Commit graph

389 commits

Author SHA1 Message Date
Gagnus
a47b91cccc
Added feature switch to default Standard Material's new anisotropy texture to off (#14048)
# Objective

- Standard Material is starting to run out of samplers (currently uses
13 with no additional features off, I think in 0.13 it was 12).
- This change adds a new feature switch, modelled on the other ones
which add features to Standard Material, to turn off the new anisotropy
feature by default.

## Solution

- feature + texture define

## Testing

- Anisotropy example still works fine
- Other samples work fine
- Standard Material now takes 12 samplers by default on my Mac instead
of 13

## Migration Guide

- Add feature pbr_anisotropy_texture if you are using that texture in
any standard materials.

---------

Co-authored-by: John Payne <20407779+johngpayne@users.noreply.github.com>
2024-07-02 18:02:05 +00:00
François Mockers
8a7d3ce461
don't put previous skin/morph in the morphed_skinned_mesh_layout (#14065)
# Objective

- Fixes #14059
- `morphed_skinned_mesh_layout` is the same as
`morphed_skinned_motion_mesh_layout` but shouldn't have the skin / morph
from previous frame, as they're used for motion

## Solution

- Remove the extra entries

## Testing

- Run with the glTF file reproducing #14059, it works
2024-06-29 01:03:51 +00:00
Patrick Walton
44db8b7fac
Allow phase items not associated with meshes to be binned. (#14029)
As reported in #14004, many third-party plugins, such as Hanabi, enqueue
entities that don't have meshes into render phases. However, the
introduction of indirect mode added a dependency on mesh-specific data,
breaking this workflow. This is because GPU preprocessing requires that
the render phases manage indirect draw parameters, which don't apply to
objects that aren't meshes. The existing code skips over binned entities
that don't have indirect draw parameters, which causes the rendering to
be skipped for such objects.

To support this workflow, this commit adds a new field,
`non_mesh_items`, to `BinnedRenderPhase`. This field contains a simple
list of (bin key, entity) pairs. After drawing batchable and unbatchable
objects, the non-mesh items are drawn one after another. Bevy itself
doesn't enqueue any items into this list; it exists solely for the
application and/or plugins to use.

Additionally, this commit switches the asset ID in the standard bin keys
to be an untyped asset ID rather than that of a mesh. This allows more
flexibility, allowing bins to be keyed off any type of asset.

This patch adds a new example, `custom_phase_item`, which simultaneously
serves to demonstrate how to use this new feature and to act as a
regression test so this doesn't break again.

Fixes #14004.

## Changelog

### Added

* `BinnedRenderPhase` now contains a `non_mesh_items` field for plugins
to add custom items to.
2024-06-27 16:13:03 +00:00
François Mockers
19d078c609
don't crash without features bevy_pbr, ktx2, zstd (#14020)
# Objective

- Fixes #13728 

## Solution

- add a new feature `smaa_luts`. if enables, it also enables `ktx2` and
`zstd`. if not, it doesn't load the files but use placeholders instead
- adds all the resources needed in the same places that system that uses
them are added.
2024-06-26 03:08:23 +00:00
Rob Parrett
e46e246581
Fix a few "repeated word" typos (#13955)
# Objective

Stumbled on one of these and went digging for more

## Solution

```diff
- word word
+ word
```
2024-06-20 21:35:20 +00:00
Alice Cecile
d659a1f7d5
Revert "Make FOG_ENABLED a shader_def instead of material flag (#13783)" (#13803)
This reverts commit 3ced49f672.

Relevant to https://github.com/bevyengine/bevy/issues/13802. This wasn't
done quite right and partially broke fog.

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-06-10 23:25:16 +00:00
JMS55
fd30e0c67d
Fix meshlet vertex attribute interpolation (#13775)
# Objective

- Mikktspace requires that we normalize world normals/tangents _before_
interpolation across vertices, and then do _not_ normalize after. I had
it backwards.
- We do not (am not supposed to?) need a second set of barycentrics for
motion vectors. If you think about the typical raster pipeline, in the
vertex shader we calculate previous_world_position, and then it gets
interpolated using the current triangle's barycentrics.

## Solution

- Fix normal/tangent processing 
- Reuse barycentrics for motion vector calculations
- Not implementing this for 0.14, but long term I aim to remove explicit
vertex tangents and calculate them in the shader on the fly.

## Testing

- I tested out some of the normal maps we have in repo. Didn't seem to
make a difference, but mikktspace is all about correctness across
various baking tools. I probably just didn't have any of the ones that
would cause it to break.
- Didn't test motion vectors as there's a known bug with the depth
buffer and meshlets that I'm waiting on the render graph rewrite to fix.
2024-06-10 20:18:43 +00:00
IceSentry
5134272dc9
Make FOG_ENABLED a shader_def instead of material flag (#13783)
# Objective

- If the fog is disabled it still generates a useless branch which can
hurt performance

## Solution

- Make the flag a shader_def instead

## Testing

- I tested enabling/disabling fog works as expected per-material in the
fog example
- I also tested that scenes that don't add the FogSettings resource
still work correctly

## Review notes

I'm not sure how to handle the removed material flag. Right now I just
commented it out and added a not to reuse it instead of creating a new
one.
2024-06-10 13:26:43 +00:00
Gagnus
298b01f10d
Adds back in way to convert color to u8 array, implemented for the two RGB color types, also renames Color::linear to Color::to_linear. (#13759)
# Objective

One thing missing from the new Color implementation in 0.14 is the
ability to easily convert to a u8 representation of the rgb color.

(note this is a redo of PR https://github.com/bevyengine/bevy/pull/13739
as I needed to move the source branch

## Solution

I have added to_u8_array and to_u8_array_no_alpha to a new trait called
ColorToPacked to mirror the f32 conversions in ColorToComponents and
implemented the new trait for Srgba and LinearRgba.
To go with those I also added matching from_u8... functions and
converted a couple of cases that used ad-hoc implementations of that
conversion to use these.
After discussion on Discord of the experience of using the API I renamed
Color::linear to Color::to_linear, as without that it looks like a
constructor (like Color::rgb).
I also added to_srgba which is the other commonly converted to type of
color (for UI and 2D) to match to_linear.
Removed a redundant extra implementation of to_f32_array for LinearColor
as it is also supplied in ColorToComponents (I'm surprised that's
allowed?)

## Testing

Ran all tests and manually tested.
Added to_and_from_u8 to linear_rgba::tests

## Changelog

visible change is Color::linear becomes Color::to_linear.

---------

Co-authored-by: John Payne <20407779+johngpayne@users.noreply.github.com>
2024-06-10 13:03:46 +00:00
JMS55
c50a4d8821
Remove unused mip_bias parameter from apply_normal_mapping (#13752)
Mip bias is no longer used here
2024-06-10 13:00:34 +00:00
IceSentry
f7ae277025
Use TBN in apply_normal_mapping in pbr_prepass (#13716)
# Objective

- apply_normal_mapping was changed to use TBN but the pbr_prepass was
not updated for that change

## Solution

- Update the pbr_prepass to correctly apply normal mapping
2024-06-06 19:04:30 +00:00
Patrick Walton
ad6872275f
Rename "point light" to "clusterable object" in cluster contexts. (#13654)
We want to use the clustering infrastructure for light probes and decals
as well, not just point lights. This patch builds on top of #13640 and
performs the rename.

To make this series easier to review, this patch makes no code changes.
Only identifiers and comments are modified.

## Migration Guide

* In the PBR shaders, `point_lights` is now known as
`clusterable_objects`, `PointLight` is now known as `ClusterableObject`,
and `cluster_light_index_lists` is now known as
`clusterable_object_index_lists`.
2024-06-04 11:01:13 +00:00
Patrick Walton
df8ccb8735
Implement PBR anisotropy per KHR_materials_anisotropy. (#13450)
This commit implements support for physically-based anisotropy in Bevy's
`StandardMaterial`, following the specification for the
[`KHR_materials_anisotropy`] glTF extension.

[*Anisotropy*] (not to be confused with [anisotropic filtering]) is a
PBR feature that allows roughness to vary along the tangent and
bitangent directions of a mesh. In effect, this causes the specular
light to stretch out into lines instead of a round lobe. This is useful
for modeling brushed metal, hair, and similar surfaces. Support for
anisotropy is a common feature in major game and graphics engines;
Unity, Unreal, Godot, three.js, and Blender all support it to varying
degrees.

Two new parameters have been added to `StandardMaterial`:
`anisotropy_strength` and `anisotropy_rotation`. Anisotropy strength,
which ranges from 0 to 1, represents how much the roughness differs
between the tangent and the bitangent of the mesh. In effect, it
controls how stretched the specular highlight is. Anisotropy rotation
allows the roughness direction to differ from the tangent of the model.

In addition to these two fixed parameters, an *anisotropy texture* can
be supplied. Such a texture should be a 3-channel RGB texture, where the
red and green values specify a direction vector using the same
conventions as a normal map ([0, 1] color values map to [-1, 1] vector
values), and the the blue value represents the strength. This matches
the format that the [`KHR_materials_anisotropy`] specification requires.
Such textures should be loaded as linear and not sRGB. Note that this
texture does consume one additional texture binding in the standard
material shader.

The glTF loader has been updated to properly parse the
`KHR_materials_anisotropy` extension.

A new example, `anisotropy`, has been added. This example loads and
displays the barn lamp example from the [`glTF-Sample-Assets`]
repository. Note that the textures were rather large, so I shrunk them
down and converted them to a mixture of JPEG and KTX2 format, in the
interests of saving space in the Bevy repository.

[*Anisotropy*]:
https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel

[anisotropic filtering]:
https://en.wikipedia.org/wiki/Anisotropic_filtering

[`KHR_materials_anisotropy`]:
https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md

[`glTF-Sample-Assets`]:
https://github.com/KhronosGroup/glTF-Sample-Assets/

## Changelog

### Added

* Physically-based anisotropy is now available for materials, which
enhances the look of surfaces such as brushed metal or hair. glTF scenes
can use the new feature with the `KHR_materials_anisotropy` extension.

## Screenshots

With anisotropy:
![Screenshot 2024-05-20
233414](https://github.com/bevyengine/bevy/assets/157897/379f1e42-24e9-40b6-a430-f7d1479d0335)

Without anisotropy:
![Screenshot 2024-05-20
233420](https://github.com/bevyengine/bevy/assets/157897/aa220f05-b8e7-417c-9671-b242d4bf9fc4)
2024-06-03 23:46:06 +00:00
Ricky Taylor
9b9d3d81cb
Normalise matrix naming (#13489)
# Objective
- Fixes #10909
- Fixes #8492

## Solution
- Name all matrices `x_from_y`, for example `world_from_view`.

## Testing
- I've tested most of the 3D examples. The `lighting` example
particularly should hit a lot of the changes and appears to run fine.

---

## Changelog
- Renamed matrices across the engine to follow a `y_from_x` naming,
making the space conversion more obvious.

## Migration Guide
- `Frustum`'s `from_view_projection`, `from_view_projection_custom_far`
and `from_view_projection_no_far` were renamed to
`from_clip_from_world`, `from_clip_from_world_custom_far` and
`from_clip_from_world_no_far`.
- `ComputedCameraValues::projection_matrix` was renamed to
`clip_from_view`.
- `CameraProjection::get_projection_matrix` was renamed to
`get_clip_from_view` (this affects implementations on `Projection`,
`PerspectiveProjection` and `OrthographicProjection`).
- `ViewRangefinder3d::from_view_matrix` was renamed to
`from_world_from_view`.
- `PreviousViewData`'s members were renamed to `view_from_world` and
`clip_from_world`.
- `ExtractedView`'s `projection`, `transform` and `view_projection` were
renamed to `clip_from_view`, `world_from_view` and `clip_from_world`.
- `ViewUniform`'s `view_proj`, `unjittered_view_proj`,
`inverse_view_proj`, `view`, `inverse_view`, `projection` and
`inverse_projection` were renamed to `clip_from_world`,
`unjittered_clip_from_world`, `world_from_clip`, `world_from_view`,
`view_from_world`, `clip_from_view` and `view_from_clip`.
- `GpuDirectionalCascade::view_projection` was renamed to
`clip_from_world`.
- `MeshTransforms`' `transform` and `previous_transform` were renamed to
`world_from_local` and `previous_world_from_local`.
- `MeshUniform`'s `transform`, `previous_transform`,
`inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed
to `world_from_local`, `previous_world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh` type in WGSL mirrors this, however `transform` and
`previous_transform` were named `model` and `previous_model`).
- `Mesh2dTransforms::transform` was renamed to `world_from_local`.
- `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and
`inverse_transpose_model_b` were renamed to `world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh2d` type in WGSL mirrors this).
- In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and
`get_previous_model_matrix` were renamed to `get_world_from_local` and
`get_previous_world_from_local`.
- In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed
to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
Patrick Walton
5c74c17c24
Move clustering-related types and functions into their own module. (#13640)
As a prerequisite for decals and clustering of light probes, we want
clustering to operate on objects other than lights. (Currently, it only
operates on point and spot lights.) This necessitates a large
refactoring, so I'm splitting it up into small steps.

The first such step is to separate clustering from lighting by moving
clustering-related types and functions out of lighting and into their
own module subtree within the `bevy_pbr` crate. (Ultimately, we may want
to move it to `bevy_render`, but that requires more work and can be a
followup.)

No code changes have been made other than adjusting import lists and
moving code. This is to make this code easy to review. Ultimately, I
want to rename "light" to "clusterable object" in most cases, but doing
that at the same time as moving the code would make reviewing harder. So
instead I'm moving the code first and will follow this up with renaming.

