# Objective
Continue migration of bevy APIs to required components, following
guidance of https://hackmd.io/@bevy/required_components/
## Solution
- Make `Sprite` require `Transform` and `Visibility` and
`SyncToRenderWorld`
- move image and texture atlas handles into `Sprite`
- deprecate `SpriteBundle`
- remove engine uses of `SpriteBundle`
## Testing
ran cargo tests on bevy_sprite and tested several sprite examples.
---
## Migration Guide
Replace all uses of `SpriteBundle` with `Sprite`. There are several new
convenience constructors: `Sprite::from_image`,
`Sprite::from_atlas_image`, `Sprite::from_color`.
WARNING: use of `Handle<Image>` and `TextureAtlas` as components on
sprite entities will NO LONGER WORK. Use the fields on `Sprite` instead.
I would have removed the `Component` impls from `TextureAtlas` and
`Handle<Image>` except it is still used within ui. We should fix this
moving forward with the migration.
# Objective
- Closes#15752
Calling the functions `App::observe` and `World::observe` doesn't make
sense because you're not "observing" the `App` or `World`, you're adding
an observer that listens for an event that occurs *within* the `World`.
We should rename them to better fit this.
## Solution
Renames:
- `App::observe` -> `App::add_observer`
- `World::observe` -> `World::add_observer`
- `Commands::observe` -> `Commands::add_observer`
- `EntityWorldMut::observe_entity` -> `EntityWorldMut::observe`
(Note this isn't a breaking change as the original rename was introduced
earlier this cycle.)
## Testing
Reusing current tests.
# Objective
- The `scrolling_fog` example has a camera with the
`TemporalAntiAliasing` component, but it's missing the `Msaa::Off`
component, which leads to this warning being printed on current `main`:
```
WARN bevy_core_pipeline::taa: Temporal anti-aliasing requires MSAA to be disabled
```
## Solution
- This PR adds the `Msaa::Off` component to the example to explicitly
disable MSAA in favor of TAA.
# Objective
Getting closer to the end! Another part of the required components
migration: reflection probes.
## Solution
As per the [proposal added by
Cart](https://hackmd.io/@bevy/required_components/%2FNmpIh0tGSiayGlswbfcEzw)
(Proposal 2), make `LightProbe` require `Transform` and `Visibility`,
and deprecate `ReflectionProbeBundle`.
Note that this proposal wasn't officially blessed yet, but it is the
only existing one that really works, so I implemented it here for
consideration.
## Testing
I ran the reflection probe example, and it appears to work.
---
## Migration Guide
`ReflectionProbeBundle` has been deprecated in favor of inserting the
`LightProbe` and `EnvironmentMapLight` components directly. Inserting
them will now automatically insert `Transform` and `Visibility`
components.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Closes#15717
## Solution
- Wrap the handle in a new wrapper component: `AnimationGraphHandle`.
## Testing
Searched for all instances of `AnimationGraph` in the examples and
updated and tested those
## Migration Guide
`Handle<AnimationGraph>` is no longer a component. Instead, use the
`AnimationGraphHandle` component which contains a
`Handle<AnimationGraph>`.
# Objective
- After #15711 which added a column to the example, the point of a curve
was too close to the next curve
## Solution
- Make it closer to its own
# Objective
Fixes#15560
Fixes (most of) #15570
Currently a lot of examples (and presumably some user code) depend on
toggling certain render features by adding/removing a single component
to an entity, e.g. `SpotLight` to toggle a light. Because of the
retained render world this no longer works: Extract will add any new
components, but when it is removed the entity persists unchanged in the
render world.
## Solution
Add `SyncComponentPlugin<C: Component>` that registers
`SyncToRenderWorld` as a required component for `C`, and adds a
component hook that will clear all components from the render world
entity when `C` is removed. We add this plugin to
`ExtractComponentPlugin` which fixes most instances of the problem. For
custom extraction logic we can manually add `SyncComponentPlugin` for
that component.
We also rename `WorldSyncPlugin` to `SyncWorldPlugin` so we start a
naming convention like all the `Extract` plugins.
In this PR I also fixed a bunch of breakage related to the retained
render world, stemming from old code that assumed that `Entity` would be
the same in both worlds.
I found that using the `RenderEntity` wrapper instead of `Entity` in
data structures when referring to render world entities makes intent
much clearer, so I propose we make this an official pattern.
## Testing
Run examples like
```
cargo run --features pbr_multi_layer_material_textures --example clearcoat
cargo run --example volumetric_fog
```
and see that they work, and that toggles work correctly. But really we
should test every single example, as we might not even have caught all
the breakage yet.
---
## Migration Guide
The retained render world notes should be updated to explain this edge
case and `SyncComponentPlugin`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
This PR improves the `fps_overlay` example by adding:
1. The ability to increase the overlay font size (previously, only
decreasing the size was supported).
