Commit graph

120 commits

Author SHA1 Message Date
James Liu
21e1893c4f
Remove capacity fields from all Buffer wrapper types (#8301)
# Objective
While working on #8299, I noticed that we're using a `capacity` field,
even though `wgpu::Buffer` exposes a `size` accessor that does the same
thing.

## Solution
Remove it from all buffer wrappers. Use `wgpu::Buffer::size` instead.
Default to 0 if no buffer has been allocated yet.
2023-04-04 20:12:31 +00:00
James Liu
63d89d31ba
Remove unnecesssary values Vec from DynamicUniformBuffer and DynamicStorageBuffer (#8299)
# Objective
Fixes #8284. `values` is being pushed to separately from the actual
scratch buffer in `DynamicUniformBuffer::push` and
`DynamicStorageBuffer::push`. In both types, `values` is really only
used to track the number of elements being added to the buffer, yet is
causing extra allocations, size increments and excess copies.

## Solution
Remove it and its remaining uses. Replace it with accesses to `scratch`
instead.

I removed the `len` accessor, as it may be non-trivial to compute just
from `scratch`. If this is still desirable to have, we can keep a `len`
member field to track it instead of relying on `scratch`.
2023-04-04 20:12:19 +00:00
Shfty
7b7294b8a7
Allow SPIR-V shaders to process when shader defs are present (#7772) 2023-03-19 09:26:26 +00:00
Robert Swain
2c0ff950d1 Fix performance regression with shadow mapping (#7914)
# Objective

- @mockersf identified a performance regression of about 25% longer frame times introduced by #7784 in a complex scene with the Amazon Lumberyard bistro scene with both exterior and interior variants and a number of point lights with shadow mapping enabled
  - The additional time seemed to be spent in the `ShadowPassNode`
  - `ShadowPassNode` encodes the draw commands for the shadow phase. Roughly the same numbers of entities were having draw commands encoded, so something about the way they were being encoded had changed.
  - One thing that definitely changed was that the pipeline used will be different depending on the alpha mode, and the scene has lots entities with opaque and blend materials. This suggested that maybe the pipeline was changing a lot so I tried a quick hack to see if it was the problem.

## Solution

- Sort the shadow phase items by their pipeline id
  - This groups phase items by their pipeline id, which significantly reduces pipeline rebinding required to the point that the performance regression was gone.
2023-03-06 00:00:40 +00:00
Edgar Geier
e4fd25a952 Only execute #define if current scope is accepting lines (#7798)
# Objective

While working on #7784, I noticed that a `#define VAR` in a `.wgsl` file is always effective, even if it its scope is not accepting lines. 

Example:
```c
#define A
#ifndef A
#define B
#endif
```

Currently, `B` will be defined although it shouldn't. This PR fixes that. 

## Solution

Move the branch responsible for `#define` lines into the last else branch, which is only evaluated if the current scope is accepting lines.
2023-02-24 02:44:28 +00:00
Andrii Borziak
12aadfd4a6 Support raw buffers in AsBindGroup macro (#7701)
# Objective

There was PR that introduced support for storage buffer is `AsBindGroup` macro [#6129](https://github.com/bevyengine/bevy/pull/6129), but it does not give more granular control over storage buffer, it will always copy all the data no matter which part of it was updated. There is also currently another open PR #6669 that tries to achieve exactly that, it is just not up to date and seems abandoned (Sorry if that is not right). In this PR I'm proposing a solution for both of these approaches to co-exist using `#[storage(n, buffer)]` and `#[storage(n)]` to distinguish between the cases.

We could also discuss in this PR if there is a need to extend this support to DynamicBuffers as well.
2023-02-22 22:43:29 +00:00
François
7ec9258f08 fix regex for shader define: must have at least one whitespace (#7754)
# Objective

- Nothing render
```
ERROR bevy_render::render_resource::pipeline_cache: failed to process shader: Invalid shader def definition for '_import_path': bevy_pbr
```

## Solution

- Fix define regex so that it must have one whitespace after `define`
2023-02-20 02:19:41 +00:00
François
b056475360 can define a value from inside a shader (#7518)
# Objective

- Fixes #7494
- It is now possible to define a ShaderDef from inside a shader. This can be useful to centralise a value, or making sure an import is only interpreted once

## Solution

- Support `#define <SHADERDEF_NAME> <optional value>`
2023-02-20 00:33:48 +00:00
Zhixing Zhang
16feb9acb7 Add push contant config to layout (#7681)
# Objective

Allow for creating pipelines that use push constants. To be able to use push constants. Fixes #4825

As of right now, trying to call `RenderPass::set_push_constants` will trigger the following error:

```
thread 'main' panicked at 'wgpu error: Validation Error

Caused by:
    In a RenderPass
      note: encoder = `<CommandBuffer-(0, 59, Vulkan)>`
    In a set_push_constant command
    provided push constant is for stage(s) VERTEX | FRAGMENT | VERTEX_FRAGMENT, however the pipeline layout has no push constant range for the stage(s) VERTEX | FRAGMENT | VERTEX_FRAGMENT
```
## Solution

Add a field push_constant_ranges to` RenderPipelineDescriptor` and `ComputePipelineDescriptor`.

This PR supersedes #4908 which now contains merge conflicts due to significant changes to `bevy_render`.

Meanwhile, this PR also made the `layout` field of `RenderPipelineDescriptor` and `ComputePipelineDescriptor` non-optional. If the user do not need to specify the bind group layouts, they can simply supply an empty vector here. No need for it to be optional.