## Migration Guide

* Clustering-related types and functions (e.g.
`assign_lights_to_clusters`) have moved under `bevy_pbr::cluster`, in
preparation for the ability to cluster objects other than lights.
2024-06-03 15:05:48 +00:00
Patrick Walton
be053b1d7c
Implement motion vectors and TAA for skinned meshes and meshes with morph targets. (#13572)
This is a revamped equivalent to #9902, though it shares none of the
code. It handles all special cases that I've tested correctly.

The overall technique consists of double-buffering the joint matrix and
morph weights buffers, as most of the previous attempts to solve this
problem did. The process is generally straightforward. Note that, to
avoid regressing the ability of mesh extraction, skin extraction, and
morph target extraction to run in parallel, I had to add a new system to
rendering, `set_mesh_motion_vector_flags`. The comment there explains
the details; it generally runs very quickly.

I've tested this with modified versions of the `animated_fox`,
`morph_targets`, and `many_foxes` examples that add TAA, and the patch
works. To avoid bloating those examples, I didn't add switches for TAA
to them.

Addresses points (1) and (2) of #8423.

## Changelog

### Fixed

* Motion vectors, and therefore TAA, are now supported for meshes with
skins and/or morph targets.
2024-05-31 17:02:28 +00:00
arcashka
cdc605cc48
add tonemapping LUT bindings for sprite and mesh2d pipelines (#13262)
Fixes #13118
If you use `Sprite` or `Mesh2d` and create `Camera` with
* hdr=false
* any tonemapper

You would get
```
wgpu error: Validation Error

Caused by:
    In Device::create_render_pipeline
      note: label = `sprite_pipeline`
    Error matching ShaderStages(FRAGMENT) shader requirements against the pipeline
    Shader global ResourceBinding { group: 0, binding: 19 } is not available in the pipeline layout
    Binding is missing from the pipeline layout
```
Because of missing tonemapping LUT bindings 

## Solution
Add missing bindings for tonemapping LUT's to `SpritePipeline` &
`Mesh2dPipeline`

## Testing
I checked that
* `tonemapping`
* `color_grading`
* `sprite_animations`
* `2d_shapes`
* `meshlet`
* `deferred_rendering`
examples are still working

2d cases I checked with this code:
```
use bevy::{
    color::palettes::css::PURPLE, core_pipeline::tonemapping::Tonemapping, prelude::*,
    sprite::MaterialMesh2dBundle,
};

fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .add_systems(Startup, setup)
        .add_systems(Update, toggle_tonemapping_method)
        .run();
}

fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<ColorMaterial>>,
    asset_server: Res<AssetServer>,
) {
    commands.spawn(Camera2dBundle {
        camera: Camera {
            hdr: false,
            ..default()
        },
        tonemapping: Tonemapping::BlenderFilmic,
        ..default()
    });
    commands.spawn(MaterialMesh2dBundle {
        mesh: meshes.add(Rectangle::default()).into(),
        transform: Transform::default().with_scale(Vec3::splat(128.)),
        material: materials.add(Color::from(PURPLE)),
        ..default()
    });

    commands.spawn(SpriteBundle {
        texture: asset_server.load("asd.png"),
        ..default()
    });
}

fn toggle_tonemapping_method(
    keys: Res<ButtonInput<KeyCode>>,
    mut tonemapping: Query<&mut Tonemapping>,
) {
    let mut method = tonemapping.single_mut();

    if keys.just_pressed(KeyCode::Digit1) {
        *method = Tonemapping::None;
    } else if keys.just_pressed(KeyCode::Digit2) {
        *method = Tonemapping::Reinhard;
    } else if keys.just_pressed(KeyCode::Digit3) {
        *method = Tonemapping::ReinhardLuminance;
    } else if keys.just_pressed(KeyCode::Digit4) {
        *method = Tonemapping::AcesFitted;
    } else if keys.just_pressed(KeyCode::Digit5) {
        *method = Tonemapping::AgX;
    } else if keys.just_pressed(KeyCode::Digit6) {
        *method = Tonemapping::SomewhatBoringDisplayTransform;
    } else if keys.just_pressed(KeyCode::Digit7) {
        *method = Tonemapping::TonyMcMapface;
    } else if keys.just_pressed(KeyCode::Digit8) {
        *method = Tonemapping::BlenderFilmic;
    }
}
```
---

## Changelog
Fix the bug which led to the crash when user uses any tonemapper without
hdr for rendering sprites and 2d meshes.
2024-05-28 12:09:26 +00:00
Patrick Walton
f398674e51
Implement opt-in sharp screen-space reflections for the deferred renderer, with improved raymarching code. (#13418)
This commit, a revamp of #12959, implements screen-space reflections
(SSR), which approximate real-time reflections based on raymarching
through the depth buffer and copying samples from the final rendered
frame. This patch is a relatively minimal implementation of SSR, so as
to provide a flexible base on which to customize and build in the
future. However, it's based on the production-quality [raymarching code
by Tomasz
Stachowiak](https://gist.github.com/h3r2tic/9c8356bdaefbe80b1a22ae0aaee192db).

For a general basic overview of screen-space reflections, see
[1](https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html).
The raymarching shader uses the basic algorithm of tracing forward in
large steps, refining that trace in smaller increments via binary
search, and then using the secant method. No temporal filtering or
roughness blurring, is performed at all; for this reason, SSR currently
only operates on very shiny surfaces. No acceleration via the
hierarchical Z-buffer is implemented (though note that
https://github.com/bevyengine/bevy/pull/12899 will add the
infrastructure for this). Reflections are traced at full resolution,
which is often considered slow. All of these improvements and more can
be follow-ups.

SSR is built on top of the deferred renderer and is currently only
supported in that mode. Forward screen-space reflections are possible
albeit uncommon (though e.g. *Doom Eternal* uses them); however, they
require tracing from the previous frame, which would add complexity.
This patch leaves the door open to implementing SSR in the forward
rendering path but doesn't itself have such an implementation.
Screen-space reflections aren't supported in WebGL 2, because they
require sampling from the depth buffer, which Naga can't do because of a
bug (`sampler2DShadow` is incorrectly generated instead of `sampler2D`;
this is the same reason why depth of field is disabled on that
platform).

To add screen-space reflections to a camera, use the
`ScreenSpaceReflectionsBundle` bundle or the
`ScreenSpaceReflectionsSettings` component. In addition to
`ScreenSpaceReflectionsSettings`, `DepthPrepass` and `DeferredPrepass`
must also be present for the reflections to show up. The
`ScreenSpaceReflectionsSettings` component contains several settings
that artists can tweak, and also comes with sensible defaults.

A new example, `ssr`, has been added. It's loosely based on the
[three.js ocean
sample](https://threejs.org/examples/webgl_shaders_ocean.html), but all
the assets are original. Note that the three.js demo has no screen-space
reflections and instead renders a mirror world. In contrast to #12959,
this demo tests not only a cube but also a more complex model (the
flight helmet).

## Changelog

### Added

* Screen-space reflections can be enabled for very smooth surfaces by
adding the `ScreenSpaceReflections` component to a camera. Deferred
rendering must be enabled for the reflections to appear.

![Screenshot 2024-05-18
143555](https://github.com/bevyengine/bevy/assets/157897/b8675b39-8a89-433e-a34e-1b9ee1233267)

![Screenshot 2024-05-18
143606](https://github.com/bevyengine/bevy/assets/157897/cc9e1cd0-9951-464a-9a08-e589210e5606)
2024-05-27 13:43:40 +00:00
Patrick Walton
9da0b2a0ec
Make render phases render world resources instead of components. (#13277)
This commit makes us stop using the render world ECS for
`BinnedRenderPhase` and `SortedRenderPhase` and instead use resources
with `EntityHashMap`s inside. There are three reasons to do this:

1. We can use `clear()` to clear out the render phase collections
instead of recreating the components from scratch, allowing us to reuse
allocations.

2. This is a prerequisite for retained bins, because components can't be
retained from frame to frame in the render world, but resources can.

3. We want to move away from storing anything in components in the
render world ECS, and this is a step in that direction.

This patch results in a small performance benefit, due to point (1)
above.

## Changelog

### Changed

* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources.

## Migration Guide

* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources. Instead of querying for the
components, look the camera entity up in the
`ViewBinnedRenderPhases`/`ViewSortedRenderPhases` tables.
2024-05-21 18:23:04 +00:00
IceSentry
bf2aced279
Remove another .view_layouts (#13410)
I forgot to save that file when submitting #13394 😅
2024-05-19 00:08:27 +00:00
Patrick Walton
846757cb38
Make the prepass shader compile when lightmaps are present. (#13402)
Commit 3f5a090b1b added a reference to
`STANDARD_MATERIAL_FLAGS_BASE_COLOR_UV_BIT`, a nonexistent identifier,
in the alpha discard portion of the prepass shader. Moreover, the logic
didn't make sense to me. I think the code was trying to choose between
the two UV sets depending on which is present, so I made it do that.

I noticed this when trying Bistro with #13277. I'm not sure why this
issue didn't manifest itself before, but it's clearly a bug, so here's a
fix. We should probably merge this before 0.14.
2024-05-18 22:28:31 +00:00
Johannes Hackel
1fcf6a444f
Add emissive_exposure_weight to the StandardMaterial (#13350)
# Objective

- The emissive color gets multiplied by the camera exposure value. But
this cancels out almost any emissive effect.
- Fixes #13133
- Closes PR #13337 

## Solution
- Add emissive_exposure_weight to the StandardMaterial
- In the shader this value is stored in the alpha channel of the
emissive color.
- This value defines how much the exposure influences the emissive
color.
- It's equal to Google's Filament:
https://google.github.io/filament/Materials.html#emissive

4f021583f1/shaders/src/shading_lit.fs (L287)

## Testing

- The result of
[EmissiveStrengthTest](https://github.com/KhronosGroup/glTF-Sample-Models/tree/main/2.0/EmissiveStrengthTest)
with the default value of 0.0:

without bloom:

![emissive_fix](https://github.com/bevyengine/bevy/assets/688816/8f8c131a-464a-4d7b-a9e4-4e28d679ee5d)

with bloom:

![emissive_fix_bloom](https://github.com/bevyengine/bevy/assets/688816/89f200ee-3bd5-4daa-bf64-8999b56df3fa)
2024-05-17 13:49:53 +00:00
IceSentry
aa907d5437
Remove unnecessary .view_layouts (#13394)
# Objective

- The volumetric fog PR originally needed to be modified to use
`.view_layouts` but that was changed in another PR. The merge with main
still kept those around.

## Solution

- Remove them because they aren't necessary
2024-05-16 19:12:36 +00:00
Patrick Walton
19bfa41768
Implement volumetric fog and volumetric lighting, also known as light shafts or god rays. (#13057)
This commit implements a more physically-accurate, but slower, form of
fog than the `bevy_pbr::fog` module does. Notably, this *volumetric fog*
allows for light beams from directional lights to shine through,
creating what is known as *light shafts* or *god rays*.

To add volumetric fog to a scene, add `VolumetricFogSettings` to the
camera, and add `VolumetricLight` to directional lights that you wish to
be volumetric. `VolumetricFogSettings` has numerous settings that allow
you to define the accuracy of the simulation, as well as the look of the
fog. Currently, only interaction with directional lights that have
shadow maps is supported. Note that the overhead of the effect scales
directly with the number of directional lights in use, so apply
`VolumetricLight` sparingly for the best results.

The overall algorithm, which is implemented as a postprocessing effect,
is a combination of the techniques described in [Scratchapixel] and
[this blog post]. It uses raymarching in screen space, transformed into
shadow map space for sampling and combined with physically-based
modeling of absorption and scattering. Bevy employs the widely-used
[Henyey-Greenstein phase function] to model asymmetry; this essentially
allows light shafts to fade into and out of existence as the user views
them.

Volumetric rendering is a huge subject, and I deliberately kept the
scope of this commit small. Possible follow-ups include:

1. Raymarching at a lower resolution.

2. A post-processing blur (especially useful when combined with (1)).

3. Supporting point lights and spot lights.

4. Supporting lights with no shadow maps.

5. Supporting irradiance volumes and reflection probes.

6. Voxel components that reuse the volumetric fog code to create voxel
shapes.

7. *Horizon: Zero Dawn*-style clouds.

These are all useful, but out of scope of this patch for now, to keep
things tidy and easy to review.

A new example, `volumetric_fog`, has been added to demonstrate the
effect.

## Changelog

### Added

* A new component, `VolumetricFog`, is available, to allow for a more
physically-accurate, but more resource-intensive, form of fog.

* A new component, `VolumetricLight`, can be placed on directional
lights to make them interact with `VolumetricFog`. Notably, this allows
such lights to emit light shafts/god rays.

![Screenshot 2024-04-21
162808](https://github.com/bevyengine/bevy/assets/157897/7a1fc81d-eed5-4735-9419-286c496391a9)

![Screenshot 2024-04-21
132005](https://github.com/bevyengine/bevy/assets/157897/e6d3b5ca-8f59-488d-a3de-15e95aaf4995)

[Scratchapixel]:
https://www.scratchapixel.com/lessons/3d-basic-rendering/volume-rendering-for-developers/intro-volume-rendering.html

[this blog post]: https://www.alexandre-pestana.com/volumetric-lights/

[Henyey-Greenstein phase function]:
https://www.pbr-book.org/4ed/Volume_Scattering/Phase_Functions#TheHenyeyndashGreensteinPhaseFunction
2024-05-16 17:13:18 +00:00
charlotte
4c3b7679ec
#12502 Remove limit on RenderLayers. (#13317)
# Objective

Remove the limit of `RenderLayer` by using a growable mask using
`SmallVec`.

Changes adopted from @UkoeHB's initial PR here
https://github.com/bevyengine/bevy/pull/12502 that contained additional
changes related to propagating render layers.