2. A toggle for overlay color between red and green (previously, it only
changed from green to red without toggling back).
# Objective
Simplify the API surrounding easing curves. Broaden the base of types
that support easing.
## Solution
There is now a single library function, `easing_curve`, which constructs
a unit-parametrized easing curve between two values based on an
`EaseFunction`:
```rust
/// Given a `start` and `end` value, create a curve parametrized over [the unit interval]
/// that connects them, using the given [ease function] to determine the form of the
/// curve in between.
///
/// [the unit interval]: Interval::UNIT
/// [ease function]: EaseFunction
pub fn easing_curve<T: Ease>(start: T, end: T, ease_fn: EaseFunction) -> EasingCurve<T> { //... }
```
As this shows, the type of the output curve is generic only in `T`. In
particular, as long as `T` is `Reflect` (and `FromReflect` etc. — i.e.,
a standard "well-behaved" reflectable type), `EasingCurve<T>` is also
`Reflect`, and there is no special field handling nonsense. Therefore,
`EasingCurve` is the kind of thing that would be able to be easily
changed in an editor. This is made possible by storing the actual
`EaseFunction` on `EasingCurve<T>` instead of indirecting through some
kind of function type (which generally leads to issues with reflection).
The types that can be eased are those that implement a trait `Ease`:
```rust
/// A type whose values can be eased between.
///
/// This requires the construction of an interpolation curve that actually extends
/// beyond the curve segment that connects two values, because an easing curve may
/// extrapolate before the starting value and after the ending value. This is
/// especially common in easing functions that mimic elastic or springlike behavior.
pub trait Ease: Sized {
/// Given `start` and `end` values, produce a curve with [unlimited domain]
/// that:
/// - takes a value equivalent to `start` at `t = 0`
/// - takes a value equivalent to `end` at `t = 1`
/// - has constant speed everywhere, including outside of `[0, 1]`
///
/// [unlimited domain]: Interval::EVERYWHERE
fn interpolating_curve_unbounded(start: &Self, end: &Self) -> impl Curve<Self>;
}
```
(I know, I know, yet *another* interpolation trait. See 'Future
direction'.)
The other existing easing functions from the previous version of this
module have also become new members of `EaseFunction`: `Linear`,
`Steps`, and `Elastic` (which maybe needs a different name). The latter
two are parametrized.
## Testing
Tested using the `easing_functions` example. I also axed the
`cubic_curve` example which was of questionable value and replaced it
with `eased_motion`, which uses this API in the context of animation:
https://github.com/user-attachments/assets/3c802992-6b9b-4b56-aeb1-a47501c29ce2
---
## Future direction
Morally speaking, `Ease` is incredibly similar to `StableInterpolate`.
Probably, we should just merge `StableInterpolate` into `Ease`, and then
make `SmoothNudge` an automatic extension trait of `Ease`. The reason I
didn't do that is that `StableInterpolate` is not implemented for
`VectorSpace` because of concerns about the `Color` types, and I wanted
to avoid controversy. I think that may be a good idea though.
As Alice mentioned before, we should also probably get rid of the
`interpolation` dependency.
The parametrized `Elastic` variant probably also needs some additional
work (e.g. renaming, in/out/in-out variants, etc.) if we want to keep
it.
# Objective
- Closes#15720
## Solution
Wrap the handle in a new wrapper component: `UiMaterialHandle`
It's not possible to match the naming convention of `MeshMaterial3d/2d`
here with the trait already being called `UiMaterial`
Should we consider renaming to `Material3d/2dHandle` and `Mesh3d/2d` to
`Mesh3d/2dHandle`?
- This shouldn't have any merge conflicts with #15591
## Testing
Tested the `ui_material` example
## Migration Guide
Let's defer the migration guide to the required component port. I just
want to yeet the `Component` impl on `Handle` in the meantime :)
# Objective
- Prepare for streaming by storing vertex data per-meshlet, rather than
per-mesh (this means duplicating vertices per-meshlet)
- Compress vertex data to reduce the cost of this
## Solution
The important parts are in from_mesh.rs, the changes to the Meshlet type
in asset.rs, and the changes in meshlet_bindings.wgsl. Everything else
is pretty secondary/boilerplate/straightforward changes.
- Positions are quantized in centimeters with a user-provided power of 2
factor (ideally auto-determined, but that's a TODO for the future),
encoded as an offset relative to the minimum value within the meshlet,
and then stored as a packed list of bits using the minimum number of
bits needed for each vertex position channel for that meshlet
- E.g. quantize positions (lossly, throws away precision that's not
needed leading to using less bits in the bitstream encoding)
- Get the min/max quantized value of each X/Y/Z channel of the quantized
positions within a meshlet
- Encode values relative to the min value of the meshlet. E.g. convert
from [min, max] to [0, max - min]
- The new max value in the meshlet is (max - min), which only takes N
bits, so we only need N bits to store each channel within the meshlet
(lossless)
- We can store the min value and that it takes N bits per channel in the
meshlet metadata, and reconstruct the position from the bitstream
- Normals are octahedral encoded and than snorm2x16 packed and stored as
a single u32.
