# Objective
A Bezier curve is a curve defined by two or more control points. In the
simplest form, it's just a line. The (arguably) most common type of
Bezier curve is a cubic Bezier, defined by four control points. These
are often used in animation, etc. Bevy has a Bezier curve struct called
`Bezier`. However, this is technically a misnomer as it only represents
cubic Bezier curves.
## Solution
This PR changes the struct name to `CubicBezier` to more accurately
reflect the struct's usage. Since it's exposed in Bevy's prelude, it can
potentially collide with other `Bezier` implementations. While that
might instead be an argument for removing it from the prelude, there's
also something to be said for adding a more general `Bezier` into Bevy,
in which case we'd likely want to use the name `Bezier`. As a final
motivator, not only is the struct located in `cubic_spines.rs`, there
are also several other spline-related structs which follow the
`CubicXxx` naming convention where applicable. For example,
`CubicSegment` represents a cubic Bezier curve (with coefficients
pre-baked).
---
## Migration Guide
- Change all `Bezier` references to `CubicBezier`
# Objective
- Significantly reduce the size of MeshUniform by only including
necessary data.
## Solution
Local to world, model transforms are affine. This means they only need a
4x3 matrix to represent them.
`MeshUniform` stores the current, and previous model transforms, and the
inverse transpose of the current model transform, all as 4x4 matrices.
Instead we can store the current, and previous model transforms as 4x3
matrices, and we only need the upper-left 3x3 part of the inverse
transpose of the current model transform. This change allows us to
reduce the serialized MeshUniform size from 208 bytes to 144 bytes,
which is over a 30% saving in data to serialize, and VRAM bandwidth and
space.
## Benchmarks
On an M1 Max, running `many_cubes -- sphere`, main is in yellow, this PR
is in red:
<img width="1484" alt="Screenshot 2023-08-11 at 02 36 43"
src="https://github.com/bevyengine/bevy/assets/302146/7d99c7b3-f2bb-4004-a8d0-4c00f755cb0d">
A reduction in frame time of ~14%.
---
## Changelog
- Changed: Redefined `MeshUniform` to improve performance by using 4x3
affine transforms and reconstructing 4x4 matrices in the shader. Helper
functions were added to `bevy_pbr::mesh_functions` to unpack the data.
`affine_to_square` converts the packed 4x3 in 3x4 matrix data to a 4x4
matrix. `mat2x4_f32_to_mat3x3` converts the 3x3 in mat2x4 + f32 matrix
data back into a 3x3.
## Migration Guide
Shader code before:
```
var model = mesh[instance_index].model;
```
Shader code after:
```
#import bevy_pbr::mesh_functions affine_to_square
var model = affine_to_square(mesh[instance_index].model);
```
# Objective
Add possibility to use the glam's swizzles traits without having to
manually import them.
```diff
use bevy::prelude::*;
- use bevy::math::Vec3Swizzles;
fn foo(x: Vec3) {
let y: Vec2 = x.xy();
}
```
## Solution
Add the swizzles traits to bevy's prelude.
---
## Changelog
- `Vec2Swizzles`, `Vec3Swizzles` and `Vec4Swizzles` are now part of the
prelude.
# Objective
Continue #7867 now that we have URect #7984
- Return `URect` instead of `(UVec2, UVec2)` in
`Camera::physical_viewport_rect`
- Add `URect` and `IRect` to prelude
## Changelog
- Changed `Camera::physical_viewport_rect` return type from `(UVec2,
UVec2)` to `URect`
- `URect` and `IRect` were added to prelude
## Migration Guide
Before:
```rust
fn view_physical_camera_rect(camera_query: Query<&Camera>) {
let camera = camera_query.single();
let Some((min, max)) = camera.physical_viewport_rect() else { return };
dbg!(min, max);
}
```
After:
```rust
fn view_physical_camera_rect(camera_query: Query<&Camera>) {
let camera = camera_query.single();
let Some(URect { min, max }) = camera.physical_viewport_rect() else { return };
dbg!(min, max);
}
```
# Objective
The clippy lint `type_complexity` is known not to play well with bevy.