Changes

## Solution

The main thing needed to unblock this is removing `RenderLayers` from
our shader code. This primarily affects `DirectionalLight`. We are now
computing a `skip` field on the CPU that is then used to skip the light
in the shader.

## Testing

Checked a variety of examples and did a quick benchmark on `many_cubes`.
There were some existing problems identified during the development of
the original pr (see:
https://discord.com/channels/691052431525675048/1220477928605749340/1221190112939872347).
This PR shouldn't change any existing behavior besides removing the
layer limit (sans the comment in migration about `all` layers no longer
being possible).

---

## Changelog

Removed the limit on `RenderLayers` by using a growable bitset that only
allocates when layers greater than 64 are used.

## Migration Guide

- `RenderLayers::all()` no longer exists. Entities expecting to be
visible on all layers, e.g. lights, should compute the active layers
that are in use.

---------

Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2024-05-16 16:15:47 +00:00
Johannes Hackel
1efa578ffb
Fix transmission by setting the correct value for transmissive_lighting_input.F_ab (#13379)
# Objective

- The clearcoat PR #13031 had a small typo which broke transmission
- Fixes #13284

## Solution

- Set transmissive_lighting_input.F_ab to the correct value


![transmission_fix](https://github.com/bevyengine/bevy/assets/688816/92158117-de3a-4fa5-8af8-dcbd1d5eee04)
2024-05-16 14:33:32 +00:00
Griffin
519ed5de42
Apply uv transform in the prepass (#13250)
# Objective

- The UV transform was applied in the main pass but not the prepass.

## Solution

- Apply the UV transform in the prepass.

## Testing

- The normals in my scene now look correct when using the prepass.
2024-05-13 22:33:09 +00:00
Johannes Hackel
3f5a090b1b
Add UV channel selection to StandardMaterial (#13200)
# Objective

- The StandardMaterial always uses ATTRIBUTE_UV_0 for each texture
except lightmap. This is not flexible enough for a lot of gltf Files.
- Fixes #12496
- Fixes #13086
- Fixes #13122
- Closes #13153

## Solution

- The StandardMaterial gets extended for each texture by an UvChannel
enum. It defaults to Uv0 but can also be set to Uv1.
- The gltf loader now handles the texcoord information. If the texcoord
is not supported it creates a warning.
- It uses StandardMaterial shader defs to define which attribute to use.

## Testing

This fixes #12496 for example:

![wall_fixed](https://github.com/bevyengine/bevy/assets/688816/bc37c9e1-72ba-4e59-b092-5ee10dade603)

For testing of all kind of textures I used the TextureTransformMultiTest
from
https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main/Models/TextureTransformMultiTest
Its purpose is to test multiple texture transfroms but it is also a good
test for different texcoords.
It also shows the issue with emission #13133.

Before:

![TextureTransformMultiTest_main](https://github.com/bevyengine/bevy/assets/688816/aa701d04-5a3f-4df1-a65f-fc770ab6f4ab)

After:

![TextureTransformMultiTest_texcoord](https://github.com/bevyengine/bevy/assets/688816/c3f91943-b830-4068-990f-e4f2c97771ee)
2024-05-13 18:23:09 +00:00
François Mockers
173db7726f
remove unused warnings in release (#13344)
# Objective

- When building for release, there are "unused" warnings:
```
warning: unused import: `bevy_utils::warn_once`
  --> crates/bevy_pbr/src/render/mesh_view_bindings.rs:32:5
   |
32 | use bevy_utils::warn_once;
   |     ^^^^^^^^^^^^^^^^^^^^^
   |
   = note: `#[warn(unused_imports)]` on by default

warning: unused variable: `texture_count`
   --> crates/bevy_pbr/src/render/mesh_view_bindings.rs:371:17
    |
371 |             let texture_count: usize = entries
    |                 ^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_texture_count`
    |
    = note: `#[warn(unused_variables)]` on by default
```

## Solution

- Gate the import and definition by the same cfg as their uses
2024-05-12 22:30:34 +00:00
moonlightaria
3f2cc244d7
Add color conversions #13224 (#13276)
# Objective
fixes #13224
adds conversions for Vec3 and Vec4 since these appear so often

## Solution
added Covert trait (couldn't think of good name) for [f32; 4], [f32, 3],
Vec4, and Vec3 along with the symmetric implementation

## Changelog
added conversions between arrays and vector to colors and vice versa

#migration
LinearRgba appears to have already had implicit conversions for [f32;4]
and Vec4
2024-05-09 18:01:52 +00:00
Patrick Walton
0dddfa07ab
Fix the WebGL 2 backend by giving the visibility_ranges array a fixed length. (#13210)
WebGL 2 doesn't support variable-length uniform buffer arrays. So we
arbitrarily set the length of the visibility ranges field to 64 on that
platform.

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
2024-05-08 07:34:59 +00:00
IceSentry
4737106bdd
Extract mesh view layouts logic (#13266)
Copied almost verbatim from the volumetric fog PR

# Objective

- Managing mesh view layouts is complicated

## Solution

- Extract it to it's own struct
- This was done as part of #13057 and is copied almost verbatim. I
wanted to keep this part of the PR it's own atomic commit in case we
ever have to revert fog or run a bisect. This change is good whether or
not we have volumetric fog.

Co-Authored-By: @pcwalton
2024-05-07 06:46:41 +00:00
Fpgu
60a73fa60b
Use Dir3 for local axis methods in GlobalTransform (#13264)
Switched the return type from `Vec3` to `Dir3` for directional axis
methods within the `GlobalTransform` component.

## Migration Guide
The `GlobalTransform` component's directional axis methods (e.g.,
`right()`, `left()`, `up()`, `down()`, `back()`, `forward()`) have been
updated from returning `Vec3` to `Dir3`.
2024-05-06 20:52:05 +00:00
Patrick Walton
59b52fc94e
Modulate the emissive texture by the emissive color again. (#13251)
Fixes a regression introduced by #13031.
2024-05-06 20:06:10 +00:00
Patrick Walton
77ed72bc16
Implement clearcoat per the Filament and the KHR_materials_clearcoat specifications. (#13031)
Clearcoat is a separate material layer that represents a thin
translucent layer of a material. Examples include (from the [Filament
spec]) car paint, soda cans, and lacquered wood. This commit implements
support for clearcoat following the Filament and Khronos specifications,
marking the beginnings of support for multiple PBR layers in Bevy.

The [`KHR_materials_clearcoat`] specification describes the clearcoat
support in glTF. In Blender, applying a clearcoat to the Principled BSDF
node causes the clearcoat settings to be exported via this extension. As
of this commit, Bevy parses and reads the extension data when present in
glTF. Note that the `gltf` crate has no support for
`KHR_materials_clearcoat`; this patch therefore implements the JSON
semantics manually.

Clearcoat is integrated with `StandardMaterial`, but the code is behind
a series of `#ifdef`s that only activate when clearcoat is present.
Additionally, the `pbr_feature_layer_material_textures` Cargo feature
must be active in order to enable support for clearcoat factor maps,
clearcoat roughness maps, and clearcoat normal maps. This approach
mirrors the same pattern used by the existing transmission feature and
exists to avoid running out of texture bindings on platforms like WebGL
and WebGPU. Note that constant clearcoat factors and roughness values
*are* supported in the browser; only the relatively-less-common maps are
disabled on those platforms.

This patch refactors the lighting code in `StandardMaterial`
significantly in order to better support multiple layers in a natural
way. That code was due for a refactor in any case, so this is a nice
improvement.

A new demo, `clearcoat`, has been added. It's based on [the
corresponding three.js demo], but all the assets (aside from the skybox
and environment map) are my original work.

[Filament spec]:
https://google.github.io/filament/Filament.html#materialsystem/clearcoatmodel

[`KHR_materials_clearcoat`]:
https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_clearcoat/README.md

[the corresponding three.js demo]:
https://threejs.org/examples/webgl_materials_physical_clearcoat.html

![Screenshot 2024-04-19
101143](https://github.com/bevyengine/bevy/assets/157897/3444bcb5-5c20-490c-b0ad-53759bd47ae2)

![Screenshot 2024-04-19
102054](https://github.com/bevyengine/bevy/assets/157897/6e953944-75b8-49ef-bc71-97b0a53b3a27)

## Changelog

### Added

* `StandardMaterial` now supports a clearcoat layer, which represents a
thin translucent layer over an underlying material.
* The glTF loader now supports the `KHR_materials_clearcoat` extension,
representing materials with clearcoat layers.

## Migration Guide

* The lighting functions in the `pbr_lighting` WGSL module now have
clearcoat parameters, if `STANDARD_MATERIAL_CLEARCOAT` is defined.

* The `R` reflection vector parameter has been removed from some
lighting functions, as it was unused.
2024-05-05 22:57:05 +00:00
arcashka
6027890a11
move wgsl color operations from bevy_pbr to bevy_render (#13209)
# Objective

`bevy_pbr/utils.wgsl` shader file contains mathematical constants and
color conversion functions. Both of those should be accessible without
enabling `bevy_pbr` feature. For example, tonemapping can be done in non
pbr scenario, and it uses color conversion functions.

Fixes #13207

## Solution

* Move mathematical constants (such as PI, E) from
`bevy_pbr/src/render/utils.wgsl` into `bevy_render/src/maths.wgsl`
* Move color conversion functions from `bevy_pbr/src/render/utils.wgsl`
into new file `bevy_render/src/color_operations.wgsl`

## Testing
Ran multiple examples, checked they are working:
* tonemapping
* color_grading
* 3d_scene
* animated_material
* deferred_rendering
* 3d_shapes
* fog
* irradiance_volumes
* meshlet
* parallax_mapping
* pbr
* reflection_probes
* shadow_biases
* 2d_gizmos
* light_gizmos
---

## Changelog
* Moved mathematical constants (such as PI, E) from
`bevy_pbr/src/render/utils.wgsl` into `bevy_render/src/maths.wgsl`
* Moved color conversion functions from `bevy_pbr/src/render/utils.wgsl`
into new file `bevy_render/src/color_operations.wgsl`

## Migration Guide
In user's shader code replace usage of mathematical constants from
`bevy_pbr::utils` to the usage of the same constants from
`bevy_render::maths`.
2024-05-04 10:30:23 +00:00
Kristoffer Søholm
2089a28717
Add BufferVec, an higher-performance alternative to StorageBuffer, and make GpuArrayBuffer use it. (#13199)
This is an adoption of #12670 plus some documentation fixes. See that PR
for more details.

---

## Changelog

* Renamed `BufferVec` to `RawBufferVec` and added a new `BufferVec`
type.

## Migration Guide
`BufferVec` has been renamed to `RawBufferVec` and a new similar type
has taken the `BufferVec` name.

---------

Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2024-05-03 11:39:21 +00:00
Patrick Walton
31835ff76d
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). (#12916)
Implement visibility ranges, also known as hierarchical levels of detail
(HLODs).

This commit introduces a new component, `VisibilityRange`, which allows
developers to specify camera distances in which meshes are to be shown
and hidden. Hiding meshes happens early in the rendering pipeline, so
this feature can be used for level of detail optimization. Additionally,
this feature is properly evaluated per-view, so different views can show
different levels of detail.

This feature differs from proper mesh LODs, which can be implemented
later. Engines generally implement true mesh LODs later in the pipeline;
they're typically more efficient than HLODs with GPU-driven rendering.
However, mesh LODs are more limited than HLODs, because they require the
lower levels of detail to be meshes with the same vertex layout and
shader (and perhaps the same material) as the original mesh. Games often
want to use objects other than meshes to replace distant models, such as
*octahedral imposters* or *billboard imposters*.

The reason why the feature is called *hierarchical level of detail* is
that HLODs can replace multiple meshes with a single mesh when the
camera is far away. This can be useful for reducing drawcall count. Note
that `VisibilityRange` doesn't automatically propagate down to children;
it must be placed on every mesh.

Crossfading between different levels of detail is supported, using the
standard 4x4 ordered dithering pattern from [1]. The shader code to
compute the dithering patterns should be well-optimized. The dithering
code is only active when visibility ranges are in use for the mesh in
question, so that we don't lose early Z.

Cascaded shadow maps show the HLOD level of the view they're associated
with. Point light and spot light shadow maps, which have no CSMs,
display all HLOD levels that are visible in any view. To support this
efficiently and avoid doing visibility checks multiple times, we
precalculate all visible HLOD levels for each entity with a
`VisibilityRange` during the `check_visibility_range` system.

A new example, `visibility_range`, has been added to the tree, as well
as a new low-poly version of the flight helmet model to go with it. It
demonstrates use of the visibility range feature to provide levels of
detail.

[1]: https://en.wikipedia.org/wiki/Ordered_dithering#Threshold_map

[^1]: Unreal doesn't have a feature that exactly corresponds to
visibility ranges, but Unreal's HLOD system serves roughly the same
purpose.

## Changelog

### Added

* A new `VisibilityRange` component is available to conditionally enable
entity visibility at camera distances, with optional crossfade support.
This can be used to implement different levels of detail (LODs).

## Screenshots

High-poly model:
![Screenshot 2024-04-09
185541](https://github.com/bevyengine/bevy/assets/157897/7e8be017-7187-4471-8866-974e2d8f2623)

Low-poly model up close:
![Screenshot 2024-04-09
185546](https://github.com/bevyengine/bevy/assets/157897/429603fe-6bb7-4246-8b4e-b4888fd1d3a0)

Crossfading between the two:
![Screenshot 2024-04-09
185604](https://github.com/bevyengine/bevy/assets/157897/86d0d543-f8f3-49ec-8fe5-caa4d0784fd4)

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-05-03 00:11:35 +00:00
Patrick Walton
961b24deaf
Implement filmic color grading. (#13121)
This commit expands Bevy's existing tonemapping feature to a complete
set of filmic color grading tools, matching those of engines like Unity,
Unreal, and Godot. The following features are supported:

* White point adjustment. This is inspired by Unity's implementation of
the feature, but simplified and optimized. *Temperature* and *tint*
control the adjustments to the *x* and *y* chromaticity values of [CIE
1931]. Following Unity, the adjustments are made relative to the [D65
standard illuminant] in the [LMS color space].