- Would be better to implement the precise variant of octhedral encoding
for extra precision (no extra decode cost), but decided to keep it
simple for now and leave that as a followup
- Tried doing a quantizing and bitstream encoding scheme like I did for
positions, but struggled to get it smaller. Decided to go with this for
simplicity for now
- UVs are uncompressed and take a full 64bits per vertex which is
expensive
- In the future this should be improved
- Tangents, as of the previous PR, are not explicitly stored and are
instead derived from screen space gradients
- While I'm here, split up MeshletMeshSaverLoader into two separate
types
Other future changes include implementing a smaller encoding of triangle
data (3 u8 indices = 24 bits per triangle currently), and more
disk-oriented compression schemes.
References:
* "A Deep Dive into UE5's Nanite Virtualized Geometry"
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf#page=128
(also available on youtube)
* "Towards Practical Meshlet Compression"
https://arxiv.org/pdf/2404.06359
* "Vertex quantization in Omniforce Game Engine"
https://daniilvinn.github.io/2024/05/04/omniforce-vertex-quantization.html
## Testing
- Did you test these changes? If so, how?
- Converted the stanford bunny, and rendered it with a debug material
showing normals, and confirmed that it's identical to what's on main.
EDIT: See additional testing in the comments below.
- Are there any parts that need more testing?
- Could use some more size comparisons on various meshes, and testing
different quantization factors. Not sure if 4 is a good default. EDIT:
See additional testing in the comments below.
- Also did not test runtime performance of the shaders. EDIT: See
additional testing in the comments below.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Use my unholy script, replacing the meshlet example
https://paste.rs/7xQHk.rs (must make MeshletMesh fields pub instead of
pub crate, must add lz4_flex as a dev-dependency) (must compile with
meshlet and meshlet_processor features, mesh must have only positions,
normals, and UVs, no vertex colors or tangents)
---
## Migration Guide
- TBD by JMS55 at the end of the release
# Objective
UI box shadow support
Adds a new component `BoxShadow`:
```rust
pub struct BoxShadow {
/// The shadow's color
pub color: Color,
/// Horizontal offset
pub x_offset: Val,
/// Vertical offset
pub y_offset: Val,
/// Horizontal difference in size from the occluding uninode
pub spread_radius: Val,
/// Blurriness of the shadow
pub blur_radius: Val,
}
```
To use `BoxShadow`, add the component to any Bevy UI node and a shadow
will be drawn beneath that node.
Also adds a resource `BoxShadowSamples` that can be used to adjust the
shadow quality.
#### Notes
* I'm not super happy with the field names. Maybe we need a `struct Size
{ width: Val, height: Val }` type or something.
* The shader isn't very optimised but I don't see that it's too
important for now as the number of shadows being rendered is not going
to be massive most of the time. I think it's more important to get the
API and geometry correct with this PR.
* I didn't implement an inset property, it's not essential and can
easily be added in a follow up.
* Shadows are only rendered for uinodes, not for images or text.
* Batching isn't supported, it would need out-of-the-scope-of-this-pr
changes to the way the UI handles z-ordering for it to be effective.
# Showcase
```cargo run --example box_shadow -- --samples 4```
<img width="391" alt="br" src="https://github.com/user-attachments/assets/4e8add96-dc93-46e0-9e35-d995eb0943ad">
```cargo run --example box_shadow -- --samples 10```
<img width="391" alt="s10"
src="https://github.com/user-attachments/assets/ecb384c9-4012-4cd6-9dea-5180904bf28e">
## Objective
Add a way to stream BRP requests when the data changes.
## Solution
#### BRP Side (reusable for other transports)
Add a new method handler type that returns a optional value. This
handler is run in update and if a value is returned it will be sent on
the message channel. Custom watching handlers can be added with
`RemotePlugin::with_watching_method`.
#### HTTP Side
If a request comes in with `+watch` in the method, it will respond with
`text/event-stream` rather than a single response.
## Testing
I tested with the podman HTTP client. This client has good support for
SSE's if you want to test it too.
## Parts I want some opinions on
- For separating watching methods I chose to add a `+watch` suffix to
the end kind of like `content-type` headers. A get would be
`bevy/get+watch`.
- Should watching methods send an initial response with everything or
only respond when a change happens? Currently the later is what happens.
## Future work
- The `bevy/query` method would also benefit from this but that
condition will be quite complex so I will leave that to later.
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Several of our APIs (namely gizmos and bounding) use isometries on
current Bevy main. This is nicer than separate properties in a lot of
cases, but users have still expressed usability concerns.