---

## Changelog
- Add a field push_constant_ranges to RenderPipelineDescriptor and ComputePipelineDescriptor
- Made the `layout` field of RenderPipelineDescriptor and ComputePipelineDescriptor non-optional.


## Migration Guide

- Add push_constant_ranges: Vec::new() to every `RenderPipelineDescriptor` and `ComputePipelineDescriptor`
- Unwrap the optional values on the `layout` field of `RenderPipelineDescriptor` and `ComputePipelineDescriptor`. If the descriptor has no layout, supply an empty vector.


Co-authored-by: Zhixing Zhang <me@neoto.xin>
2023-02-17 06:20:16 +00:00
Kurt Kühnert
9ef840e8e9 Changed &mut PipelineCache to &PipelineCache (#7598)
This was missed in #7205.
Should be fixed now. 😄 

## Migration Guide
- `SpecializedComputePipelines::specialize` now takes a `&PipelineCache` instead of a `&mut PipelineCache`
2023-02-10 11:17:18 +00:00
SpeedRoll
952735f5ae Added buffer usage field to buffers (#7423)
# Objective

Buffers in bevy do not allow for setting buffer usage flags which can be useful for setting COPY_SRC, MAP_READ, MAP_WRITE, which allows for buffers to be copied from gpu to cpu for inspection.

## Solution

Add buffer_usage field to buffers and a set_usage function to set them
2023-02-06 21:41:14 +00:00
robtfm
8f81be9845 remove potential ub in render_resource_wrapper (#7279)
# Objective

[as noted](https://github.com/bevyengine/bevy/pull/5950#discussion_r1080762807) by james, transmuting arcs may be UB.
 
we now store a `*const ()` pointer internally, and only rely on `ptr.cast::<()>().cast::<T>() == ptr`.

as a happy side effect this removes the need for boxing the value, so todo: potentially use this for release mode as well
2023-02-06 17:14:00 +00:00
Alice Cecile
206c7ce219 Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.

# Objective

- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45

## Solution

- [x]  Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests

## Changelog

### Added

- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`

### Removed

- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.

### Changed

- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
-  `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. 
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.

## Migration Guide

- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage`  enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
  - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
  - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
  - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with 
  - `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`

## TODO

- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
  - [x] unbreak directional lights
  - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
  - [x] game menu example shows loading screen and menu simultaneously
  - [x] display settings menu is a blank screen
  - [x] `without_winit` example panics
- [x] ensure all tests pass
  - [x] SubApp doc test fails
  - [x] runs_spawn_local tasks fails
  - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)

## Points of Difficulty and Controversy

**Reviewers, please give feedback on these and look closely**

1.  Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.

## Future Work (ideally before 0.10)

- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
Torstein Grindvik
12f30f5667 Shaders can now have #else ifdef chains (#7431)
# Objective

Currently, shaders may only have syntax such as

```wgsl
#ifdef FOO
// foo code
#else
#ifdef BAR
// bar code
#else
#ifdef BAZ
// baz code
#else
// fallback code
#endif
#endif
#endif
```

This is hard to read and follow.
Add a way to allow writing `#else ifdef DEFINE` to reduce the number of scopes introduced and to increase readability.

## Solution

Refactor the current preprocessing a bit and add logic to allow `#else ifdef DEFINE`.
This includes per-scope tracking of whether a branch has been accepted.
Add a few tests for this feature.

With these changes we may now write:

```wgsl
#ifdef FOO
// foo code
#else ifdef BAR
// bar code
#else ifdef BAZ
// baz code
#else
// fallback code
#endif
```

instead.

---

## Changelog

- Add `#else ifdef` to shader preprocessing.
2023-02-04 15:29:35 +00:00
Chris Ohk
3281aea5c2 Fix minor typos in code and docs (#7378)
# Objective

I found several words in code and docs are incorrect. This should be fixed.

## Solution

- Fix several minor typos

Co-authored-by: Chris Ohk <utilforever@gmail.com>
2023-01-27 12:12:53 +00:00
研究社交
6b38863313 Request WGPU Capabilities for Non-uniform Indexing (#6995)
# Objective

Fixes #6952 

## Solution

- Request WGPU capabilities `SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING`, `SAMPLER_NON_UNIFORM_INDEXING` and `UNIFORM_BUFFER_AND_STORAGE_TEXTURE_ARRAY_NON_UNIFORM_INDEXING` when corresponding features are enabled.
- Add an example (`shaders/texture_binding_array`) illustrating (and testing) the use of non-uniform indexed textures and samplers.

![image](https://user-images.githubusercontent.com/16053640/209448310-defa4eae-6bcb-460d-9b3d-a3d2fad4316c.png)

## Changelog

- Added new capabilities for shader validation.
- Added example `shaders/texture_binding_array`.
2023-01-26 13:18:15 +00:00
Daniel Chia
517deda215 Make PipelineCache internally mutable. (#7205)
# Objective

- Allow rendering queue systems to use a `Res<PipelineCache>` even for queueing up new rendering pipelines. This is part of unblocking parallel execution queue systems.

## Solution

- Make `PipelineCache` internally mutable w.r.t to queueing new pipelines. Pipelines are no longer immediately updated into the cache state, but rather queued into a Vec. The Vec of pending new pipelines is then later processed at the same time we actually create the queued pipelines on the GPU device.

---

## Changelog

`PipelineCache` no longer requires mutable access in order to queue render / compute pipelines.