* Hue rotation. This simply converts the RGB value to [HSV], alters the
hue, and converts back.

* Color correction. This allows the *gamma*, *gain*, and *lift* values
to be adjusted according to the standard [ASC CDL combined function].

* Separate color correction for shadows, midtones, and highlights.
Blender's source code was used as a reference for the implementation of
this. The midtone ranges can be adjusted by the user. To avoid abrupt
color changes, a small crossfade is used between the different sections
of the image, again following Blender's formulas.

A new example, `color_grading`, has been added, offering a GUI to change
all the color grading settings. It uses the same test scene as the
existing `tonemapping` example, which has been factored out into a
shared glTF scene.

[CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space

[D65 standard illuminant]:
https://en.wikipedia.org/wiki/Standard_illuminant#Illuminant_series_D

[LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space

[HSV]: https://en.wikipedia.org/wiki/HSL_and_HSV

[ASC CDL combined function]:
https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function

## Changelog

### Added

* Many new filmic color grading options have been added to the
`ColorGrading` component.

## Migration Guide

* `ColorGrading::gamma` and `ColorGrading::pre_saturation` are now set
separately for the `shadows`, `midtones`, and `highlights` sections. You
can migrate code with the `ColorGrading::all_sections` and
`ColorGrading::all_sections_mut` functions, which access and/or update
all sections at once.
* `ColorGrading::post_saturation` and `ColorGrading::exposure` are now
fields of `ColorGrading::global`.

## Screenshots

![Screenshot 2024-04-27
143144](https://github.com/bevyengine/bevy/assets/157897/c1de5894-917d-4101-b5c9-e644d141a941)

![Screenshot 2024-04-27
143216](https://github.com/bevyengine/bevy/assets/157897/da393c8a-d747-42f5-b47c-6465044c788d)
2024-05-02 12:18:59 +00:00
Patrick Walton
16531fb3e3
Implement GPU frustum culling. (#12889)
This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.

Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.

A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.

This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.

## Changelog

### Added

* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
2024-04-28 12:50:00 +00:00
re0312
92928f13ed
Cleanup extract_meshes (#13026)
# Objective

- clean up extract_mesh_(gpu/cpu)_building

## Solution

- gpu_building no need to hold  `prev_render_mesh_instances`
- using `insert_unique_unchecked` instead of simple insert as we know
all entities are unique
- direcly get `previous_input_index ` in par_loop 


## Performance
this should also bring a slight performance win.

cargo run --release --example many_cubes --features bevy/trace_tracy --
--no-frustum-culling
`extract_meshes_for_gpu_building`


![image](https://github.com/bevyengine/bevy/assets/45868716/a5425e8a-258b-482d-afda-170363ee6479)

---------

Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
2024-04-26 23:49:32 +00:00
JMS55
17633c1f75
Remove unused push constants (#13076)
The shader code was removed in #11280, but we never cleaned up the rust
code.
2024-04-23 21:43:46 +00:00
re0312
0f27500e46
Improve par_iter and Parallel (#12904)
# Objective

- bevy usually use `Parallel::scope` to collect items from `par_iter`,
but `scope` will be called with every satifified items. it will cause a
lot of unnecessary lookup.

## Solution

- similar to Rayon ,we introduce `for_each_init` for `par_iter` which
only be invoked when spawn a task for a group of items.

---

## Changelog

- added  `for_each_init`

## Performance
`check_visibility `  in  `many_foxes ` 

![image](https://github.com/bevyengine/bevy/assets/45868716/030c41cf-0d2f-4a36-a071-35097d93e494)
 
~40% performance gain in `check_visibility`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-04-23 12:05:34 +00:00
François Mockers
c40b485095
use a u64 for MeshPipelineKey (#13015)
# Objective

- `MeshPipelineKey` use some bits for two things
- First commit in this PR adds an assertion that doesn't work currently
on main
- This leads to some mesh topology not working anymore, for example
`LineStrip`
- With examples `lines`, there should be two groups of lines, the blue
one doesn't display currently

## Solution

- Change the `MeshPipelineKey` to be backed by a `u64` instead, to have
enough bits
2024-04-21 20:01:45 +00:00
Patrick Walton
1141e731ff
Implement alpha to coverage (A2C) support. (#12970)
[Alpha to coverage] (A2C) replaces alpha blending with a
hardware-specific multisample coverage mask when multisample
antialiasing is in use. It's a simple form of [order-independent
transparency] that relies on MSAA. ["Anti-aliased Alpha Test: The
Esoteric Alpha To Coverage"] is a good summary of the motivation for and
best practices relating to A2C.

This commit implements alpha to coverage support as a new variant for
`AlphaMode`. You can supply `AlphaMode::AlphaToCoverage` as the
`alpha_mode` field in `StandardMaterial` to use it. When in use, the
standard material shader automatically applies the texture filtering
method from ["Anti-aliased Alpha Test: The Esoteric Alpha To Coverage"].
Objects with alpha-to-coverage materials are binned in the opaque pass,
as they're fully order-independent.

The `transparency_3d` example has been updated to feature an object with
alpha to coverage. Happily, the example was already using MSAA.

This is part of #2223, as far as I can tell.

[Alpha to coverage]: https://en.wikipedia.org/wiki/Alpha_to_coverage

[order-independent transparency]:
https://en.wikipedia.org/wiki/Order-independent_transparency

["Anti-aliased Alpha Test: The Esoteric Alpha To Coverage"]:
https://bgolus.medium.com/anti-aliased-alpha-test-the-esoteric-alpha-to-coverage-8b177335ae4f

---

## Changelog

### Added

* The `AlphaMode` enum now supports `AlphaToCoverage`, to provide
limited order-independent transparency when multisample antialiasing is
in use.
2024-04-15 20:37:52 +00:00
re0312
09a1f94d14
fix shadow pass trace (#12977)
# Objective

- shadow pass trace does not work correctly

## Solution

- enable it.
2024-04-15 15:55:39 +00:00
Robert Swain
5f05e75a70
Fix 2D BatchedInstanceBuffer clear (#12922)
# Objective

- `cargo run --release --example bevymark -- --benchmark --waves 160
--per-wave 1000 --mode mesh2d` runs slower and slower over time due to
`no_gpu_preprocessing::write_batched_instance_buffer<bevy_sprite::mesh2d::mesh::Mesh2dPipeline>`
taking longer and longer because the `BatchedInstanceBuffer` is not
cleared

## Solution

- Split the `clear_batched_instance_buffers` system into CPU and GPU
versions
- Use the CPU version for 2D meshes
2024-04-15 05:00:43 +00:00
Patrick Walton
5caf085dac
Divide the single VisibleEntities list into separate lists for 2D meshes, 3D meshes, lights, and UI elements, for performance. (#12582)
This commit splits `VisibleEntities::entities` into four separate lists:
one for lights, one for 2D meshes, one for 3D meshes, and one for UI
elements. This allows `queue_material_meshes` and similar methods to
avoid examining entities that are obviously irrelevant. In particular,
this separation helps scenes with many skinned meshes, as the individual
bones are considered visible entities but have no rendered appearance.

Internally, `VisibleEntities::entities` is a `HashMap` from the `TypeId`
representing a `QueryFilter` to the appropriate `Entity` list. I had to
do this because `VisibleEntities` is located within an upstream crate
from the crates that provide lights (`bevy_pbr`) and 2D meshes
(`bevy_sprite`). As an added benefit, this setup allows apps to provide
their own types of renderable components, by simply adding a specialized
`check_visibility` to the schedule.

This provides a 16.23% end-to-end speedup on `many_foxes` with 10,000
foxes (24.06 ms/frame to 20.70 ms/frame).

## Migration guide

* `check_visibility` and `VisibleEntities` now store the four types of
renderable entities--2D meshes, 3D meshes, lights, and UI
elements--separately. If your custom rendering code examines
`VisibleEntities`, it will now need to specify which type of entity it's
interested in using the `WithMesh2d`, `WithMesh`, `WithLight`, and
`WithNode` types respectively. If your app introduces a new type of
renderable entity, you'll need to add an explicit call to
`check_visibility` to the schedule to accommodate your new component or
components.

## Analysis

`many_foxes`, 10,000 foxes: `main`:
![Screenshot 2024-03-31
114444](https://github.com/bevyengine/bevy/assets/157897/16ecb2ff-6e04-46c0-a4b0-b2fde2084bad)

`many_foxes`, 10,000 foxes, this branch:
![Screenshot 2024-03-31
114256](https://github.com/bevyengine/bevy/assets/157897/94dedae4-bd00-45b2-9aaf-dfc237004ddb)

`queue_material_meshes` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114637](https://github.com/bevyengine/bevy/assets/157897/f90912bd-45bd-42c4-bd74-57d98a0f036e)

`queue_shadows` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114607](https://github.com/bevyengine/bevy/assets/157897/6ce693e3-20c0-4234-8ec9-a6f191299e2d)
2024-04-11 20:33:20 +00:00
Patrick Walton
d59b1e71ef
Implement percentage-closer filtering (PCF) for point lights. (#12910)
I ported the two existing PCF techniques to the cubemap domain as best I
could. Generally, the technique is to create a 2D orthonormal basis
using Gram-Schmidt normalization, then apply the technique over that
basis. The results look fine, though the shadow bias often needs
adjusting.

For comparison, Unity uses a 4-tap pattern for PCF on point lights of
(1, 1, 1), (-1, -1, 1), (-1, 1, -1), (1, -1, -1). I tried this but
didn't like the look, so I went with the design above, which ports the
2D techniques to the 3D domain. There's surprisingly little material on
point light PCF.

I've gone through every example using point lights and verified that the
shadow maps look fine, adjusting biases as necessary.

Fixes #3628.

---

## Changelog

### Added
* Shadows from point lights now support percentage-closer filtering
(PCF), and as a result look less aliased.

### Changed
* `ShadowFilteringMethod::Castano13` and
`ShadowFilteringMethod::Jimenez14` have been renamed to
`ShadowFilteringMethod::Gaussian` and `ShadowFilteringMethod::Temporal`
respectively.

## Migration Guide

* `ShadowFilteringMethod::Castano13` and
`ShadowFilteringMethod::Jimenez14` have been renamed to
`ShadowFilteringMethod::Gaussian` and `ShadowFilteringMethod::Temporal`
respectively.
2024-04-10 20:16:08 +00:00
Patrick Walton
11817f4ba4
Generate MeshUniforms on the GPU via compute shader where available. (#12773)
Currently, `MeshUniform`s are rather large: 160 bytes. They're also
somewhat expensive to compute, because they involve taking the inverse
of a 3x4 matrix. Finally, if a mesh is present in multiple views, that
mesh will have a separate `MeshUniform` for each and every view, which
is wasteful.

This commit fixes these issues by introducing the concept of a *mesh
input uniform* and adding a *mesh uniform building* compute shader pass.
The `MeshInputUniform` is simply the minimum amount of data needed for
the GPU to compute the full `MeshUniform`. Most of this data is just the
transform and is therefore only 64 bytes. `MeshInputUniform`s are
computed during the *extraction* phase, much like skins are today, in
order to avoid needlessly copying transforms around on CPU. (In fact,
the render app has been changed to only store the translation of each
mesh; it no longer cares about any other part of the transform, which is
stored only on the GPU and the main world.) Before rendering, the
`build_mesh_uniforms` pass runs to expand the `MeshInputUniform`s to the
full `MeshUniform`.

The mesh uniform building pass does the following, all on GPU:

1. Copy the appropriate fields of the `MeshInputUniform` to the
`MeshUniform` slot. If a single mesh is present in multiple views, this
effectively duplicates it into each view.

2. Compute the inverse transpose of the model transform, used for
transforming normals.

3. If applicable, copy the mesh's transform from the previous frame for
TAA. To support this, we double-buffer the `MeshInputUniform`s over two
frames and swap the buffers each frame. The `MeshInputUniform`s for the
current frame contain the index of that mesh's `MeshInputUniform` for
the previous frame.

This commit produces wins in virtually every CPU part of the pipeline:
`extract_meshes`, `queue_material_meshes`,
`batch_and_prepare_render_phase`, and especially
`write_batched_instance_buffer` are all faster. Shrinking the amount of
CPU data that has to be shuffled around speeds up the entire rendering
process.

| Benchmark              | This branch | `main`  | Speedup |
|------------------------|-------------|---------|---------|
| `many_cubes -nfc`      |      17.259 |  24.529 |  42.12% |
| `many_cubes -nfc -vpi` |     302.116 | 312.123 |   3.31% |
| `many_foxes`           |       3.227 |   3.515 |   8.92% |

Because mesh uniform building requires compute shader, and WebGL 2 has
no compute shader, the existing CPU mesh uniform building code has been
left as-is. Many types now have both CPU mesh uniform building and GPU
mesh uniform building modes. Developers can opt into the old CPU mesh
uniform building by setting the `use_gpu_uniform_builder` option on
`PbrPlugin` to `false`.

Below are graphs of the CPU portions of `many-cubes
--no-frustum-culling`. Yellow is this branch, red is `main`.