It frequently triggers when writing complex queries, and taking the
lint's advice of using a type alias almost always just obfuscates the
code with no benefit. Because of this, this lint is currently ignored in
CI, but unfortunately it still shows up when viewing bevy code in an
IDE.
As someone who's made a fair amount of pull requests to this repo, I
will say that this issue has been a consistent thorn in my side. Since
bevy code is filled with spurious, ignorable warnings, it can be very
difficult to spot the *real* warnings that must be fixed -- most of the
time I just ignore all warnings, only to later find out that one of them
was real after I'm done when CI runs.
## Solution
Suppress this lint in all bevy crates. This was previously attempted in
#7050, but the review process ended up making it more complicated than
it needs to be and landed on a subpar solution.
The discussion in https://github.com/rust-lang/rust-clippy/pull/10571
explores some better long-term solutions to this problem. Since there is
no timeline on when these solutions may land, we should resolve this
issue in the meantime by locally suppressing these lints.
### Unresolved issues
Currently, these lints are not suppressed in our examples, since that
would require suppressing the lint in every single source file. They are
still ignored in CI.
# Objective
- Make cubic splines more flexible and more performant
- Remove the existing spline implementation that is generic over many degrees
- This is a potential performance footgun and adds type complexity for negligible gain.
- Add implementations of:
- Bezier splines
- Cardinal splines (inc. Catmull-Rom)
- B-Splines
- Hermite splines
https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4
## Solution
- Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait.
- Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`.
- All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s.
- Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed.
### Performance
Measured on a desktop i5 8600K (6-year-old CPU):
- easing: 2.7x faster (19ns)
- cubic vec2 position sample: 1.5x faster (1.8ns)
- cubic vec3 position sample: 1.5x faster (2.6ns)
- cubic vec3a position sample: 1.9x faster (1.4ns)
On a laptop i7 11800H:
- easing: 16ns
- cubic vec2 position sample: 1.6ns
- cubic vec3 position sample: 2.3ns
- cubic vec3a position sample: 1.2ns
---
## Changelog
- Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
# Objective
- Adds foundational math for Bezier curves, useful for UI/2D/3D animation and smooth paths.
https://user-images.githubusercontent.com/2632925/218883143-e138f994-1795-40da-8c59-21d779666991.mp4
## Solution
- Adds the generic `Bezier` type, and a `Point` trait. The `Point` trait allows us to use control points of any dimension, as long as they support vector math. I've implemented it for `f32`(1D), `Vec2`(2D), and `Vec3`/`Vec3A`(3D).
- Adds `CubicBezierEasing` on top of `Bezier` with the addition of an implementation of cubic Bezier easing, which is a foundational tool for UI animation.
- This involves solving for $t$ in the parametric Bezier function $B(t)$ using the Newton-Raphson method to find a value with error $\leq$ 1e-7, capped at 8 iterations.
- Added type aliases for common Bezier curves: `CubicBezier2d`, `CubicBezier3d`, `QuadraticBezier2d`, and `QuadraticBezier3d`. These types use `Vec3A` to represent control points, as this was found to have an 80-90% speedup over using `Vec3`.
- Benchmarking shows quadratic/cubic Bezier evaluations $B(t)$ take \~1.8/2.4ns respectively. Easing, which requires an iterative solve takes \~50ns for cubic Beziers.
---
## Changelog
- Added `CubicBezier2d`, `CubicBezier3d`, `QuadraticBezier2d`, and `QuadraticBezier3d` types with methods for sampling position, velocity, and acceleration. The generic `Bezier` type is also available, and generic over any degree of Bezier curve.
- Added `CubicBezierEasing`, with additional methods to allow for smooth easing animations.
