the cluster
triangle count. Shouldn't really be a difference idt, but I did it
anyways.
- Software raster now does 128 threads per workgroup instead of 64
threads. Each thread now loads, projects, and caches a vertex (vertices
0-127), and then if needed does so again (vertices 128-254). Each thread
then rasterizes one of 128 triangles.
- Fixed a bug with `needs_dispatch_remap`. I had the condition backwards
in my last PR, I probably committed it by accident after testing the
non-default code path on my GPU.
# Objective
- Crate-level prelude modules, such as `bevy_ecs::prelude`, are plagued
with inconsistency! Let's fix it!
## Solution
Format all preludes based on the following rules:
1. All preludes should have brief documentation in the format of:
> The _name_ prelude.
>
> This includes the most common types in this crate, re-exported for
your convenience.
2. All documentation should be outer, not inner. (`///` instead of
`//!`.)
3. No prelude modules should be annotated with `#[doc(hidden)]`. (Items
within them may, though I'm not sure why this was done.)
## Testing
- I manually searched for the term `mod prelude` and updated all
occurrences by hand. 🫠
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
As discussed in https://github.com/bevyengine/bevy/issues/7386, system
order ambiguities within `DefaultPlugins` are a source of bugs in the
engine and badly pollute diagnostic output for users.
We should eliminate them!
This PR is an alternative to #15027: with all external ambiguities
silenced, this should be much less prone to merge conflicts and the test
output should be much easier for authors to understand.
Note that system order ambiguities are still permitted in the
`RenderApp`: these need a bit of thought in terms of how to test them,
and will be fairly involved to fix. While these aren't *good*, they'll
generally only cause graphical bugs, not logic ones.
## Solution
All remaining system order ambiguities have been resolved.
Review this PR commit-by-commit to see how each of these problems were
fixed.
## Testing
`cargo run --example ambiguity_detection` passes with no panics or
logging!
# Objective
- Fixes#14974
## Solution
- Replace all* instances of `NonZero*` with `NonZero<*>`
## Testing
- CI passed locally.
---
## Notes
Within the `bevy_reflect` implementations for `std` types,
`impl_reflect_value!()` will continue to use the type aliases instead,
as it inappropriately parses the concrete type parameter as a generic
argument. If the `ZeroablePrimitive` trait was stable, or the macro
could be modified to accept a finite list of types, then we could fully
migrate.
# Objective
Fixes#14883
## Solution
Pretty simple update to `EntityCommands` methods to consume `self` and
return it rather than taking `&mut self`. The things probably worth
noting:
* I added `#[allow(clippy::should_implement_trait)]` to the `add` method
because it causes a linting conflict with `std::ops::Add`.
* `despawn` and `log_components` now return `Self`. I'm not sure if
that's exactly the desired behavior so I'm happy to adjust if that seems
wrong.
## Testing
Tested with `cargo run -p ci`. I think that should be sufficient to call
things good.
## Migration Guide
The most likely migration needed is changing code from this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity.insert(DepthPrepass);
}
if normal_prepass {
entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
to this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity = entity.insert(DepthPrepass);
}
if normal_prepass {
entity = entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity = entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
as can be seen in several of the example code updates here. There will
probably also be instances where mutable `EntityCommands` vars no longer
need to be mutable.