`extract_meshes`:
![Screenshot 2024-04-02
124842](https://github.com/bevyengine/bevy/assets/157897/a6748ea4-dd05-47b6-9254-45d07d33cb10)
It's notable that we get a small win even though we're now writing to a
GPU buffer.

`queue_material_meshes`:
![Screenshot 2024-04-02
124911](https://github.com/bevyengine/bevy/assets/157897/ecb44d78-65dc-448d-ba85-2de91aa2ad94)
There's a bit of a regression here; not sure what's causing it. In any
case it's very outweighed by the other gains.

`batch_and_prepare_render_phase`:
![Screenshot 2024-04-02
125123](https://github.com/bevyengine/bevy/assets/157897/4e20fc86-f9dd-4e5c-8623-837e4258f435)
There's a huge win here, enough to make batching basically drop off the
profile.

`write_batched_instance_buffer`:
![Screenshot 2024-04-02
125237](https://github.com/bevyengine/bevy/assets/157897/401a5c32-9dc1-4991-996d-eb1cac6014b2)
There's a massive improvement here, as expected. Note that a lot of it
simply comes from the fact that `MeshInputUniform` is `Pod`. (This isn't
a maintainability problem in my view because `MeshInputUniform` is so
simple: just 16 tightly-packed words.)

## Changelog

### Added

* Per-mesh instance data is now generated on GPU with a compute shader
instead of CPU, resulting in rendering performance improvements on
platforms where compute shaders are supported.

## Migration guide

* Custom render phases now need multiple systems beyond just
`batch_and_prepare_render_phase`. Code that was previously creating
custom render phases should now add a `BinnedRenderPhasePlugin` or
`SortedRenderPhasePlugin` as appropriate instead of directly adding
`batch_and_prepare_render_phase`.
2024-04-10 05:33:32 +00:00
Robert Swain
ab7cbfa8fc
Consolidate Render(Ui)Materials(2d) into RenderAssets (#12827)
# Objective

- Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials`
with `RenderAssets` to enable implementing changes to one thing,
`RenderAssets`, that applies to all use cases rather than duplicating
changes everywhere for multiple things that should be one thing.
- Adopts #8149 

## Solution

- Make RenderAsset generic over the destination type rather than the
source type as in #8149
- Use `RenderAssets<PreparedMaterial<M>>` etc for render materials

---

## Changelog

- Changed:
- The `RenderAsset` trait is now implemented on the destination type.
Its `SourceAsset` associated type refers to the type of the source
asset.
- `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have
been replaced by `RenderAssets<PreparedMaterial<M>>` and similar.

## Migration Guide

- `RenderAsset` is now implemented for the destination type rather that
the source asset type. The source asset type is now the `RenderAsset`
trait's `SourceAsset` associated type.
2024-04-09 13:26:34 +00:00
UkoeHB
2ee69807b1
Fix potential out-of-bounds access in pbr_functions.wgsl (#12585)
# Objective

- Fix a potential out-of-bounds access in the `pbr_functions.wgsl`
shader.

## Solution

- Correctly compute the `GpuLights::directional_lights` array length.

## Comments

I think this solves this comment in the code, but need someone to test
it:
```rust
//NOTE: When running bevy on Adreno GPU chipsets in WebGL, any value above 1 will result in a crash
// when loading the wgsl "pbr_functions.wgsl" in the function apply_fog.
```
2024-04-08 17:00:09 +00:00
Martín Maita
3fc0c6869d
Bump crate-ci/typos from 1.19.0 to 1.20.4 (#12907)
# Objective

- Adopting https://github.com/bevyengine/bevy/pull/12903.

## Solution

- Bump crate-ci/typos from 1.19.0 to 1.20.4.
- Fixed a typo in `crates/bevy_pbr/src/render/pbr_functions.wgsl` file.
- Added "PNG", "iy" and "SME" as exceptions to prevent false positives.

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-04-08 15:31:11 +00:00
JMS55
31b5943ad4
Add previous_view_uniforms.inverse_view (#12902)
# Objective
- Upload previous frame's inverse_view matrix to the GPU for use with
https://github.com/bevyengine/bevy/pull/12898.

---

## Changelog
- Added `prepass_bindings::previous_view_uniforms.inverse_view`.
- Renamed `prepass_bindings::previous_view_proj` to
`prepass_bindings::previous_view_uniforms.view_proj`.
- Renamed `PreviousViewProjectionUniformOffset` to
`PreviousViewUniformOffset`.
- Renamed `PreviousViewProjection` to `PreviousViewData`.

## Migration Guide
- Renamed `prepass_bindings::previous_view_proj` to
`prepass_bindings::previous_view_uniforms.view_proj`.
- Renamed `PreviousViewProjectionUniformOffset` to
`PreviousViewUniformOffset`.
- Renamed `PreviousViewProjection` to `PreviousViewData`.
2024-04-07 18:59:16 +00:00
robtfm
452821dd52
more robust gpu image use (#12606)
# Objective

make morph targets and tonemapping more tolerant of delayed image
loading.

neither of these actually fail currently unless using a bespoke loader
(and even then it would be rare), but i am working on adding throttling
for asset gpu uploads (as a stopgap until we can do proper asset
streaming) and they break with that.

## Solution

when a mesh with morph targets is uploaded to the gpu, the prepare
function uploads the morph target texture if it's available, otherwise
it uploads without morph targets. this is generally fine as long as
morph targets are typically loaded from bytes (in gltf loader), but may
fail for a custom loader if the asset server async-loads the target
texture and the texture is not available yet. the mesh fails to render
and doesn't update when the image is loaded
-> if morph targets are specified but not ready yet, retry mesh upload
next frame

tonemapping `unwrap`s on the lookup table image. this is never a problem
since the image is added via `include_bytes!`, but could be a problem in
future with asset gpu throttling/streaming.
-> if the lookup texture is not yet available, use a fallback
-> in the node, check if the fallback was used before caching the bind
group
2024-04-07 17:18:58 +00:00
François Mockers
a9964f442d
fix msaa shift with irradiance volumes in mesh pipeline key (#12845)
# Objective

- #12791 broke example `irradiance_volumes`
- Fixes #12876 

```
wgpu error: Validation Error

Caused by:
    In Device::create_render_pipeline
      note: label = `pbr_opaque_mesh_pipeline`
    Color state [0] is invalid
    Sample count 8 is not supported by format Rgba8UnormSrgb on this device. The WebGPU spec guarentees [1, 4] samples are supported by this format. With the TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES feature your device supports [1, 2, 4].
```

## Solution

- Shift bits a bit more
2024-04-05 17:50:23 +00:00
James Liu
a4ed1b88b8
Relax BufferVec's type constraints (#12866)
# Objective
Since BufferVec was first introduced, `bytemuck` has added additional
traits with fewer restrictions than `Pod`. Within BufferVec, we only
rely on the constraints of `bytemuck::cast_slice` to a `u8` slice, which
now only requires `T: NoUninit` which is a strict superset of `Pod`
types.

## Solution
Change out the `Pod` generic type constraint with `NoUninit`. Also
taking the opportunity to substitute `cast_slice` with
`must_cast_slice`, which avoids a runtime panic in place of a compile
time failure if `T` cannot be used.

---

## Changelog
Changed: `BufferVec` now supports working with types containing
`NoUninit` but not `Pod` members.
Changed: `BufferVec` will now fail to compile if used with a type that
cannot be safely read from. Most notably, this includes ZSTs, which
would previously always panic at runtime.
2024-04-05 02:11:41 +00:00
Patrick Walton
37522fd0ae
Micro-optimize queue_material_meshes, primarily to remove bit manipulation. (#12791)
This commit makes the following optimizations:

## `MeshPipelineKey`/`BaseMeshPipelineKey` split

`MeshPipelineKey` has been split into `BaseMeshPipelineKey`, which lives
in `bevy_render` and `MeshPipelineKey`, which lives in `bevy_pbr`.
Conceptually, `BaseMeshPipelineKey` is a superclass of
`MeshPipelineKey`. For `BaseMeshPipelineKey`, the bits start at the
highest (most significant) bit and grow downward toward the lowest bit;
for `MeshPipelineKey`, the bits start at the lowest bit and grow upward
toward the highest bit. This prevents them from colliding.

The goal of this is to avoid having to reassemble bits of the pipeline
key for every mesh every frame. Instead, we can just use a bitwise or
operation to combine the pieces that make up a `MeshPipelineKey`.

## `specialize_slow`

Previously, all of `specialize()` was marked as `#[inline]`. This
bloated `queue_material_meshes` unnecessarily, as a large chunk of it
ended up being a slow path that was rarely hit. This commit refactors
the function to move the slow path to `specialize_slow()`.

Together, these two changes shave about 5% off `queue_material_meshes`:

![Screenshot 2024-03-29
130002](https://github.com/bevyengine/bevy/assets/157897/a7e5a994-a807-4328-b314-9003429dcdd2)

## Migration Guide

- The `primitive_topology` field on `GpuMesh` is now an accessor method:
`GpuMesh::primitive_topology()`.
- For performance reasons, `MeshPipelineKey` has been split into
`BaseMeshPipelineKey`, which lives in `bevy_render`, and
`MeshPipelineKey`, which lives in `bevy_pbr`. These two should be
combined with bitwise-or to produce the final `MeshPipelineKey`.
2024-04-01 21:58:53 +00:00
Cameron
01649f13e2
Refactor App and SubApp internals for better separation (#9202)
# Objective

This is a necessary precursor to #9122 (this was split from that PR to
reduce the amount of code to review all at once).

Moving `!Send` resource ownership to `App` will make it unambiguously
`!Send`. `SubApp` must be `Send`, so it can't wrap `App`.

## Solution

Refactor `App` and `SubApp` to not have a recursive relationship. Since
`SubApp` no longer wraps `App`, once `!Send` resources are moved out of
`World` and into `App`, `SubApp` will become unambiguously `Send`.

There could be less code duplication between `App` and `SubApp`, but
that would break `App` method chaining.

## Changelog

- `SubApp` no longer wraps `App`.
- `App` fields are no longer publicly accessible.
- `App` can no longer be converted into a `SubApp`.
- Various methods now return references to a `SubApp` instead of an
`App`.
## Migration Guide

- To construct a sub-app, use `SubApp::new()`. `App` can no longer
convert into `SubApp`.
- If you implemented a trait for `App`, you may want to implement it for
`SubApp` as well.
- If you're accessing `app.world` directly, you now have to use
`app.world()` and `app.world_mut()`.
- `App::sub_app` now returns `&SubApp`.
- `App::sub_app_mut`  now returns `&mut SubApp`.
- `App::get_sub_app` now returns `Option<&SubApp>.`
- `App::get_sub_app_mut` now returns `Option<&mut SubApp>.`
2024-03-31 03:16:10 +00:00
Patrick Walton
4dadebd9c4
Improve performance by binning together opaque items instead of sorting them. (#12453)
Today, we sort all entities added to all phases, even the phases that
don't strictly need sorting, such as the opaque and shadow phases. This
results in a performance loss because our `PhaseItem`s are rather large
in memory, so sorting is slow. Additionally, determining the boundaries
of batches is an O(n) process.

This commit makes Bevy instead applicable place phase items into *bins*
keyed by *bin keys*, which have the invariant that everything in the
same bin is potentially batchable. This makes determining batch
boundaries O(1), because everything in the same bin can be batched.
Instead of sorting each entity, we now sort only the bin keys. This
drops the sorting time to near-zero on workloads with few bins like
`many_cubes --no-frustum-culling`. Memory usage is improved too, with
batch boundaries and dynamic indices now implicit instead of explicit.
The improved memory usage results in a significant win even on
unbatchable workloads like `many_cubes --no-frustum-culling
--vary-material-data-per-instance`, presumably due to cache effects.

Not all phases can be binned; some, such as transparent and transmissive
phases, must still be sorted. To handle this, this commit splits
`PhaseItem` into `BinnedPhaseItem` and `SortedPhaseItem`. Most of the
logic that today deals with `PhaseItem`s has been moved to
`SortedPhaseItem`. `BinnedPhaseItem` has the new logic.

Frame time results (in ms/frame) are as follows:

| Benchmark                | `binning` | `main`  | Speedup |
| ------------------------ | --------- | ------- | ------- |
| `many_cubes -nfc -vpi` | 232.179     | 312.123   | 34.43%  |
| `many_cubes -nfc`        | 25.874 | 30.117 | 16.40%  |
| `many_foxes`             | 3.276 | 3.515 | 7.30%   |

(`-nfc` is short for `--no-frustum-culling`; `-vpi` is short for
`--vary-per-instance`.)

---

## Changelog

### Changed

* Render phases have been split into binned and sorted phases. Binned
phases, such as the common opaque phase, achieve improved CPU
performance by avoiding the sorting step.

## Migration Guide

- `PhaseItem` has been split into `BinnedPhaseItem` and
`SortedPhaseItem`. If your code has custom `PhaseItem`s, you will need
to migrate them to one of these two types. `SortedPhaseItem` requires
the fewest code changes, but you may want to pick `BinnedPhaseItem` if
your phase doesn't require sorting, as that enables higher performance.