One problem is that in a lot of cases, you only care about e.g.
translation, so you end up with this:
```rust
gizmos.cross_2d(
Isometry2d::from_translation(Vec2::new(-160.0, 120.0)),
12.0,
FUCHSIA,
);
```
The isometry adds quite a lot of length and verbosity, and isn't really
that relevant since only the translation is important here.
It would be nice if you could use the translation directly, and only
supply an isometry if both translation and rotation are needed. This
would make the following possible:
```rust
gizmos.cross_2d(Vec2::new(-160.0, 120.0), 12.0, FUCHSIA);
```
removing a lot of verbosity.
## Solution
Implement `From<Vec2>` and `From<Rot2>` for `Isometry2d`, and
`From<Vec3>`, `From<Vec3A>`, and `From<Quat>` for `Isometry3d`. These
are lossless conversions that fit the semantics of `From`.
This makes the proposed API possible! The methods must now simply take
an `impl Into<IsometryNd>`, and this works:
```rust
gizmos.cross_2d(Vec2::new(-160.0, 120.0), 12.0, FUCHSIA);
```
# Objective
- Adds better comments and includes an example where the aspect ratio
between `size` and `full_size` differ
- Fixes#15576
## Solution
- Viewports are dynamically scaled to window size
## Testing
- Tested with moving the window around and by manually setting the
window scaling factor
- Just to make sure nothing else is going on, someone on macOS should
also test this
## Showcase
Since calculating padding from window size is a hassle, the example now
looks a bit more squished together:
![image](https://github.com/user-attachments/assets/68609cf2-5a67-49bd-8e0b-910bfd17f4d8)
# Objective
Enhance the [custom skinned mesh
example](https://bevyengine.org/examples/animation/custom-skinned-mesh/)
to show some variety and clarify what the transform does to the mesh.
## Solution
https://github.com/user-attachments/assets/c919db74-6e77-4f33-ba43-0f40a88042b3
Add variety and clarity with the following changes:
- vary transform changes,
- use a UV texture,
- and show transform changes via gizmos.
(Maybe it'd be worth turning on wireframe rendering to show what happens
to the mesh. I think it'd be nice visually but might make the code a
little noisy.)
## Testing
I exercised it on my x86 macOS computer. It'd be good to have it
validated on Windows, Linux, and WASM.
---
## Showcase
- Custom skinned mesh example varies the transforms changes and uses a
UV test texture.
# Objective
- Alpha blending can easily fail in many situations and requires sorting
on the cpu
## Solution
- Implement order independent transparency (OIT) as an alternative to
alpha blending
- The implementation uses 2 passes
- The first pass records all the fragments colors and position to a
buffer that is the size of N layers * the render target resolution.
- The second pass sorts the fragments, blends them and draws them to the
screen. It also currently does manual depth testing because early-z
fails in too many cases in the first pass.
## Testing
- We've been using this implementation at foresight in production for
many months now and we haven't had any issues related to OIT.
---
## Showcase
![image](https://github.com/user-attachments/assets/157f3e32-adaf-4782-b25b-c10313b9bc43)
![image](https://github.com/user-attachments/assets/bef23258-0c22-4b67-a0b8-48a9f571c44f)
## Future work
- Add an example showing how to use OIT for a custom material
- Next step would be to implement a per-pixel linked list to reduce
memory use
- I'd also like to investigate using a BinnedRenderPhase instead of a
SortedRenderPhase. If it works, it would make the transparent pass
significantly faster.
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
This example was missed during the port to required components for
meshes and materials.
Easy fix, I checked that it works as it did in the PR that added the
example (#13912).
# Objective
- Followup to #15675
- Add an example showcasing the functions
## Solution
- Add an example showcasing the functions
- Some of the functions from the interpolation crate are messed up,
fixed in #15706
![ease](https://github.com/user-attachments/assets/1f3b2b80-23d2-45c7-8b08-95b2e870aa02)
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
- Rename `Pickable` to `PickingBehavior` to counter the easily-made
assumption that the component is required. It is optional
- Fix and clarify documentation
- The docs in `crates/bevy_ui/src/picking_backend.rs` were incorrect
about the necessity of `Pickable`
- Plus two minor code quality changes in this commit
(7c2e75f48d)
Closes#15632
# Objective
After merging retained rendering world #15320, we now have a good way of
creating a link between worlds (*HIYAA intensifies*). This means that
`get_or_spawn` is no longer necessary for that function. Entity should
be opaque as the warning above `get_or_spawn` says. This is also part of
#15459.
I'm deprecating `get_or_spawn_batch` in a different PR in order to keep
the PR small in size.
## Solution
Deprecate `get_or_spawn` and replace it with `get_entity` in most
contexts. If it's possible to query `&RenderEntity`, then the entity is
synced and `render_entity.id()` is initialized in the render world.