## Migration Guide

* Most usages of `resource_mut::<PipelineCache>` and `ResMut<PipelineCache>` can be changed to `resource::<PipelineCache>` and `Res<PipelineCache>` as long as they don't use any methods requiring mutability - the only public method requiring it is `process_queue`.
2023-01-16 15:41:14 +00:00
James Liu
bef9bc1844 Reduce branching in TrackedRenderPass (#7053)
# Objective
Speed up the render phase for rendering.

## Solution
 - Follow up #6988 and make the internals of atomic IDs `NonZeroU32`. This niches the `Option`s of the IDs in draw state, which reduces the size and branching behavior when evaluating for equality.
 - Require `&RenderDevice` to get the device's `Limits` when initializing a `TrackedRenderPass` to preallocate the bind groups and vertex buffer state in `DrawState`, this removes the branch on needing to resize those `Vec`s.

## Performance
This produces a similar speed up akin to that of #6885. This shows an approximate 6% speed up in `main_opaque_pass_3d` on `many_foxes` (408.79 us -> 388us). This should be orthogonal to the gains seen there.

![image](https://user-images.githubusercontent.com/3137680/209906239-e430f026-63c2-4b95-957e-a2045b810d79.png)

---

## Changelog
Added: `RenderContext::begin_tracked_render_pass`.
Changed: `TrackedRenderPass` now requires a `&RenderDevice` on construction.
Removed: `bevy_render::render_phase::DrawState`. It was not usable in any form outside of `bevy_render`.

## Migration Guide
TODO
2023-01-09 19:24:56 +00:00
IceSentry
ee4e98f8a9 Support storage buffers in derive AsBindGroup (#6129)
# Objective

- Storage buffers are useful and not currently supported by the `AsBindGroup` derive which means you need to expand the macro if you need a storage buffer

## Solution

- Add a new `#[storage]` attribute to the derive `AsBindGroup` macro.
	- Support and optional `read_only` parameter that defaults to false when not present.
	- Support visibility parameters like the texture and sampler attributes.

---

## Changelog

- Add a new `#[storage(index)]` attribute to the derive `AsBindGroup` macro.


Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2023-01-09 18:50:55 +00:00
Rob Parrett
3dd8b42f72 Fix various typos (#7096)
I stumbled across a typo in some docs. Fixed some more while I was in there.
2023-01-06 00:43:30 +00:00
Kurt Kühnert
965ebeff59 Replace UUID based IDs with a atomic-counted ones (#6988)
# Objective

- alternative to #2895 
- as mentioned in #2535 the uuid based ids in the render module should be replaced with atomic-counted ones

## Solution
- instead of generating a random UUID for each render resource, this implementation increases an atomic counter
- this might be replaced by the ids of wgpu if they expose them directly in the future

- I have not benchmarked this solution yet, but this should be slightly faster in theory.
- Bevymark does not seem to be affected much by this change, which is to be expected.

- Nothing of our API has changed, other than that the IDs have lost their IMO rather insignificant documentation.
- Maybe the documentation could be added back into the macro, but this would complicate the code.
2022-12-25 00:23:15 +00:00
James Liu
1523c38ce8 Directly extract joints into SkinnedMeshJoints (#6833)
# Objective
Following #4402, extract systems run on the render world instead of the main world, and allow retained state operations on it's resources. We're currently extracting to `ExtractedJoints` and then copying it twice during Prepare. Once into `SkinnedMeshJoints` and again into the actual GPU buffer.

This makes #4902 obsolete.

## Solution
Cut out the middle copy and directly extract joints into `SkinnedMeshJoints` and remove `ExtractedJoints` entirely.

This also removes the per-frame allocation that is being made to send `ExtractedJoints` into the render world.

## Performance
On my local machine, this halves the time for `prepare_skinned _meshes` on `many_foxes` (195.75us -> 93.93us on average).

![image](https://user-images.githubusercontent.com/3137680/205427455-ab91a8a3-a6b0-4f0a-bd48-e54482c563b2.png)

---

## Changelog
Added: `BufferVec::truncate`
Added: `BufferVec::extend`
Changed: `SkinnedMeshJoints::build` now takes a `&mut BufferVec` instead of a `&mut Vec` as a parameter.
Removed: `ExtractedJoints`.

## Migration Guide
`ExtractedJoints` has been removed. Read the bound bones from `SkinnedMeshJoints` instead.
2022-12-20 16:17:05 +00:00
Jonah Henriksson
38d567d2c5 Make AsBindGroup unsized (#6937)
# Objective

`AsBindGroup` can't be used as a trait object because of the constraint `Sized` and because of the associated function.

This is a problem for [`bevy_atmosphere`](https://github.com/JonahPlusPlus/bevy_atmosphere) because it needs to use a trait that depends on `AsBindGroup` as a trait object, for switching out different shaders at runtime. The current solution it employs is reimplementing the trait and derive macro into that trait, instead of constraining to `AsBindGroup`.

## Solution

Remove the `Sized` constraint from `AsBindGroup` and add the constraint `where Self: Sized` to the associated function `bind_group_layout`. Also change `PreparedBindGroup<T: AsBindGroup>` to `PreparedBindGroup<T>` and use it as `PreparedBindGroup<Self::Data>` instead of `PreparedBindGroup<Self>`.

This weakens the constraints, but increases the flexibility of `AsBindGroup`.
I'm not entirely sure why the `Sized` constraint was there, because it worked fine without it (maybe @cart wasn't aware of use cases for `AsBindGroup` as a trait object or this was just leftover from legacy code?).

---

## Changelog

- `AsBindGroup` can be used as a trait object.
2022-12-16 01:40:15 +00:00
IceSentry
36691769ba Document undocumented features of AsBindGroup derive (#6910)
# Objective

- https://github.com/bevyengine/bevy/pull/5364 Added a few features to the AsBindGroup derive, but if you don't know they exist they aren't documented anywhere.