## Tracy graphs

`many-cubes --no-frustum-culling`, `main` branch:
<img width="1064" alt="Screenshot 2024-03-12 180037"
src="https://github.com/bevyengine/bevy/assets/157897/e1180ce8-8e89-46d2-85e3-f59f72109a55">

`many-cubes --no-frustum-culling`, this branch:
<img width="1064" alt="Screenshot 2024-03-12 180011"
src="https://github.com/bevyengine/bevy/assets/157897/0899f036-6075-44c5-a972-44d95895f46c">

You can see that `batch_and_prepare_binned_render_phase` is a much
smaller fraction of the time. Zooming in on that function, with yellow
being this branch and red being `main`, we see:

<img width="1064" alt="Screenshot 2024-03-12 175832"
src="https://github.com/bevyengine/bevy/assets/157897/0dfc8d3f-49f4-496e-8825-a66e64d356d0">

The binning happens in `queue_material_meshes`. Again with yellow being
this branch and red being `main`:
<img width="1064" alt="Screenshot 2024-03-12 175755"
src="https://github.com/bevyengine/bevy/assets/157897/b9b20dc1-11c8-400c-a6cc-1c2e09c1bb96">

We can see that there is a small regression in `queue_material_meshes`
performance, but it's not nearly enough to outweigh the large gains in
`batch_and_prepare_binned_render_phase`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-30 02:55:02 +00:00
JMS55
4f20faaa43
Meshlet rendering (initial feature) (#10164)
# Objective
- Implements a more efficient, GPU-driven
(https://github.com/bevyengine/bevy/issues/1342) rendering pipeline
based on meshlets.
- Meshes are split into small clusters of triangles called meshlets,
each of which acts as a mini index buffer into the larger mesh data.
Meshlets can be compressed, streamed, culled, and batched much more
efficiently than monolithic meshes.


![image](https://github.com/bevyengine/bevy/assets/47158642/cb2aaad0-7a9a-4e14-93b0-15d4e895b26a)

![image](https://github.com/bevyengine/bevy/assets/47158642/7534035b-1eb7-4278-9b99-5322e4401715)

# Misc
* Future work: https://github.com/bevyengine/bevy/issues/11518
* Nanite reference:
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
Two pass occlusion culling explained very well:
https://medium.com/@mil_kru/two-pass-occlusion-culling-4100edcad501

---------

Co-authored-by: Ricky Taylor <rickytaylor26@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-03-25 19:08:27 +00:00
LeshaInc
737b719dda
Add pipeline statistics (#9135)
# Objective

It's useful to have access to render pipeline statistics, since they
provide more information than FPS alone. For example, the number of
drawn triangles can be used to debug culling and LODs. The number of
fragment shader invocations can provide a more stable alternative metric
than GPU elapsed time.

See also: Render node GPU timing overlay #8067, which doesn't provide
pipeline statistics, but adds a nice overlay.

## Solution

Add `RenderDiagnosticsPlugin`, which enables collecting pipeline
statistics and CPU & GPU timings.

---

## Changelog

- Add `RenderDiagnosticsPlugin`
- Add `RenderContext::diagnostic_recorder` method

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-03-17 20:29:35 +00:00
robtfm
cca4ab3663
try_insert NoAutomaticBatching (#12396)
# Objective

fix occasional crash from commands.insert when quickly spawning and
despawning skinned/morphed meshes
 
## Solution

use `try_insert` instead of `insert`. if the entity is deleted we don't
mind failing to add the `NoAutomaticBatching` marker.
2024-03-10 02:14:33 +00:00
James Liu
512b7463a3
Disentangle bevy_utils/bevy_core's reexported dependencies (#12313)
# Objective
Make bevy_utils less of a compilation bottleneck. Tackle #11478.

## Solution
* Move all of the directly reexported dependencies and move them to
where they're actually used.
* Remove the UUID utilities that have gone unused since `TypePath` took
over for `TypeUuid`.
* There was also a extraneous bytemuck dependency on `bevy_core` that
has not been used for a long time (since `encase` became the primary way
to prepare GPU buffers).
* Remove the `all_tuples` macro reexport from bevy_ecs since it's
accessible from `bevy_utils`.

---

## Changelog
Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax,
smallvec, and thiserror).
Removed: bevy_core's reexports of bytemuck.

## Migration Guide
bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror
have been removed.

bevy_core' reexports of bytemuck's types has been removed. 

Add them as dependencies in your own crate instead.
2024-03-07 02:30:15 +00:00
vero
13d37c534f
Fix directional light shadow frustum culling near clip plane to infinity (#12342)
# Objective

- Fix slightly wrong logic from #11442
- Directional lights should not have a near clip plane

## Solution

- Push near clip out to infinity, so that the frustum normal is still
available if its needed for whatever reason in shader
- also opportunistically nabs a typo
2024-03-06 19:47:12 +00:00
Patrick Walton
f9cc91d5a1
Intern mesh vertex buffer layouts so that we don't have to compare them over and over. (#12216)
Although we cached hashes of `MeshVertexBufferLayout`, we were paying
the cost of `PartialEq` on `InnerMeshVertexBufferLayout` for every
entity, every frame. This patch changes that logic to place
`MeshVertexBufferLayout`s in `Arc`s so that they can be compared and
hashed by pointer. This results in a 28% speedup in the
`queue_material_meshes` phase of `many_cubes`, with frustum culling
disabled.

Additionally, this patch contains two minor changes:

1. This commit flattens the specialized mesh pipeline cache to one level
of hash tables instead of two. This saves a hash lookup.

2. The example `many_cubes` has been given a `--no-frustum-culling`
flag, to aid in benchmarking.

See the Tracy profile:

<img width="1064" alt="Screenshot 2024-02-29 144406"
src="https://github.com/bevyengine/bevy/assets/157897/18632f1d-1fdd-4ac7-90ed-2d10306b2a1e">

## Migration guide

* Duplicate `MeshVertexBufferLayout`s are now combined into a single
object, `MeshVertexBufferLayoutRef`, which contains an
atomically-reference-counted pointer to the layout. Code that was using
`MeshVertexBufferLayout` may need to be updated to use
`MeshVertexBufferLayoutRef` instead.
2024-03-01 20:56:21 +00:00
Alice Cecile
599e5e4e76
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective

- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.

## Solution

I've chosen to use the polymorphic `Color` type as our standard
user-facing API.

- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes

Incidental improvements to ease migration:

- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`

## Migration Guide

Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.

These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.

TODO...

- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.

---------

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
JMS55
40bfce556a
Add random shader utils, fix cluster_debug_visualization (#11956)
# Objective
- Partially addresses https://github.com/bevyengine/bevy/issues/11470
(I'd like to add Spatiotemporal Blue Noise in the future, but that's a
bit more controversial).
- Fix cluster_debug_visualization which has not compiled for a while

---

## Changelog
- Added random white noise shader functions to `bevy_pbr::utils`

## Migration Guide
- The `bevy_pbr::utils::random1D` shader function has been replaced by
the similar `bevy_pbr::utils::rand_f`.
2024-02-26 15:59:44 +00:00
Jan Hohenheim
ad5d790e9e
Fix WebGL not rendering StandardMaterial (#12110)
# Objective

- Fixes #12081

## Solution

Passing the `Affine2` as a neatly packed `mat3x2` breaks WebGL with
`drawElementsInstanced: Buffer for uniform block is smaller than
UNIFORM_BLOCK_DATA_SIZE.`
I fixed this by using a `mat3x3` instead.
Alternative solutions that come to mind:
- Pass in a `mat3x2` on non-webgl targets and a `mat3x3` otherwise. I
guess I could use `#ifdef SIXTEEN_BYTE_ALIGNMENT` for this, but it
doesn't seem quite right? This would be more efficient, but decrease
code quality.
- Do something about `UNIFORM_BLOCK_DATA_SIZE`. I don't know how, so I'd
need some guidance here.

@superdump let me know if you'd like me to implement other variants.
Otherwise, I vote for merging this as a quick fix for `main` and then
improving the packing in subsequent PRs :)

## Additional notes

Ideally we should merge this before @JMS55 rebases #10164 so that they
don't have to rebase everything a second time.
2024-02-25 22:42:28 +00:00
James Liu
fd91c61d72
Cleanup: Use Parallel in extract_meshes (#12084)
# Objective
#7348 added `bevy_utils::Parallel` and replaced the usage of the
`ThreadLocal<Cell<Vec<...>>>` in `check_visibility`, but we were also
using it in `extract_meshes`.

## Solution
Refactor the system to use `Parallel` instead.
2024-02-25 19:06:54 +00:00
Alex
a7be8a2655
Prefer UVec2 when working with texture dimensions (#11698)
# Objective

The physical width and height (pixels) of an image is always integers,
but for `GpuImage` bevy currently stores them as `Vec2` (`f32`).
Switching to `UVec2` makes this more consistent with the [underlying
texture data](https://docs.rs/wgpu/latest/wgpu/struct.Extent3d.html).

I'm not sure if this is worth the change in the surface level API. If
not, feel free to close this PR.

## Solution

- Replace uses of `Vec2` with `UVec2` when referring to texture
dimensions.
- Use integer types for the texture atlas dimensions and sections.


[`Sprite::rect`](a81a2d1da3/crates/bevy_sprite/src/sprite.rs (L29))
remains unchanged, so manually specifying a sub-pixel region of an image
is still possible.

---

## Changelog

- `GpuImage` now stores its size as `UVec2` instead of `Vec2`.
- Texture atlases store their size and sections as `UVec2` and `URect`
respectively.
- `UiImageSize` stores its size as `UVec2`.

## Migration Guide

- Change floating point types (`Vec2`, `Rect`) to their respective
unsigned integer versions (`UVec2`, `URect`) when using `GpuImage`,
`TextureAtlasLayout`, `TextureAtlasBuilder`,
`DynamicAtlasTextureBuilder` or `FontAtlas`.
2024-02-25 15:23:04 +00:00
eri
5f8f3b532c
Check cfg during CI and fix feature typos (#12103)
# Objective

- Add the new `-Zcheck-cfg` checks to catch more warnings
- Fixes #12091

## Solution

- Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg
--workspace` using cargo nightly (and fails if there are warnings)
- Fix all warnings generated by the new check

---

## Changelog

- Remove all redundant imports
- Fix cfg wasm32 targets
- Add 3 dead code exceptions (should StandardColor be unused?)
- Convert ios_simulator to a feature (I'm not sure if this is the right
way to do it, but the check complained before)

## Migration Guide

No breaking changes

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-02-25 15:19:27 +00:00
Alice Cecile
de004da8d5
Rename bevy_render::Color to LegacyColor (#12069)
# Objective

The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.

## Solution

To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.

However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.

As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.

## Migration Guide

THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.

This change should not be shipped to end users: delete this section in
the final migration guide!

---------

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-02-24 21:35:32 +00:00
IceSentry
e79b9b62ce
Make more things pub in the renderer (#12053)
# Objective

- Some properties of public types are private but sometimes it's useful
to be able to set those

## Solution

- Make more stuff pub

---

## Changelog

- `MaterialBindGroupId` internal id is now pub and added a new()
constructor
- `ExtractedPointLight` and `ExtractedDirectionalLight` properties are
now all pub

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-02-23 06:13:37 +00:00
Sam Pettersson
caa7ec68d4
FIX: iOS Simulator not rendering due to missing CUBE_ARRAY_TEXTURES (#12052)
This PR closes #11978

# Objective

Fix rendering on iOS Simulators.

iOS Simulator doesn't support the capability CUBE_ARRAY_TEXTURES, since
0.13 this started to make iOS Simulator not render anything with the
following message being outputted:

```
2024-02-19T14:59:34.896266Z ERROR bevy_render::render_resource::pipeline_cache: failed to create shader module: Validation Error

Caused by:
    In Device::create_shader_module
    
Shader validation error: 


    Type [40] '' is invalid
    Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
```

## Solution

- Split up NO_ARRAY_TEXTURES_SUPPORT into both NO_ARRAY_TEXTURES_SUPPORT
and NO_CUBE_ARRAY_TEXTURES_SUPPORT and correctly apply
NO_ARRAY_TEXTURES_SUPPORT for iOS Simulator using the cfg flag
introduced in #10178.

---

## Changelog

### Fixed
- Rendering on iOS Simulator due to missing CUBE_ARRAY_TEXTURES support.

---------

Co-authored-by: Sam Pettersson <sam.pettersson@geoguessr.com>
2024-02-23 01:24:59 +00:00
IceSentry
a513493dcc
Make Globals visible in vertex shaders (#12032)
# Objective

- Globals are supposed to be available in vertex shader but that was
mistakenly removed in 0.13

## Solution

- Configure the visibility of the globals correctly

Fixes https://github.com/bevyengine/bevy/issues/12015
2024-02-21 23:16:43 +00:00
Jan Hohenheim
8531033b31
Add support for KHR_texture_transform (#11904)
Adopted #8266, so copy-pasting the description from there:

# Objective

Support the KHR_texture_transform extension for the glTF loader.

- Fixes #6335
- Fixes #11869 
- Implements part of #11350
- Implements the GLTF part of #399 

## Solution

As is, this only supports a single transform. Looking at Godot's source,
they support one transform with an optional second one for detail, AO,
and emission. glTF specifies one per texture. The public domain
materials I looked at seem to share the same transform. So maybe having
just one is acceptable for now. I tried to include a warning if multiple
different transforms exist for the same material.

Note the gltf crate doesn't expose the texture transform for the normal
and occlusion textures, which it should, so I just ignored those for
now. (note by @janhohenheim: this is still the case)

Via `cargo run --release --example scene_viewer
~/src/clone/glTF-Sample-Models/2.0/TextureTransformTest/glTF/TextureTransformTest.gltf`:


![texture_transform](https://user-images.githubusercontent.com/283864/228938298-aa2ef524-555b-411d-9637-fd0dac226fb0.png)

## Changelog

Support for the
[KHR_texture_transform](https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_texture_transform)
extension added. Texture UVs that were scaled, rotated, or offset in a
GLTF are now properly handled.

---------

Co-authored-by: Al McElrath <hello@yrns.org>
Co-authored-by: Kanabenki <lucien.menassol@gmail.com>
2024-02-21 01:11:28 +00:00
Robert Swain
1d0ea78f36
Save 16 bytes per MeshUniform in uniform/storage buffers (#11999)
# Objective

- Save 16 bytes per MeshUniform in uniform/storage buffers.