## Migration Guide
If you are given an `Entity` and you want to do something with it, use
`Commands.entity(...)` or `World.entity(...)`. If instead you want to
spawn something use `Commands.spawn(...)` or `World.spawn(...)`. If you
are not sure if an entity exists, you can always use `get_entity` and
match on the `Option<...>` that is returned.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
If you want to draw / generate images from the CPU, such as:
- to create procedurally-generated assets
- for games whose artstyle is best implemented by poking pixels directly
from the CPU, instead of using shaders
It is currently very unergonomic to do in Bevy, because you have to deal
with the raw bytes inside `image.data`, take care of the pixel format,
etc.
## Solution
This PR adds some helper methods to `Image` for pixel manipulation.
These methods allow you to use Bevy's user-friendly `Color` struct to
read and write the colors of pixels, at arbitrary coordinates (specified
as `UVec3` to support any texture dimension). They handle
encoding/decoding to the `Image`s `TextureFormat`, incl. any sRGB
conversion.
While we are at it, also add methods to help with direct access to the
raw bytes. It is now easy to compute the offset where the bytes of a
specific pixel coordinate are found, or to just get a Rust slice to
access them.
Caveat: `Color` roundtrips are obviously going to be lossy for non-float
`TextureFormat`s. Using `set_color_at` followed by `get_color_at` will
return a different value, due to the data conversions involved (such as
`f32` -> `u8` -> `f32` for the common `Rgba8UnormSrgb` texture format).
Be careful when comparing colors (such as checking for a color you wrote
before)!
Also adding a new example: `cpu_draw` (under `2d`), to showcase these
new APIs.
---
## Changelog
### Added
- `Image` APIs for easy access to the colors of specific pixels.
---------
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: ltdk <usr@ltdk.xyz>
Wayland only supports pre-multiplied alpha. Behavior on X11 seems
unchanged.
# Objective
- Fix#10929 on wayland.
## Solution
- Request pre-multiplied alpha.
## Testing
- Ran the example locally.
# Objective
- `bevy_render` should not depend on `bevy_winit`
- Fixes#15565
## Solution
- `bevy_render` no longer depends on `bevy_winit`
- The following is behind the `custom_cursor` feature
- Move custom cursor code from `bevy_render` to `bevy_winit` behind the
`custom_cursor` feature
- `bevy_winit` now depends on `bevy_render` (for `Image` and
`TextureFormat`)
- `bevy_winit` now depends on `bevy_asset` (for `Assets`, `Handle` and
`AssetId`)
- `bevy_winit` now depends on `bytemuck` (already in tree)
- Custom cursor code in `bevy_winit` reworked to use `AssetId` (other
than that it is taken over 1:1)
- Rework `bevy_winit` custom cursor interface visibility now that the
logic is all contained in `bevy_winit`
## Testing
- I ran the screenshot and window_settings examples
- Tested on linux wayland so far
---
## Migration Guide
`CursorIcon` and `CustomCursor` previously provided by
`bevy::render::view::cursor` is now available from `bevy::winit`.
A new feature `custom_cursor` enables this functionality (default
feature).
# Objective
Add support for events that can be triggered from animation clips. This
is useful when you need something to happen at a specific time in an
animation. For example, playing a sound every time a characters feet
hits the ground when walking.
Closes#15494
## Solution
Added a new field to `AnimationClip`: `events`, which contains a list of
`AnimationEvent`s. These are automatically triggered in
`animate_targets` and `trigger_untargeted_animation_events`.
## Testing
Added a couple of tests and example (`animation_events.rs`) to make sure
events are triggered when expected.
---
## Showcase
`Events` need to also implement `AnimationEvent` and `Reflect` to be
used with animations.
```rust
#[derive(Event, AnimationEvent, Reflect)]
struct SomeEvent;
```
Events can be added to an `AnimationClip` by specifying a time and
event.
```rust
// trigger an event after 1.0 second
animation_clip.add_event(1.0, SomeEvent);
```
And optionally, providing a target id.
```rust
let id = AnimationTargetId::from_iter(["shoulder", "arm", "hand"]);
animation_clip.add_event_to_target(id, 1.0, HandEvent);
```
I modified the `animated_fox` example to show off the feature.
![CleanShot 2024-10-05 at 02 41
57](https://github.com/user-attachments/assets/0bb47db7-24f9-4504-88f1-40e375b89b1b)
---------
Co-authored-by: Matty <weatherleymatthew@gmail.com>
Co-authored-by: Chris Biscardi <chris@christopherbiscardi.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Add a background colour to each text node in the `text_debug` example to
visualize their bounds.
## Showcase
<img width="961" alt="deb"
src="https://github.com/user-attachments/assets/deec3e15-b0f0-411f-9af1-597587ac2a83">
In the bottom right you can see the empty space at the bottom of the
text node, making it much more obvious that there is a bug causing the
size of the bounds to be calculated incorrectly.
# Objective
Yet another PR for migrating stuff to required components. This time,
cameras!