## Solution

- Document the new arguments in the doc block for the derive.
2022-12-11 18:46:45 +00:00
François
8eedc8f69d ShaderDefVal: add an UInt option (#6881)
# Objective

- Fixes #6841 
- In some case, the number of maximum storage buffers is `u32::MAX` which doesn't fit in a `i32`

## Solution

- Add an option to have a `u32` in a `ShaderDefVal`
2022-12-07 23:10:27 +00:00
François
9c79b39d73 set AVAILABLE_STORAGE_BUFFER_BINDINGS to the actual number of buffers available (#6787)
# Objective

- Since #5900 3d examples fail in wasm
```
ERROR crates/bevy_render/src/render_resource/pipeline_cache.rs:660 failed to process shader: Unknown shader def: 'AVAILABLE_STORAGE_BUFFER_BINDINGS'
```

## Solution

- Fix it by always adding the shaderdef `AVAILABLE_STORAGE_BUFFER_BINDINGS` with the actual value, instead of 3 when 3 or more were available
2022-11-28 19:27:04 +00:00
IceSentry
64642fbd3c Remove unnecessary struct in Material AsBindGroup example (#6701)
# Objective

- Reduce confusion around uniform bindings in materials. I've seen multiple people on discord get confused by it because it uses a struct that is named the same in the rust code and the wgsl code, but doesn't contain the same data. Also, the only reason this works is mostly by chance because the memory happens to align correctly.

## Solution

- Remove the confusing parts of the doc

## Notes

It's not super clear in the diff why this causes confusion, but essentially, the rust code defines a `CustomMaterial` struct with a color and a texture, but in the wgsl code the struct with the same name only contains the color. People are confused by it because the struct in wgsl doesn't need to be there.

You _can_ have complex structs on each side and the macro will even combine it for you if you reuse a binding index, but as it is now, this example seems to confuse more than help people.
2022-11-28 13:15:03 +00:00
François
d44e86507f Shader defs can now have a value (#5900)
# Objective

- shaders defs can now have a `bool` or `int` value
- `#if SHADER_DEF <operator> 3`
  - ok if `SHADER_DEF` is defined, has the correct type and pass the comparison
  - `==`, `!=`, `>=`, `>`, `<`, `<=` supported
- `#SHADER_DEF` or `#{SHADER_DEF}`
  - will be replaced by the value in the shader code
---

## Migration Guide

- replace `shader_defs.push(String::from("NAME"));` by `shader_defs.push("NAME".into());`
- if you used shader def `NO_STORAGE_BUFFERS_SUPPORT`, check how `AVAILABLE_STORAGE_BUFFER_BINDINGS` is now used in Bevy default shaders
2022-11-21 22:38:29 +00:00
robtfm
2cd0bd7575 improve compile time by type-erasing wgpu structs (#5950)
# Objective

structs containing wgpu types take a long time to compile. this is particularly bad for generics containing the wgpu structs (like the depth pipeline builder with `#[derive(SystemParam)]` i've been working on).

we can avoid that by boxing and type-erasing in the bevy `render_resource` wrappers.

type system magic is not a strength of mine so i guess there will be a cleaner way to achieve this, happy to take feedback or for it to be taken as a proof of concept if someone else wants to do a better job.

## Solution

- add macros to box and type-erase in debug mode
- leave current impl for release mode

timings:


<html xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:x="urn:schemas-microsoft-com:office:excel"
xmlns="http://www.w3.org/TR/REC-html40">

<head>

<meta name=ProgId content=Excel.Sheet>
<meta name=Generator content="Microsoft Excel 15">
<link id=Main-File rel=Main-File
href="file:///C:/Users/robfm/AppData/Local/Temp/msohtmlclip1/01/clip.htm">
<link rel=File-List
href="file:///C:/Users/robfm/AppData/Local/Temp/msohtmlclip1/01/clip_filelist.xml">
<!--table
	{mso-displayed-decimal-separator:"\.";
	mso-displayed-thousand-separator:"\,";}
@page
	{margin:.75in .7in .75in .7in;
	mso-header-margin:.3in;
	mso-footer-margin:.3in;}
tr
	{mso-height-source:auto;}
col
	{mso-width-source:auto;}
br
	{mso-data-placement:same-cell;}
td
	{padding-top:1px;
	padding-right:1px;
	padding-left:1px;
	mso-ignore:padding;
	color:black;
	font-size:11.0pt;
	font-weight:400;
	font-style:normal;
	text-decoration:none;
	font-family:Calibri, sans-serif;
	mso-font-charset:0;
	mso-number-format:General;
	text-align:general;
	vertical-align:bottom;
	border:none;
	mso-background-source:auto;
	mso-pattern:auto;
	mso-protection:locked visible;
	white-space:nowrap;
	mso-rotate:0;}
.xl65
	{mso-number-format:0%;}
.xl66
	{vertical-align:middle;
	white-space:normal;}
.xl67
	{vertical-align:middle;}
-->
</head>

<body link="#0563C1" vlink="#954F72">



current |   |   |  
-- | -- | -- | --
  | Total time: | 64.9s |  
  | bevy_pbr v0.9.0-dev | 19.2s |  
  | bevy_render v0.9.0-dev | 17.0s |  
  | bevy_sprite v0.9.0-dev | 15.1s |  
  | DepthPipelineBuilder | 18.7s |  
  |   |   |  
with type-erasing |   |   | diff
  | Total time: | 49.0s | -24%
  | bevy_render v0.9.0-dev | 12.0s | -38%
  | bevy_pbr v0.9.0-dev | 8.7s | -49%
  | bevy_sprite v0.9.0-dev | 6.1s | -60%
  | DepthPipelineBuilder | 1.2s | -94%