## Solution

- Reorder members of MeshUniform to capitalise on alignment and size
rules for tighter data packing. Before the size of a MeshUniform was 160
bytes, and after it is 144 bytes, saving 16 bytes of unused padding for
alignment.

---

## Changelog

- Reduced the size of MeshUniform by 16 bytes.
2024-02-20 16:25:25 +00:00
James Liu
6d547d7ce6
Allow Mesh-related queue phase systems to parallelize (#11804)
# Objective
Partially addresses #3548. `queue_shadows` and `queue_material_meshes`
cannot parallelize because of the `ResMut<RenderMeshInstances>`
parameter for `queue_material_meshes`.

## Solution
Change the `material_bind_group` field to use atomics instead of needing
full mutable access. Change the `ResMut` to a `Res`, which should allow
both sets of systems to parallelize without issue.

## Performance
Tested against `many_foxes`, this has a significant improvement over the
entire render schedule. (Yellow is this PR, red is main)

![image](https://github.com/bevyengine/bevy/assets/3137680/6cc7f346-4f50-4f12-a383-682a9ce1daf6)

The use of atomics does seem to have a negative effect on
`queue_material_meshes` (roughly a 8.29% increase in time spent in the
system).

![image](https://github.com/bevyengine/bevy/assets/3137680/7907079a-863d-4760-aa5b-df68c006ea36)

`queue_shadows` seems to be ever so slightly slower (1.6% more time
spent) in the system.

![image](https://github.com/bevyengine/bevy/assets/3137680/6d90af73-b922-45e4-bae5-df200e8b9784)

`batch_and_prepare_render_phase` seems to be a mix, but overall seems to
be slightly *faster* by about 5%.

![image](https://github.com/bevyengine/bevy/assets/3137680/fac638ff-8c90-436b-9362-c6209b18957c)
2024-02-20 00:12:41 +00:00
Patrick Walton
3058c17d6a
Disable irradiance volumes on WebGL and WebGPU. (#11909)
They cause the number of texture bindings to overflow on those
platforms. Ultimately, we shouldn't unconditionally disable them, but
this fixes a crash blocking 0.13.

Closes #11885.
2024-02-17 01:49:46 +00:00
Patrick Walton
7883eea54f
Add MeshPipelineKey::LIGHTMAPPED as applicable during the shadow map pass. (#11910)
I did this during the prepass, but I neglected to do it during the
shadow map pass, causing a panic when directional lights with shadows
were enabled with lightmapped meshes present. This patch fixes the
issue.

Closes #11898.
2024-02-17 00:25:32 +00:00
Robin KAY
4ebc560dfb
Change MeshUniform::new() to be public. (#11880)
# Objective

Provide a public replacement for `Into<MeshUniform>` trait impl which
was removed by #10231.

I made use of this in the `bevy_mod_outline` crate and will have to
duplicate this function if it's not accessible.

## Solution

Change the MeshUniform::new() method to be public.
2024-02-15 22:13:17 +00:00
robtfm
73bf730da9
fix shadow batching (#11645)
# Objective

`RenderMeshInstance::material_bind_group_id` is only set from
`queue_material_meshes::<M>`. this field is used (only) for determining
batch groups, so some items may be batched incorrectly if they have
never been in the camera's view or if they don't use the Material
abstraction.

in particular, shadow views render more meshes than the main camera, and
currently batch some meshes where the object has never entered the
camera view together. this is quite hard to trigger, but should occur in
a scene with out-of-view alpha-mask materials (so that the material
instance actually affects the shadow) in the path of a light.

this is also a footgun for custom pipelines: failing to set the
material_bind_group_id will result in all meshes being batched together
and all using the closest/furthest material to the camera (depending on
sort order).

## Solution

- queue_shadows now sets the material_bind_group_id correctly
- `MeshPipeline` doesn't attempt to batch meshes if the
material_bind_group_id has not been set. custom pipelines still need to
set this field to take advantage of batching, but will at least render
correctly if it is not set
2024-02-14 00:31:45 +00:00
Doonv
1c67e020f7
Move EntityHash related types into bevy_ecs (#11498)
# Objective

Reduce the size of `bevy_utils`
(https://github.com/bevyengine/bevy/issues/11478)

## Solution

Move `EntityHash` related types into `bevy_ecs`. This also allows us
access to `Entity`, which means we no longer need `EntityHashMap`'s
first generic argument.

---

## Changelog

- Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` into `bevy::ecs::entity::hash` .
- Removed `EntityHashMap`'s first generic argument. It is now hardcoded
to always be `Entity`.

## Migration Guide

- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`.
- Uses of `EntityHashMap` no longer have to specify the first generic
parameter. It is now hardcoded to always be `Entity`.
2024-02-12 15:02:24 +00:00
Patrick Walton
3af8526786
Stop extracting mesh entities to the render world. (#11803)
This fixes a `FIXME` in `extract_meshes` and results in a performance
improvement.

As a result of this change, meshes in the render world might not be
attached to entities anymore. Therefore, the `entity` parameter to
`RenderCommand::render()` is now wrapped in an `Option`. Most
applications that use the render app's ECS can simply unwrap the
`Option`.

Note that for now sprites, gizmos, and UI elements still use the render
world as usual.

## Migration guide

* For efficiency reasons, some meshes in the render world may not have
corresponding `Entity` IDs anymore. As a result, the `entity` parameter
to `RenderCommand::render()` is now wrapped in an `Option`. Custom
rendering code may need to be updated to handle the case in which no
`Entity` exists for an object that is to be rendered.
2024-02-10 10:46:10 +00:00
JMS55
f4dab8a4e8
Multithreaded render command encoding (#9172)
# Objective
- Encoding many GPU commands (such as in a renderpass with many draws,
such as the main opaque pass) onto a `wgpu::CommandEncoder` is very
expensive, and takes a long time.
- To improve performance, we want to perform the command encoding for
these heavy passes in parallel.

## Solution
- `RenderContext` can now queue up "command buffer generation tasks"
which are closures that will generate a command buffer when called.
- When finalizing the render context to produce the final list of
command buffers, these tasks are run in parallel on the
`ComputeTaskPool` to produce their corresponding command buffers.
- The general idea is that the node graph will run in serial, but in a
node, instead of doing rendering work, you can add tasks to do render
work in parallel with other node's tasks that get ran at the end of the
graph execution.

## Nodes Parallelized
- `MainOpaquePass3dNode`
- `PrepassNode`
- `DeferredGBufferPrepassNode`
- `ShadowPassNode` (One task per view)


## Future Work
- For large number of draws calls, might be worth further subdividing
passes into 2+ tasks.
- Extend this to UI, 2d, transparent, and transmissive nodes?
- Needs testing - small command buffers are inefficient - it may be
worth reverting to the serial command encoder usage for render phases
with few items.
- All "serial" (traditional) rendering work must finish before parallel
rendering tasks (the new stuff) can start to run.
- There is still only one submission to the graphics queue at the end of
the graph execution. There is still no ability to submit work earlier.

## Performance Improvement
Thanks to @Elabajaba for testing on Bistro.


![image](https://github.com/bevyengine/bevy/assets/47158642/be50dafa-85eb-4da5-a5cd-c0a044f1e76f)


TLDR: Without shadow mapping, this PR has no impact. _With_ shadow
mapping, this PR gives **~40 more fps** than main.

---

## Changelog
- `MainOpaquePass3dNode`, `PrepassNode`, `DeferredGBufferPrepassNode`,
and each shadow map within `ShadowPassNode` are now encoded in parallel,
giving _greatly_ increased CPU performance, mainly when shadow mapping
is enabled.
  - Does not work on WASM or AMD+Windows+Vulkan.
- Added `RenderContext::add_command_buffer_generation_task()`.
- `RenderContext::new()` now takes adapter info
- Some render graph and Node related types and methods now have
additional lifetime constraints.


## Migration Guide
`RenderContext::new()` now takes adapter info
- Some render graph and Node related types and methods now have
additional lifetime constraints.

---------

Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
2024-02-09 07:35:35 +00:00
Patrick Walton
4c15dd0fc5
Implement irradiance volumes. (#10268)
# Objective

Bevy could benefit from *irradiance volumes*, also known as *voxel
global illumination* or simply as light probes (though this term is not
preferred, as multiple techniques can be called light probes).
Irradiance volumes are a form of baked global illumination; they work by
sampling the light at the centers of each voxel within a cuboid. At
runtime, the voxels surrounding the fragment center are sampled and
interpolated to produce indirect diffuse illumination.

## Solution

This is divided into two sections. The first is copied and pasted from
the irradiance volume module documentation and describes the technique.
The second part consists of notes on the implementation.

### Overview

An *irradiance volume* is a cuboid voxel region consisting of
regularly-spaced precomputed samples of diffuse indirect light. They're
ideal if you have a dynamic object such as a character that can move
about
static non-moving geometry such as a level in a game, and you want that
dynamic object to be affected by the light bouncing off that static
geometry.

To use irradiance volumes, you need to precompute, or *bake*, the
indirect
light in your scene. Bevy doesn't currently come with a way to do this.
Fortunately, [Blender] provides a [baking tool] as part of the Eevee
renderer, and its irradiance volumes are compatible with those used by
Bevy.
The [`bevy-baked-gi`] project provides a tool, `export-blender-gi`, that
can
extract the baked irradiance volumes from the Blender `.blend` file and
package them up into a `.ktx2` texture for use by the engine. See the
documentation in the `bevy-baked-gi` project for more details as to this
workflow.

Like all light probes in Bevy, irradiance volumes are 1×1×1 cubes that
can
be arbitrarily scaled, rotated, and positioned in a scene with the
[`bevy_transform::components::Transform`] component. The 3D voxel grid
will
be stretched to fill the interior of the cube, and the illumination from
the
irradiance volume will apply to all fragments within that bounding
region.

Bevy's irradiance volumes are based on Valve's [*ambient cubes*] as used
in
*Half-Life 2* ([Mitchell 2006], slide 27). These encode a single color
of
light from the six 3D cardinal directions and blend the sides together
according to the surface normal.

The primary reason for choosing ambient cubes is to match Blender, so
that
its Eevee renderer can be used for baking. However, they also have some
advantages over the common second-order spherical harmonics approach:
ambient cubes don't suffer from ringing artifacts, they are smaller (6
colors for ambient cubes as opposed to 9 for spherical harmonics), and
evaluation is faster. A smaller basis allows for a denser grid of voxels
with the same storage requirements.

If you wish to use a tool other than `export-blender-gi` to produce the
irradiance volumes, you'll need to pack the irradiance volumes in the
following format. The irradiance volume of resolution *(Rx, Ry, Rz)* is
expected to be a 3D texture of dimensions *(Rx, 2Ry, 3Rz)*. The
unnormalized
texture coordinate *(s, t, p)* of the voxel at coordinate *(x, y, z)*
with
side *S* ∈ *{-X, +X, -Y, +Y, -Z, +Z}* is as follows:

```text
s = x

t = y + ⎰  0 if S ∈ {-X, -Y, -Z}
        ⎱ Ry if S ∈ {+X, +Y, +Z}

        ⎧   0 if S ∈ {-X, +X}
p = z + ⎨  Rz if S ∈ {-Y, +Y}
        ⎩ 2Rz if S ∈ {-Z, +Z}
```

Visually, in a left-handed coordinate system with Y up, viewed from the
right, the 3D texture looks like a stacked series of voxel grids, one
for
each cube side, in this order:

| **+X** | **+Y** | **+Z** |
| ------ | ------ | ------ |
| **-X** | **-Y** | **-Z** |

A terminology note: Other engines may refer to irradiance volumes as
*voxel
global illumination*, *VXGI*, or simply as *light probes*. Sometimes
*light
probe* refers to what Bevy calls a reflection probe. In Bevy, *light
probe*
is a generic term that encompasses all cuboid bounding regions that
capture
indirect illumination, whether based on voxels or not.

Note that, if binding arrays aren't supported (e.g. on WebGPU or WebGL
2),
then only the closest irradiance volume to the view will be taken into
account during rendering.

[*ambient cubes*]:
https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf

[Mitchell 2006]:
https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf

[Blender]: http://blender.org/

[baking tool]:
https://docs.blender.org/manual/en/latest/render/eevee/render_settings/indirect_lighting.html

[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi

### Implementation notes

This patch generalizes light probes so as to reuse as much code as
possible between irradiance volumes and the existing reflection probes.
This approach was chosen because both techniques share numerous
similarities:

1. Both irradiance volumes and reflection probes are cuboid bounding
regions.
2. Both are responsible for providing baked indirect light.
3. Both techniques involve presenting a variable number of textures to
the shader from which indirect light is sampled. (In the current
implementation, this uses binding arrays.)
4. Both irradiance volumes and reflection probes require gathering and
sorting probes by distance on CPU.
5. Both techniques require the GPU to search through a list of bounding
regions.
6. Both will eventually want to have falloff so that we can smoothly
blend as objects enter and exit the probes' influence ranges. (This is
not implemented yet to keep this patch relatively small and reviewable.)

To do this, we generalize most of the methods in the reflection probes
patch #11366 to be generic over a trait, `LightProbeComponent`. This
trait is implemented by both `EnvironmentMapLight` (for reflection
probes) and `IrradianceVolume` (for irradiance volumes). Using a trait
will allow us to add more types of light probes in the future. In
particular, I highly suspect we will want real-time reflection planes
for mirrors in the future, which can be easily slotted into this
framework.

## Changelog

> This section is optional. If this was a trivial fix, or has no
externally-visible impact, you can delete this section.