## Solution
As per the [selected
proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected),
deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d`
and `Camera3d`.
Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning,
as suggested by Cart [on
Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273).
I would personally like cameras to work a bit differently and be split
into a few more components, to avoid some footguns and confusing
semantics, but that is more controversial, and shouldn't block this core
migration.
## Testing
I ran a few 2D and 3D examples, and tried cameras with and without
render graphs.
---
## Migration Guide
`Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of
`Camera2d` and `Camera3d`. Inserting them will now also insert the other
components required by them automatically.
*Additive blending* is an ubiquitous feature in game engines that allows
animations to be concatenated instead of blended. The canonical use case
is to allow a character to hold a weapon while performing arbitrary
poses. For example, if you had a character that needed to be able to
walk or run while attacking with a weapon, the typical workflow is to
have an additive blend node that combines walking and running animation
clips with an animation clip of one of the limbs performing a weapon
attack animation.
This commit adds support for additive blending to Bevy. It builds on top
of the flexible infrastructure in #15589 and introduces a new type of
node, the *add node*. Like blend nodes, add nodes combine the animations
of their children according to their weights. Unlike blend nodes,
however, add nodes don't normalize the weights to 1.0.
The `animation_masks` example has been overhauled to demonstrate the use
of additive blending in combination with masks. There are now controls
to choose an animation clip for every limb of the fox individually.
This patch also fixes a bug whereby masks were incorrectly accumulated
with `insert()` during the graph threading phase, which could cause
corruption of computed masks in some cases.
Note that the `clip` field has been replaced with an `AnimationNodeType`
enum, which breaks `animgraph.ron` files. The `Fox.animgraph.ron` asset
has been updated to the new format.
Closes#14395.
## Showcase
https://github.com/user-attachments/assets/52dfe05f-fdb3-477a-9462-ec150f93df33
## Migration Guide
* The `animgraph.ron` format has changed to accommodate the new
*additive blending* feature. You'll need to change `clip` fields to
instances of the new `AnimationNodeType` enum.
## Solution
- Removed superfluous `Pickable` components
- Slightly simplified the code for updating the text color
- Removed the `Pointer<Click>` observer from the mesh entirely since
that doesn't support picking yet
# Objective
System param validation warnings should be configurable and default to
"warn once" (per system).
Fixes: #15391
## Solution
`SystemMeta` is given a new `ParamWarnPolicy` field.
The policy decides whether warnings will be emitted by each system param
when it fails validation.
The policy is updated by the system after param validation fails.
Example warning:
```
2024-09-30T18:10:04.740749Z WARN bevy_ecs::system::function_system: System fallible_params::do_nothing_fail_validation will not run because it requested inaccessible system parameter Single<(), (With<Player>, With<Enemy>)>
```
Currently, only the first invalid parameter is displayed.
Warnings can be disabled on function systems using
`.param_never_warn()`.
(there is also `.with_param_warn_policy(policy)`)
## Testing
Ran `fallible_params` example.
---------
Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net>
This is an updated version of #15530. Review comments were addressed.
This commit changes the animation graph evaluation to be operate in a
more sensible order and updates the semantics of blend nodes to conform
to [the animation composition RFC]. Prior to this patch, a node graph
like this:
```
┌─────┐
│ │
│ 1 │
│ │
└──┬──┘
│
┌───────┴───────┐
│ │
▼ ▼
┌─────┐ ┌─────┐
│ │ │ │
│ 2 │ │ 3 │
│ │ │ │
└──┬──┘ └──┬──┘
│ │
┌───┴───┐ ┌───┴───┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐
│ │ │ │ │ │ │ │
│ 4 │ │ 6 │ │ 5 │ │ 7 │
│ │ │ │ │ │ │ │
└─────┘ └─────┘ └─────┘ └─────┘
```
Would be evaluated as (((4 ⊕ 5) ⊕ 6) ⊕ 7), with the blend (lerp/slerp)
operation notated as ⊕. As quaternion multiplication isn't commutative,
this is very counterintuitive and will especially lead to trouble with
the forthcoming additive blending feature (#15198).
This patch fixes the issue by changing the evaluation order to
postorder, with children of a node evaluated in ascending order by node
index.
To do so, this patch revamps `AnimationCurve` to be based on an
*evaluation stack* and a *blend register*. During target evaluation, the
graph evaluator traverses the graph in postorder. When encountering a
clip node, the evaluator pushes the possibly-interpolated value onto the
evaluation stack. When encountering a blend node, the evaluator pops
values off the stack into the blend register, accumulating weights as
appropriate. When the graph is completely evaluated, the top element on
the stack is *committed* to the property of the component.
A new system, the *graph threading* system, is added in order to cache
the sorted postorder traversal to avoid the overhead of sorting children
at animation evaluation time. Mask evaluation has been moved to this
system so that the graph only has to be traversed at most once per
frame. Unlike the `ActiveAnimation` list, the *threaded graph* is cached
from frame to frame and only has to be regenerated when the animation
graph asset changes.