This reverts commit 53d387f340.
# Objective
Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.
Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
Add a method for getting a world space ray from a viewport position.
Opted to add a `Ray` type to `bevy_math` instead of returning a tuple of `Vec3`'s as this is clearer and easier to document
The docs on `viewport_to_world` are okay, but I'm not super happy with them.
## Changelog
* Add `Camera::viewport_to_world`
* Add `Camera::ndc_to_world`
* Add `Ray` to `bevy_math`
* Some doc tweaks
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Promote the `Rect` utility of `sprite::Rect`, which defines a rectangle
by its minimum and maximum corners, to the `bevy_math` crate to make it
available as a general math type to all crates without the need to
depend on the `bevy_sprite` crate.
Fixes#5575
## Solution
Move `sprite::Rect` into `bevy_math` and fix all uses.
Implement `Reflect` for `Rect` directly into the `bevy_reflect` crate by
having `bevy_reflect` depend on `bevy_math`. This looks like a new
dependency, but the `bevy_reflect` was "cheating" for other math types
by directly depending on `glam` to reflect other math types, thereby
giving the illusion that there was no dependency on `bevy_math`. In
practice conceptually Bevy's math types are reflected into the
`bevy_reflect` crate to avoid a dependency of that crate to a "lower
level" utility crate like `bevy_math` (which in turn would make
`bevy_reflect` be a dependency of most other crates, and increase the
risk of circular dependencies). So this change simply formalizes that
dependency in `Cargo.toml`.
The `Rect` struct is also augmented in this change with a collection of
utility methods to improve its usability. A few uses cases are updated
to use those new methods, resulting is more clear and concise syntax.
---
## Changelog
### Changed
- Moved the `sprite::Rect` type into `bevy_math`.
### Added
- Added several utility methods to the `math::Rect` type.
## Migration Guide
The `bevy::sprite::Rect` type moved to the math utility crate as
`bevy::math::Rect`. You should change your imports from `use
bevy::sprite::Rect` to `use bevy::math::Rect`.
Export and register a missing type from `glam`.
Reflect impls were already present, but not registered.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Closes#335.
- Related #4285.
- Part of the splitting process of #3503.
## Solution
- Move `Rect` to `bevy_ui` and rename it to `UiRect`.
## Reasons
- `Rect` is only used in `bevy_ui` and therefore calling it `UiRect` makes the intent clearer.
- We have two types that are called `Rect` currently and it's missleading (see `bevy_sprite::Rect` and #335).
- Discussion in #3503.
## Changelog
### Changed
- The `Rect` type got moved from `bevy_math` to `bevy_ui` and renamed to `UiRect`.
## Migration Guide
- The `Rect` type got renamed to `UiRect`. To migrate you just have to change every occurrence of `Rect` to `UiRect`.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
- Related #4276.
- Part of the splitting process of #3503.
## Solution
- Move `Size` to `bevy_ui`.
## Reasons
- `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2` replacement in other areas.
- `Vec2` is more powerful than `Size` so it should be used whenever possible.
- Discussion in #3503.
## Changelog
### Changed
- The `Size` type got moved from `bevy_math` to `bevy_ui`.
## Migration Guide
- The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
- Part of the splitting process of #3503.
## Solution
- Remove the `face_toward.rs` file containing the `FaceToward` trait.
## Reasons
- It is unused inside of `bevy`.
- The method `Mat4::face_toward` of the trait is identical to `Mat4::look_at_rh` (see https://docs.rs/glam/latest/glam/f32/struct.Mat4.html#method.look_at_rh).
- Discussion in #3503.
## Changelog
### Removed
- The `FaceToward` trait got removed.
## Migration Guide
- The `FaceToward` trait got removed. To migrate you just have to change every occurrence of `Mat4::face_toward` to `Mat4::look_at_rh`.
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.
The examples are all ported over and operational with a few exceptions:
* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.