</body>

</html>

the depth pipeline builder is a binary with body: 
```rust
use std::{marker::PhantomData, hash::Hash};
use bevy::{prelude::*, ecs::system::SystemParam, pbr::{RenderMaterials, MaterialPipeline, ShadowPipeline}, render::{renderer::RenderDevice, render_resource::{SpecializedMeshPipelines, PipelineCache}, render_asset::RenderAssets}};

fn main() {
    println!("Hello, world p!\n");
}

#[derive(SystemParam)]
pub struct DepthPipelineBuilder<'w, 's, M: Material> 
where M::Data: Eq + Hash + Clone,
{
    render_device: Res<'w, RenderDevice>,
    material_pipeline: Res<'w, MaterialPipeline<M>>,
    material_pipelines: ResMut<'w, SpecializedMeshPipelines<MaterialPipeline<M>>>,
    shadow_pipeline: Res<'w, ShadowPipeline>,
    pipeline_cache: ResMut<'w, PipelineCache>,
    render_meshes: Res<'w, RenderAssets<Mesh>>,
    render_materials: Res<'w, RenderMaterials<M>>,
    msaa: Res<'w, Msaa>,
    #[system_param(ignore)]
    _p: PhantomData<&'s M>,
}
```
2022-11-18 22:04:23 +00:00
Rob Parrett
1170b30785 Fix panic when using globals uniform in wasm builds (#6460)
# Objective

Fixes #5393 

## Solution

- Add padding to `GlobalsUniform` / `Globals` to make it 16-byte aligned.

Still not super clear on whether this is a `naga` thing or an `encase` thing or what. But now that we're offering `globals` up to users and #5393 is not just breaking an example, maybe we should do this sort of workaround?
2022-11-07 19:44:14 +00:00
Jakob Hellermann
e71c4d2802 fix nightly clippy warnings (#6395)
# Objective

- fix new clippy lints before they get stable and break CI

## Solution

- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`

## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
2022-10-28 21:03:01 +00:00
Charles
018509c3a1 log pipeline cache errors earlier (#6115)
# Objective

- Currently, errors aren't logged as soon as they are found, they are logged only on the next frame. This means your shader could have an unreported error that could have been reported on the first frame.

## Solution

- Log the error as soon as they are found, don't wait until next frame

## Notes

I discovered this issue because I was simply unwrapping the `Result` from `PipelinCache::get_render_pipeline()` which caused it to fail without any explanations. Admittedly, this was a bit of a user error, I shouldn't have unwrapped that, but it seems a bit strange to wait until the next time the pipeline is processed to log the error instead of just logging it as soon as possible since we already have all the info necessary.
2022-09-28 04:04:55 +00:00
SpecificProtagonist
128c169503 remove copyless (#6100)
# Objective
Remove copyless
copyless apparently isn't needed anymore to prevent extraneous memcopies and therefore got deprecated: https://github.com/kvark/copyless/issues/22
2022-09-27 18:11:40 +00:00
Charles
deb07fe957 add support for .comp glsl shaders (#6084)
# Objective

- Support `.comp` extension for glsl compute shaders

## Solution

- Add `.comp` to the shader asset loader
2022-09-27 01:30:40 +00:00
Kurt Kühnert
c256c38486 Add TextureFormat::Rg16Unorm support for Image and derive Resource for SpecializedComputePipelines (#5991)
# Objective

Currently some TextureFormats are not supported by the Image type.
The `TextureFormat::Rg16Unorm` format is useful for storing minmax heightmaps.
Similar to #5249 I now additionally require image to support the dual channel variant.

## Solution

Added `TextureFormat::Rg16Unorm` support to Image.

Additionally this PR derives `Resource` for `SpecializedComputePipelines`, because for some reason this was missing.
All other special pipelines do derive `Resource` already.


Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com>
2022-09-15 15:57:04 +00:00
Jerome Humbert
26d30fe412 Document PipelineCache and related types (#5600)
# Objective

Document `PipelineCache` and a few other related types.

## Solution

Add documenting comments to `PipelineCache` and a few other related
types in the same file.
2022-09-02 16:33:18 +00:00
François
480b3baa44 Helpers to check pipeline cache status (#5796)
# Objective

- In WASM, creating a pipeline can easily take 2 seconds, freezing the game while doing so
- Preloading pipelines can be done during a "loading" state, but it is not trivial to know which pipeline to preload, or when it's done

## Solution

- Add a log with shaders being loaded and their shader defs
- add a function on `PipelineCache` to return the number of ready pipelines
2022-09-02 12:18:43 +00:00
Jerome Humbert
a9634c7344 Make internal struct ShaderData non-pub (#5609)
# Objective

`ShaderData` is marked as public, but is an internal type only used by one other
internal type, so it should be made private.

## Solution

`ShaderData` is only used in `ShaderCache`, and the latter is private,
so there is no need to make the former public. This change removes the
`pub` keyword from `ShaderData`, hidding it as the implementation detail
it is.

Split from #5600
2022-08-08 22:46:04 +00:00
ira
992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
Brandon Reinhart
2d2ea337dd add a debug label to storage buffers (#5341)
# Objective

- Expose the wgpu debug label on storage buffer types.