This patch currently regresses the `animate_target` performance in
`many_foxes` by around 50%, resulting in an FPS loss of about 2-3 FPS.
I'd argue that this is an acceptable price to pay for a much more
intuitive system. In the future, we can mitigate the regression with a
fast path that avoids consulting the graph if only one animation is
playing. However, in the interest of keeping this patch simple, I didn't
do so here.
[the animation composition RFC]:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
# Objective
- Describe the objective or issue this PR addresses.
- If you're fixing a specific issue, say "Fixes #X".
## Solution
- Describe the solution used to achieve the objective above.
## Testing
- Did you test these changes? If so, how?
- Are there any parts that need more testing?
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
---
## Showcase
> This section is optional. If this PR does not include a visual change
or does not add a new feature, you can delete this section.
- Help others understand the result of this PR by showcasing your
awesome work!
- If this PR adds a new feature or public API, consider adding a brief
pseudo-code snippet of it in action
- If this PR includes a visual change, consider adding a screenshot,
GIF, or video
- If you want, you could even include a before/after comparison!
- If the Migration Guide adequately covers the changes, you can delete
this section
While a showcase should aim to be brief and digestible, you can use a
toggleable section to save space on longer showcases:
<details>
<summary>Click to view showcase</summary>
```rust
println!("My super cool code.");
```
</details>
## Migration Guide
> This section is optional. If there are no breaking changes, you can
delete this section.
- If this PR is a breaking change (relative to the last release of
Bevy), describe how a user might need to migrate their code to support
these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable
design choice is not a breaking change.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
The components needed for `DirectionalLight` are added automatically
since #15554
`create_point_light` already existed and returns a `PointLight` with
these same settings
Early implementation. I still have to fix the documentation and consider
writing a small migration guide.
Questions left to answer:
* [x] should thickness be an overridable constant?
* [x] is there a better way to implement `Eq`/`Hash` for `SSAOMethod`?
* [x] do we want to keep the linear sampler for the depth texture?
* [x] is there a better way to separate the logic than preprocessor
macros?
![vbao](https://github.com/bevyengine/bevy/assets/4136413/2a8a0389-2add-4c2e-be37-e208e52dcd25)
## Migration guide
SSAO algorithm was changed from GTAO to VBAO (visibility bitmasks). A
new field, `constant_object_thickness`, was added to
`ScreenSpaceAmbientOcclusion`. `ScreenSpaceAmbientOcclusion` also lost
its `Eq` and `Hash` implementations.
---------
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
As discussed in #15521
- Partial revert of #14897, reverting the change to the methods to
consume `self`
- The `insert_if` method is kept
The migration guide of #14897 should be removed
Closes#15521
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fixes#14826
- For context, see #15238
## Solution
Add a `GhostNode` component to `bevy_ui` and update all the relevant
systems to use it to traverse for UI children.
- [x] `ghost_hierarchy` module
- [x] Add `GhostNode`
- [x] Add `UiRootNodes` system param for iterating (ghost-aware) UI root
nodes
- [x] Add `UiChildren` system param for iterating (ghost-aware) UI
children
- [x] Update `layout::ui_layout_system`
- [x] Use ghost-aware root nodes for camera updates
- [x] Update and remove children in taffy
- [x] Initial spawn
- [x] Detect changes on nested UI children
- [x] Use ghost-aware children traversal in
`update_uinode_geometry_recursive`
- [x] Update the rest of the UI systems to use the ghost hierarchy
- [x] `stack::ui_stack_system`
- [x] `update::`
- [x] `update_clipping_system`
- [x] `update_target_camera_system`
- [x] `accessibility::calc_name`
## Testing
- [x] Added a new example `ghost_nodes` that can be used as a testbed.
- [x] Added unit tests for _some_ of the traversal utilities in
`ghost_hierarchy`
- [x] Ensure this fulfills the needs for currently known use cases
- [x] Reactivity libraries (test with `bevy_reactor`)
- [ ] Text spans (mentioned by koe [on
discord](https://discord.com/channels/691052431525675048/1285371432460881991/1285377442998915246))
---
## Performance
[See comment
below](https://github.com/bevyengine/bevy/pull/15341#issuecomment-2385456820)
## Migration guide
Any code that previously relied on `Parent`/`Children` to iterate UI
children may now want to use `bevy_ui::UiChildren` to ensure ghost nodes
are skipped, and their first descendant Nodes included.
UI root nodes may now be children of ghost nodes, which means
`Without<Parent>` might not query all root nodes. Use
`bevy_ui::UiRootNodes` where needed to iterate root nodes instead.