### Added
* A new `IrradianceVolume` asset type is available for baked voxelized
light probes. You can bake the global illumination using Blender or
another tool of your choice and use it in Bevy to apply indirect
illumination to dynamic objects.
2024-02-06 23:23:20 +00:00
Kanabenki
312df3cec7
Use warn_once where relevant instead of manually implementing a single warn check (#11693)
# Objective

- Some places manually use a `bool` /`AtomicBool` to warn once.

## Solution

- Use the `warn_once` macro which internally creates an `AtomicBool`.

Downside: in some case the warning state would have been reset after
recreating the struct carrying the warn state, whereas now it will
always warn only once per program run (For example, if all
`MeshPipeline`s are dropped or the `World` is recreated for
`Local<bool>`/ a `bool` resource, which shouldn't happen over the course
of a standard `App` run).


---

## Changelog

### Removed

- `FontAtlasWarning` has been removed, but the corresponding warning is
still emitted.
2024-02-05 21:05:43 +00:00
Marco Buono
91c467ebfc
Gate diffuse and specular transmission behind shader defs (#11627)
# Objective

- Address #10338

## Solution

- When implementing specular and diffuse transmission, I inadvertently
introduced a performance regression. On high-end hardware it is barely
noticeable, but **for lower-end hardware it can be pretty brutal**. If I
understand it correctly, this is likely due to use of masking by the GPU
to implement control flow, which means that you still pay the price for
the branches you don't take;
- To avoid that, this PR introduces new shader defs (controlled via
`StandardMaterialKey`) that conditionally include the transmission
logic, that way the shader code for both types of transmission isn't
even sent to the GPU if you're not using them;
- This PR also renames ~~`STANDARDMATERIAL_NORMAL_MAP`~~ to
`STANDARD_MATERIAL_NORMAL_MAP` for consistency with the naming
convention used elsewhere in the codebase. (Drive-by fix)

---

## Changelog

- Added new shader defs, set when using transmission in the
`StandardMaterial`:
  - `STANDARD_MATERIAL_SPECULAR_TRANSMISSION`;
  - `STANDARD_MATERIAL_DIFFUSE_TRANSMISSION`;
  - `STANDARD_MATERIAL_SPECULAR_OR_DIFFUSE_TRANSMISSION`.
- Fixed performance regression caused by the introduction of
transmission, by gating transmission shader logic behind the newly
introduced shader defs;
- Renamed ~~`STANDARDMATERIAL_NORMAL_MAP`~~ to
`STANDARD_MATERIAL_NORMAL_MAP` for consistency;

## Migration Guide

- If you were using `#ifdef STANDARDMATERIAL_NORMAL_MAP` on your shader
code, make sure to update the name to `STANDARD_MATERIAL_NORMAL_MAP`;
(with an underscore between `STANDARD` and `MATERIAL`)
2024-02-02 15:01:56 +00:00
Rafał Harabień
16ce8c6136
Optimize extract_clusters and prepare_clusters systems (#10633)
# Objective

When developing my game I realized `extract_clusters` and
`prepare_clusters` systems are taking a lot of time despite me creating
very little lights. Reducing number of clusters from the default 4096 to
2048 or less greatly improved performance and stabilized FPS (~300 ->
1000+). I debugged it and found out that the main reason for this is
cloning `VisiblePointLights` in `extract_clusters` system. It contains
light entities grouped by clusters that they affect. The problem is that
we clone 4096 (assuming the default clusters configuration) vectors
every frame. If many of them happen to be non-empty it starts to be a
bottleneck because there is a lot of heap allocation. It wouldn't be a
problem if we reused those vectors in following frames but we don't.

## Solution

Avoid cloning multiple vectors and instead build a single vector
containing data for all clusters.

I've recorded a trace in `3d_scene` example with disabled v-sync before
and after the change.
Mean FPS went from 424 to 990. Mean time for `extract_clusters` system
was reduced from 210 us to 24 us and `prepare_clusters` from 189 us to
87 us.


![image](https://github.com/bevyengine/bevy/assets/160391/ab66aa9d-1fa7-4993-9827-8be76b530972)

---

## Changelog

- Improved performance of `extract_clusters` and `prepare_clusters`
systems for scenes where lights affect a big part of it.
2024-01-29 17:50:22 +00:00
vero
45967b03b5
Fix specular envmap in deferred (#11534)
# Objective

- Fixes #11414

## Solution

- Add specular occlusion to g-buffer so PbrInput can be properly
reconstructed for shading with a non-zero value allowing the spec envmap
to be seen


![image](https://github.com/bevyengine/bevy/assets/11307157/84aa8312-7c06-4dc7-92da-5d94b54b133d)

---------

Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
2024-01-29 16:39:49 +00:00
Elabajaba
35ac1b152e
Update to wgpu 0.19 and raw-window-handle 0.6 (#11280)
# Objective

Keep core dependencies up to date.

## Solution

Update the dependencies.

wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was
included in this.

The rwh 0.6 version bump is just the simplest way of doing it. There
might be a way we can take advantage of wgpu's new safe surface creation
api, but I'm not familiar enough with bevy's window management to
untangle it and my attempt ended up being a mess of lifetimes and rustc
complaining about missing trait impls (that were implemented). Thanks to
@MiniaczQ for the (much simpler) rwh 0.6 version bump code.

Unblocks https://github.com/bevyengine/bevy/pull/9172 and
https://github.com/bevyengine/bevy/pull/10812

~~This might be blocked on cpal and oboe updating their ndk versions to
0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested
on android, and everything seems to work correctly (audio properly stops
when minimized, and plays when re-focusing the app).

---

## Changelog

- `wgpu` has been updated to 0.19! The long awaited arcanization has
been merged (for more info, see
https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan
should now be working again on Intel GPUs.
- Targeting WebGPU now requires that you add the new `webgpu` feature
(setting the `RUSTFLAGS` environment variable to
`--cfg=web_sys_unstable_apis` is still required). This feature currently
overrides the `webgl2` feature if you have both enabled (the `webgl2`
feature is enabled by default), so it is not recommended to add it as a
default feature to libraries without putting it behind a flag that
allows library users to opt out of it! In the future we plan on
supporting wasm binaries that can target both webgl2 and webgpu now that
wgpu added support for doing so (see
https://github.com/bevyengine/bevy/issues/11505).
- `raw-window-handle` has been updated to version 0.6.

## Migration Guide

- `bevy_render::instance_index::get_instance_index()` has been removed
as the webgl2 workaround is no longer required as it was fixed upstream
in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed.
- WebGPU now requires the new `webgpu` feature to be enabled. The
`webgpu` feature currently overrides the `webgl2` feature so you no
longer need to disable all default features and re-add them all when
targeting `webgpu`, but binaries built with both the `webgpu` and
`webgl2` features will only target the webgpu backend, and will only
work on browsers that support WebGPU.
- Places where you conditionally compiled things for webgl2 need to be
updated because of this change, eg:
- `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]`
becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"),
feature = "webgpu"))]`
- `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes
`#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature =
"webgpu")))]`
- `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if
cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature =
"webgpu")))`
- `create_texture_with_data` now also takes a `TextureDataOrder`. You
can probably just set this to `TextureDataOrder::default()`
- `TextureFormat`'s `block_size` has been renamed to `block_copy_size`
- See the `wgpu` changelog for anything I might've missed:
https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md

---------

Co-authored-by: François <mockersf@gmail.com>
2024-01-26 18:14:21 +00:00
JMS55
a796d53a05
Meshlet prep (#11442)
# Objective

- Prep for https://github.com/bevyengine/bevy/pull/10164
- Make deferred_lighting_pass_id a ColorAttachment
- Correctly extract shadow view frusta so that the view uniforms get
populated
- Make some needed things public
- Misc formatting
2024-01-22 15:28:33 +00:00
Alice Cecile
eb07d16871
Revert rendering-related associated type name changes (#11027)
# Objective

> Can anyone explain to me the reasoning of renaming all the types named
Query to Data. I'm talking about this PR
https://github.com/bevyengine/bevy/pull/10779 It doesn't make sense to
me that a bunch of types that are used to run queries aren't named Query
anymore. Like ViewQuery on the ViewNode is the type of the Query. I
don't really understand the point of the rename, it just seems like it
hides the fact that a query will run based on those types.


[@IceSentry](https://discord.com/channels/691052431525675048/692572690833473578/1184946251431694387)

## Solution

Revert several renames in #10779.

## Changelog

- `ViewNode::ViewData` is now `ViewNode::ViewQuery` again.

## Migration Guide

- This PR amends the migration guide in
https://github.com/bevyengine/bevy/pull/10779

---------

Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-01-22 15:01:55 +00:00
re0312
04aedf12fa
optimize batch_and_prepare_render_phase (#11323)
# Objective

- since #9685  ,bevy introduce automatic batching of draw commands, 
- `batch_and_prepare_render_phase` take the responsibility for batching
`phaseItem`,
- `GetBatchData` trait is used for indentify each phaseitem how to
batch. it defines a associated type `Data `used for Query to fetch data
from world.

- however,the impl of `GetBatchData ` in bevy always set ` type
Data=Entity` then we acually get following code
`let entity:Entity =query.get(item.entity())` that cause unnecessary
overhead .

## Solution

- remove associated type `Data ` and `Filter` from `GetBatchData `,
- change the type of the `query_item ` parameter in get_batch_data from`
Self::Data` to `Entity`.
- `batch_and_prepare_render_phase ` no longer takes a query using
`F::Data, F::Filter`
- `get_batch_data `now returns `Option<(Self::BufferData,
Option<Self::CompareData>)>`

---

## Performance
based in main merged with #11290 
Window 11 ,Intel 13400kf, NV 4070Ti

![image](https://github.com/bevyengine/bevy/assets/45868716/f63b9d98-6aee-4057-a2c7-a2162b2db765)
frame time from 3.34ms to 3 ms,  ~ 10%


![image](https://github.com/bevyengine/bevy/assets/45868716/a06eea9c-f79e-4324-8392-8d321560c5ba)
`batch_and_prepare_render_phase` from 800us ~ 400 us  

## Migration Guide
trait `GetBatchData` no longer hold associated type  `Data `and `Filter`
`get_batch_data` `query_item `type from `Self::Data` to `Entity` and
return `Option<(Self::BufferData, Option<Self::CompareData>)>`
`batch_and_prepare_render_phase`  should not have a query
2024-01-20 09:30:44 +00:00
Patrick Walton
83d6600267
Implement minimal reflection probes (fixed macOS, iOS, and Android). (#11366)
This pull request re-submits #10057, which was backed out for breaking
macOS, iOS, and Android. I've tested this version on macOS and Android
and on the iOS simulator.

# Objective

This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].

## Solution

This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.

A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.

A frequent question is "why two components instead of just one?" The
advantages of this setup are:

1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.

2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.

Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.

An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.

Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:

* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)

* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.

* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.

Future work includes:

* Blending between multiple reflection probes.

* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.

* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.

* Support for WebGL 2, by breaking batches when reflection probes are
used.

These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.

---

## Changelog

### Added

* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.

[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html

[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi

[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
2024-01-19 07:33:52 +00:00
JMS55
fcd7c0fc3d
Exposure settings (adopted) (#11347)
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)

Fixes https://github.com/bevyengine/bevy/issues/8369

---

## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.

## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-01-16 14:53:21 +00:00
Aevyrie
839d2f8353
Approximate indirect specular occlusion (#11152)
# Objective

- The current PBR renderer over-brightens indirect specular reflections,
which tends to cause objects to appear to glow, because specular
occlusion is not accounted for.

## Solution

- Attenuate indirect specular term with an approximation for specular
occlusion, using [[Lagarde et al., 2014] (pg.
76)](https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf).

| Before | After | Animation |
| --- | --- | --- |
| <img width="1840" alt="before bike"
src="https://github.com/bevyengine/bevy/assets/2632925/b6e10d15-a998-4a94-875a-1c2b1e98348a">
| <img width="1840" alt="after bike"
src="https://github.com/bevyengine/bevy/assets/2632925/53b1479c-b1e4-427f-b140-53df26ca7193">
|
![ezgif-1-fbcbaf272b](https://github.com/bevyengine/bevy/assets/2632925/c2dece1c-eb3d-4e05-92a2-46cf83052c7c)
|
| <img width="1840" alt="classroom before"
src="https://github.com/bevyengine/bevy/assets/2632925/b16c0e74-741e-4f40-a7df-8863eaa62596">
| <img width="1840" alt="classroom after"
src="https://github.com/bevyengine/bevy/assets/2632925/26f9e971-0c63-4ee9-9544-964e5703d65e">
|
![ezgif-1-0f390edd06](https://github.com/bevyengine/bevy/assets/2632925/d8894e52-380f-4528-aa0d-1ca249108178)
|

---

## Changelog

- Ambient occlusion now applies to indirect specular reflections to
approximate how objects occlude specular light.

## Migration Guide

- Renamed `PbrInput::occlusion` to `diffuse_occlusion`, and added
`specular_occlusion`.
2024-01-15 16:10:55 +00:00
vero
4695b82f6b
Use EntityHashMap whenever possible (#11353)
# Objective

Fixes #11352

## Solution

- Use `EntityHashMap<Entity, T>` instead of `HashMap<Entity, T>`

---

## Changelog

Changed
- Use `EntityHashMap<Entity, T>` instead of `HashMap<Entity, T>`
whenever possible

## Migration Guide

TODO
2024-01-15 15:51:17 +00:00
François
3d996639a0
Revert "Implement minimal reflection probes. (#10057)" (#11307)
# Objective

- Fix working on macOS, iOS, Android on main 
- Fixes #11281 
- Fixes #11282 
- Fixes #11283 
- Fixes #11299

## Solution

- Revert #10057
2024-01-12 20:41:51 +00:00