## Solution

🐄

- Add an optional cow static string and pass that to the label field of create_buffer_with_data
- This pattern is already used by Bevy for debug tags on bind group and layout descriptors.

---

Example Usage:

A buffer is given a label using the label function. Alternatively a buffer may be labeled when it is created if the default() convention is not used.
![ray_buf](https://user-images.githubusercontent.com/106117615/179366494-f037bd8c-4d65-4b37-8135-01ac0c5c8ee0.png)

Here is the buffer appearing with the correct name in RenderDoc. Previously the buffer would have an anonymous name such as "Buffer223":
![buffer_named](https://user-images.githubusercontent.com/106117615/179366552-faeb6c27-5373-4e4e-a0e2-c04446f95a4b.png)



Co-authored-by: rebelroad-reinhart <reinhart@rebelroad.gg>
2022-07-28 20:37:49 +00:00
Brian Merchant
433306b978 Documenting UniformBuffer, DynamicUniformBuffer, StorageBuffer and DynamicStorageBuffer. (#5223)
# Objective

Documents the `UniformBuffer`, `DynamicUniformBuffer`, `StorageBuffer` and `DynamicStorageBuffer` render resources.


## Solution

I looked through Discord discussion on these structures, and found [a comment](https://discord.com/channels/691052431525675048/953222550568173580/956596218857918464) to be particularly helpful, in the general discussion around encase. Other resources I have used are documented here:  https://discord.com/channels/691052431525675048/968333504838524958/991195474029715520


Co-authored-by: Brian Merchant <bhmerchant@gmail.com>
2022-07-20 17:24:34 +00:00
François
814f8d1635 update wgpu to 0.13 (#5168)
# Objective

- Update wgpu to 0.13
- ~~Wait, is wgpu 0.13 released? No, but I had most of the changes already ready since playing with webgpu~~ well it has been released now
- Also update parking_lot to 0.12 and naga to 0.9

## Solution

- Update syntax for wgsl shaders https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#wgsl-syntax
- Add a few options, remove some references: https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#other-breaking-changes
- fragment inputs should now exactly match vertex outputs for locations, so I added exports for those to be able to reuse them https://github.com/gfx-rs/wgpu/pull/2704
2022-07-14 21:17:16 +00:00
Daniel McNab
7b2cf98896 Make RenderStage::Extract run on the render world (#4402)
# Objective

- Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource.
- However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource.
- This meant that effectively only one extract which wrote to resources could run at a time.
- We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that.

## Solution

- Move the extract stage to run on the render world.
- Add the main world as a `MainWorld` resource.
- Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`.

## Future work

It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on.
We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519
It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too.

## Todo
I still need to add doc comments to `Extract`.

---

## Changelog

### Changed
- The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
   You must use the `Extract` `SystemParam` to access the main world during the extract phase.
   Resources on the render world can now be accessed using `ResMut` during extract.

### Removed
- `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead

## Migration Guide

The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it.

For example, if previously your extract system looked like:
```rust
fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
    for cloud in clouds.iter() {
        commands.get_or_spawn(cloud).insert(Cloud);
    }
}
```
the new version would be:
```rust
fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
    for cloud in clouds.value().iter() {
        commands.get_or_spawn(cloud).insert(Cloud);
    }
}
```
The diff is:
```diff
--- a/src/clouds.rs
+++ b/src/clouds.rs
@@ -1,5 +1,5 @@
-fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
-    for cloud in clouds.iter() {
+fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
+    for cloud in clouds.value().iter() {
         commands.get_or_spawn(cloud).insert(Cloud);
     }
 }
```
You can now also access resources from the render world using the normal system parameters during `Extract`:
```rust
fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) {
     *render_assets = source_assets.clone();
}
```
Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
CGMossa
33f9b3940d Updated glam to 0.21. (#5142)
Removed `const_vec2`/`const_vec3`
and replaced with equivalent `.from_array`.

# Objective

Fixes #5112 

## Solution

- `encase` needs to update to `glam` as well. See teoxoy/encase#4 on progress on that. 
- `hexasphere` also needs to be updated, see OptimisticPeach/hexasphere#12.
2022-07-03 19:55:33 +00:00
Jakob Hellermann
49ff42cc69 fix new clippy lints (#5160)
# Objective

- Nightly clippy lints should be fixed before they get stable and break CI
  
## Solution

- fix new clippy lints
- ignore `significant_drop_in_scrutinee` since it isn't relevant in our loop https://github.com/rust-lang/rust-clippy/issues/8987
```rust
for line in io::stdin().lines() {
    ...
}
```

Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
2022-07-01 13:41:23 +00:00
Carter Anderson
747b0c69b0 Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053)
# Objective

This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired:
* Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan.
* There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss.
* Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. 

## Solution

Say hello to the new `Material` system:

```rust
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
impl Material for CoolMaterial {
    fn fragment_shader() -> ShaderRef {
        "cool_material.wgsl".into()
    }
}
```

Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code.

This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive.

### The new `Material` trait

The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional.

The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity:

```rust
// Old
impl Material for CustomMaterial {
    fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
        Some(asset_server.load("custom_material.wgsl"))
    }

    fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode {
        render_asset.alpha_mode
    }
}

// New
impl Material for CustomMaterial {
    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn alpha_mode(&self) -> AlphaMode {
        self.alpha_mode
    }
}
```

Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later).

### The `AsBindGroup` trait / derive

The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. 