## Potential future work
- Benchmarking/optimizations of hierarchies containing lots of ghost
nodes
- Further exploration of UI hierarchies and markers for root nodes/leaf
nodes to create better ergonomics for things like `UiLayer` (world-space
ui)
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: UkoeHB <37489173+UkoeHB@users.noreply.github.com>
# Objective
Again, a step forward in the migration to required components: a bunch
of camera rendering cormponents!
Note that this does not include the camera components themselves yet,
because the naming and API for `Camera` hasn't been fully decided yet.
## Solution
As per the [selected
proposals](https://hackmd.io/@bevy/required_components/%2FpiqD9GOdSFKZZGzzh3C7Uw):
- Deprecate `MotionBlurBundle` in favor of the `MotionBlur` component
- Deprecate `TemporalAntiAliasBundle` in favor of the
`TemporalAntiAliasing` component
- Deprecate `ScreenSpaceAmbientOcclusionBundle` in favor of the
`ScreenSpaceAmbientOcclusion` component
- Deprecate `ScreenSpaceReflectionsBundle` in favor of the
`ScreenSpaceReflections` component
---
## Migration Guide
`MotionBlurBundle`, `TemporalAntiAliasBundle`,
`ScreenSpaceAmbientOcclusionBundle`, and `ScreenSpaceReflectionsBundle`
have been deprecated in favor of the `MotionBlur`,
`TemporalAntiAliasing`, `ScreenSpaceAmbientOcclusion`, and
`ScreenSpaceReflections` components instead. Inserting them will now
also insert the other components required by them automatically.
# Objective
What's that? Another PR for the grand migration to required components?
This time, audio!
## Solution
Deprecate `AudioSourceBundle`, `AudioBundle`, and `PitchBundle`, as per
the [chosen
proposal](https://hackmd.io/@bevy/required_components/%2Fzxgp-zMMRUCdT7LY1ZDQwQ).
However, we cannot call the component `AudioSource`, because that's what
the stored asset is called. I deliberated on a few names, like
`AudioHandle`, or even just `Audio`, but landed on `AudioPlayer`, since
it's probably the most accurate and "nice" name for this. Open to
alternatives though.
---
## Migration Guide
Replace all insertions of `AudioSoucreBundle`, `AudioBundle`, and
`PitchBundle` with the `AudioPlayer` component. The other components
required by it will now be inserted automatically.
In cases where the generics cannot be inferred, you may need to specify
them explicitly. For example:
```rust
commands.spawn(AudioPlayer::<AudioSource>(asset_server.load("sounds/sick_beats.ogg")));
```
# Objective
A step in the migration to required components: scenes!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2FPJtNGVMMQhyM0zIvCJSkbA):
- Deprecate `SceneBundle` and `DynamicSceneBundle`.
- Add `SceneRoot` and `DynamicSceneRoot` components, which wrap a
`Handle<Scene>` and `Handle<DynamicScene>` respectively.
## Migration Guide
Asset handles for scenes and dynamic scenes must now be wrapped in the
`SceneRoot` and `DynamicSceneRoot` components. Raw handles as components
no longer spawn scenes.
Additionally, `SceneBundle` and `DynamicSceneBundle` have been
deprecated. Instead, use the scene components directly.
Previously:
```rust
let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf"));
commands.spawn(SceneBundle {
scene: model_scene,
transform: Transform::from_xyz(-4.0, 0.0, -3.0),
..default()
});
```
Now:
```rust
let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf"));
commands.spawn((
SceneRoot(model_scene),
Transform::from_xyz(-4.0, 0.0, -3.0),
));
```
# Objective
- Improve code quality in preparation for
https://github.com/bevyengine/bevy/discussions/15014
## Solution
- Rename BreakLineOn to LineBreak.
## Migration Guide
`BreakLineOn` was renamed to `LineBreak`, and paramters named
`linebreak_behavior` were renamed to `linebreak`.
# Objective
Add two features to switch bevy to use `NativeActivity` or
`GameActivity` on Android, use `GameActivity` by default.
Also close #12058 and probably #12026 .
## Solution
Add two features to the corresponding crates so you can toggle it, like
what `winit` and `android-activity` crate did.
---
## Changelog
Removed default `NativeActivity` feature implementation for Android,
added two new features to enable `NativeActivity` and `GameActivity`,
and use `GameActivity` by default.
## Migration Guide
Because `cargo-apk` is not compatible with `GameActivity`,
building/running using `cargo apk build/run -p bevy_mobile_example` is
no longer possible.
Users should follow the new workflow described in document.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Rich Churcher <rich.churcher@gmail.com>
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Another part of the migration to required components: fog volumes!
## Solution
Deprecate `FogVolumeBundle` and make `FogVolume` require `Transform` and
`Visibility`, as per the [chosen
proposal](https://hackmd.io/@bevy/required_components/%2FcO7JPSAQR5G0J_j5wNwtOQ).
---
## Migration Guide
Replace all insertions of `FogVolumeBundle` with the `Visibility`
component. The other components required by it will now be inserted
automatically.