Field attributes like `uniform` and `texture` are used to define which fields should be bindings,
what their binding type is, and what index they should be bound at:

```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
```

In WGSL shaders, the binding looks like this:

```wgsl
struct CoolMaterial {
    color: vec4<f32>;
};

[[group(1), binding(0)]]
var<uniform> material: CoolMaterial;
[[group(1), binding(1)]]
var color_texture: texture_2d<f32>;
[[group(1), binding(2)]]
var color_sampler: sampler;
```

Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1.

The following field-level attributes are supported:
* `uniform(BINDING_INDEX)`
    * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs.
* `texture(BINDING_INDEX)`
    * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index).
* `sampler(BINDING_INDEX)`
    * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. 

Note that fields without field-level binding attributes will be ignored.
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    this_field_is_ignored: String,
}
```

As mentioned above, `Option<Handle<Image>>` is also supported:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Option<Handle<Image>>,
}
```
This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white".

Field uniforms with the same binding index will be combined into a single binding:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[uniform(0)]
    roughness: f32,
}
```

In WGSL shaders, the binding would look like this:
```wgsl
struct CoolMaterial {
    color: vec4<f32>;
    roughness: f32;
};

[[group(1), binding(0)]]
var<uniform> material: CoolMaterial;
```

Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes:
* `uniform(BINDING_INDEX, ConvertedShaderType)`
    * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required.
* `bind_group_data(DataType)`
    * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization".

The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can
also be equivalently represented with a single struct-level uniform attribute:
```rust
#[derive(AsBindGroup)]
#[uniform(0, CoolMaterialUniform)]
struct CoolMaterial {
    color: Color,
    roughness: f32,
}

#[derive(ShaderType)]
struct CoolMaterialUniform {
    color: Color,
    roughness: f32,
}

impl From<&CoolMaterial> for CoolMaterialUniform {
    fn from(material: &CoolMaterial) -> CoolMaterialUniform {
        CoolMaterialUniform {
            color: material.color,
            roughness: material.roughness,
        }
    }
}
```

### Material Specialization

Material shader specialization is now _much_ simpler:

```rust
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
#[bind_group_data(CoolMaterialKey)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    is_red: bool,
}

#[derive(Copy, Clone, Hash, Eq, PartialEq)]
struct CoolMaterialKey {
    is_red: bool,
}

impl From<&CoolMaterial> for CoolMaterialKey {
    fn from(material: &CoolMaterial) -> CoolMaterialKey {
        CoolMaterialKey {
            is_red: material.is_red,
        }
    }
}

impl Material for CoolMaterial {
    fn fragment_shader() -> ShaderRef {
        "cool_material.wgsl".into()
    }

    fn specialize(
        pipeline: &MaterialPipeline<Self>,
        descriptor: &mut RenderPipelineDescriptor,
        layout: &MeshVertexBufferLayout,
        key: MaterialPipelineKey<Self>,
    ) -> Result<(), SpecializedMeshPipelineError> {
        if key.bind_group_data.is_red {
            let fragment = descriptor.fragment.as_mut().unwrap();
            fragment.shader_defs.push("IS_RED".to_string());
        }
        Ok(())
    }
}
```

Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system:
```rust
impl Material for CustomMaterial {
    fn vertex_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn specialize(
        pipeline: &MaterialPipeline<Self>,
        descriptor: &mut RenderPipelineDescriptor,
        layout: &MeshVertexBufferLayout,
        key: MaterialPipelineKey<Self>,
    ) -> Result<(), SpecializedMeshPipelineError> {
        let vertex_layout = layout.get_layout(&[
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            ATTRIBUTE_BLEND_COLOR.at_shader_location(1),
        ])?;
        descriptor.vertex.buffers = vec![vertex_layout];
        Ok(())
    }
}
```

### Ported `StandardMaterial` to the new `Material` system

Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive):

```rust
#[derive(AsBindGroup, Debug, Clone, TypeUuid)]
#[uuid = "7494888b-c082-457b-aacf-517228cc0c22"]
#[bind_group_data(StandardMaterialKey)]
#[uniform(0, StandardMaterialUniform)]
pub struct StandardMaterial {
    pub base_color: Color,
    #[texture(1)]
    #[sampler(2)]
    pub base_color_texture: Option<Handle<Image>>,
    /* other fields omitted for brevity */
```

### Ported Bevy examples to the new `Material` system

The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike.

Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction
in the overall complexity of the code (even accounting for the new derive logic).

---

## Changelog

### Added

* `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type.

### Changed

* The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`.
* `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`.

## Migration Guide
The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well!

### Bevy 0.7 (old)

```rust
#[derive(Debug, Clone, TypeUuid)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
    color: Color,
    color_texture: Handle<Image>,
}

#[derive(Clone)]
pub struct GpuCustomMaterial {
    _buffer: Buffer,
    bind_group: BindGroup,
}

impl RenderAsset for CustomMaterial {
    type ExtractedAsset = CustomMaterial;
    type PreparedAsset = GpuCustomMaterial;
    type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>);
    fn extract_asset(&self) -> Self::ExtractedAsset {
        self.clone()
    }

    fn prepare_asset(
        extracted_asset: Self::ExtractedAsset,
        (render_device, material_pipeline): &mut SystemParamItem<Self::Param>,
    ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> {
        let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32());

        let byte_buffer = [0u8; Vec4::SIZE.get() as usize];
        let mut buffer = encase::UniformBuffer::new(byte_buffer);
        buffer.write(&color).unwrap();

        let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
            contents: buffer.as_ref(),
            label: None,
            usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
        });

        let (texture_view, texture_sampler) = if let Some(result) = material_pipeline
            .mesh_pipeline
            .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone()))
        {
            result
        } else {
            return Err(PrepareAssetError::RetryNextUpdate(extracted_asset));
        };
        let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
            entries: &[
                BindGroupEntry {
                    binding: 0,
                    resource: buffer.as_entire_binding(),
                },
                BindGroupEntry {
                    binding: 0,
                    resource: BindingResource::TextureView(texture_view),
                },
                BindGroupEntry {
                    binding: 1,
                    resource: BindingResource::Sampler(texture_sampler),
                },
            ],
            label: None,
            layout: &material_pipeline.material_layout,
        });

        Ok(GpuCustomMaterial {
            _buffer: buffer,
            bind_group,
        })
    }
}

impl Material for CustomMaterial {
    fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
        Some(asset_server.load("custom_material.wgsl"))
    }

    fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup {
        &render_asset.bind_group
    }

    fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
        render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
            entries: &[
                BindGroupLayoutEntry {
                    binding: 0,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Buffer {
                        ty: BufferBindingType::Uniform,
                        has_dynamic_offset: false,
                        min_binding_size: Some(Vec4::min_size()),
                    },
                    count: None,
                },
                BindGroupLayoutEntry {
                    binding: 1,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Texture {
                        multisampled: false,
                        sample_type: TextureSampleType::Float { filterable: true },
                        view_dimension: TextureViewDimension::D2Array,
                    },
                    count: None,
                },
                BindGroupLayoutEntry {
                    binding: 2,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Sampler(SamplerBindingType::Filtering),
                    count: None,
                },
            ],
            label: None,
        })
    }
}
```

### Bevy 0.8 (new)

```rust
impl Material for CustomMaterial {
    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }
}

#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
```

## Future Work

* Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check.
* Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint".
    * This would make it possible for the derive to do this:
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            #[uniform]
            color: Color,
            #[texture]
            #[sampler]
            color_texture: Option<Handle<Image>>,
            alpha_mode: AlphaMode,
        }
        ```
    * Or this
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            #[binding]
            color: Color,
            #[binding]
            color_texture: Option<Handle<Image>>,
            alpha_mode: AlphaMode,
        }
        ```
    * Or even this (if we flip to "include bindings by default")
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            color: Color,
            color_texture: Option<Handle<Image>>,
            #[binding(ignore)]
            alpha_mode: AlphaMode,
        }
        ```
* If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
Brian Merchant
e60f614a86 Documenting BufferVec. (#4673)
# Objective

Documents the `BufferVec` render resource.

`BufferVec` is a fairly low level object, that will likely be managed by a higher level API (e.g. through [`encase`](https://github.com/bevyengine/bevy/issues/4272)) in the future. For now, since it is still used by some simple 
example crates (e.g. [bevy-vertex-pulling](https://github.com/superdump/bevy-vertex-pulling)), it will be helpful
to provide some simple documentation on what `BufferVec` does.  

## Solution

I looked through Discord discussion on `BufferVec`, and found [a comment](https://discord.com/channels/691052431525675048/953222550568173580/956596218857918464 ) by @superdump to be particularly helpful, in the general discussion around `encase`. 

I have taken care to clarify where the data is stored (host-side), when the device-side buffer is created (through calls to `reserve`), and when data writes from host to device are scheduled (using `write_buffer` calls). 

---

## Changelog

- Added doc string for `BufferVec` and two of its methods: `reserve` and `write_buffer`. 


Co-authored-by: Brian Merchant <bhmerchant@gmail.com>
2022-06-28 04:09:04 +00:00
François
f969c62f7b Fix wasm examples (#4967)
# Objective

Fix #4958 

There was 4 issues:

- this is not true in WASM and on macOS: f28b921209/examples/3d/split_screen.rs (L90)
  - ~~I made sure the system was running at least once~~
  - I'm sending the event on window creation
- in webgl, setting a viewport has impacts on other render passes
  - only in webgl and when there is a custom viewport, I added a render pass without a custom viewport
- shaderdef NO_ARRAY_TEXTURES_SUPPORT was not used by the 2d pipeline
  - webgl feature was used but not declared in bevy_sprite, I added it to the Cargo.toml
- shaderdef NO_STORAGE_BUFFERS_SUPPORT was not used by the 2d pipeline
  - I added it based on the BufferBindingType

The last commit changes the two last fixes to add the shaderdefs in the shader cache directly instead of needing to do it in each pipeline

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-06-11 20:10:13 +00:00
James Liu
f2b545049c Implement FusedIterator for eligible Iterator types (#4942)
# Objective
Most of our `Iterator` impls satisfy the requirements of `std::iter::FusedIterator`, which has internal specialization that optimizes `Interator::fuse`. The std lib iterator combinators do have a few that rely on `fuse`, so this could optimize those use cases. I don't think we're using any of them in the engine itself, but beyond a light increase in compile time, it doesn't hurt to implement the trait.

## Solution
Implement the trait for all eligible iterators in first party crates. Also add a missing `ExactSizeIterator` on an iterator that could use it.
2022-06-09 03:19:31 +00:00
Matthias Deiml
1fcb7d0c2e Set naga capabilities corresponding to wgpu features (#4824)
# Objective

At the moment all extra capabilities are disabled when validating shaders with naga:
c7c08f95cb/crates/bevy_render/src/render_resource/shader.rs (L146-L149)
This means these features can't be used even if the corresponding wgpu features are active.

## Solution

With these changes capabilities are now set corresponding to `RenderDevice::features`.

---

I have validated these changes for push constants with a project I am currently working on. Though bevy does not support creating pipelines with push constants yet, so I was only able to see that shaders are validated and compiled as expected.
2022-06-03 20:50:50 +00:00