Commit graph

145 commits

Author SHA1 Message Date
JoJoJet
0d98327ce7 Support SystemParam types with const generics (#7001)
# Objective

* Currently, the `SystemParam` derive does not support types with const generic parameters.
  * If you try to use const generics, the error message is cryptic and unhelpful.
* Continuation of the work started in #6867 and #6957.

## Solution

Allow const generic parameters to be used with `#[derive(SystemParam)]`.
2022-12-25 00:06:23 +00:00
JoJoJet
fa2b5f2b36 Add documentation to ParamSet (#6998)
# Objective

Fixes #4729.
Continuation of #4854.

## Solution

Add documentation to `ParamSet` and its methods. Includes examples suggested by community members in the original PR.


Co-authored-by: Nanox19435 <50684926+Nanox19435@users.noreply.github.com>
Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
2022-12-25 00:06:22 +00:00
JoJoJet
025996b18c Lift the 16-field limit from the SystemParam derive (#6867)
# Objective

* The `SystemParam` derive internally uses tuples, which means it is constrained by the 16-field limit on `all_tuples`.
    * The error message if you exceed this limit is abysmal.
* Supercedes #5965 -- this does the same thing, but is simpler.

## Solution

If any tuples have more than 16 fields, they are folded into tuples of tuples until they are under the 16-field limit.
2022-12-21 01:54:10 +00:00
JoJoJet
0363e0b32a Support tuple structs with #[derive(SystemParam)] (#6957)
# Objective

Currently, only named structs can be used with the `SystemParam` derive macro.

## Solution

Remove the restriction. Tuple structs and unit structs are now supported.

---

## Changelog

+ Added support for tuple structs and unit structs to the `SystemParam` derive macro.
2022-12-20 23:45:44 +00:00
James Liu
79b9231b74 Move system_commands spans into apply_buffers (#6900)
# Objective
A separate `tracing` span for running a system's commands is created, even if the system doesn't have commands. This is adding extra measuring overhead (see #4892) where it's not needed.

## Solution
Move the span into `ParallelCommandState` and `CommandQueue`'s `SystemParamState::apply`. To get the right metadata for the span, a additional `&SystemMeta` parameter was added to `SystemParamState::apply`.

---

## Changelog
Added: `SystemMeta::name`
Changed: Systems without `Commands` and  `ParallelCommands` will no longer show a "system_commands" span when profiling.
Changed: `SystemParamState::apply` now takes a `&SystemMeta` parameter in addition to the provided `&mut World`.
2022-12-11 23:04:04 +00:00
James Liu
87bf0e2664 Remove unnecessary branching from bundle insertion (#6902)
# Objective
Speed up bundle insertion and spawning from a bundle.

## Solution
Use the same technique used in #6800 to remove the branch on storage type when writing components from a `Bundle` into storage.

 - Add a `StorageType` argument to the closure on `Bundle::get_components`.
 - Pass `C::Storage::STORAGE_TYPE` into that argument.
 - Match on that argument instead of reading from a `Vec<StorageType>` in `BundleInfo`.
 - Marked all implementations of `Bundle::get_components` as inline to encourage dead code elimination.

The `Vec<StorageType>` in `BundleInfo` was also removed as it's no longer needed. If users were reliant on this, they can either use the compile time constants or fetch the information from `Components`. Should save a rather negligible amount of memory.

## Performance
Microbenchmarks show a slight improvement to inserting components into existing entities, as well as spawning from a bundle. Ranging about 8-16% faster depending on the benchmark.

```
group                                          main                                    soft-constant-write-components
-----                                          ----                                    ------------------------------
add_remove/sparse_set                          1.08  1019.0±80.10µs        ? ?/sec     1.00   944.6±66.86µs        ? ?/sec
add_remove/table                               1.07  1343.3±20.37µs        ? ?/sec     1.00  1257.3±18.13µs        ? ?/sec
add_remove_big/sparse_set                      1.08  1132.4±263.10µs        ? ?/sec    1.00  1050.8±240.74µs        ? ?/sec
add_remove_big/table                           1.02      2.6±0.05ms        ? ?/sec     1.00      2.5±0.08ms        ? ?/sec
get_or_spawn/batched                           1.15   401.4±17.76µs        ? ?/sec     1.00   349.3±11.26µs        ? ?/sec
get_or_spawn/individual                        1.13   732.1±43.35µs        ? ?/sec     1.00   645.6±41.44µs        ? ?/sec
insert_commands/insert                         1.12   623.9±37.48µs        ? ?/sec     1.00   557.4±34.99µs        ? ?/sec
insert_commands/insert_batch                   1.16   401.4±17.00µs        ? ?/sec     1.00   347.4±12.87µs        ? ?/sec
insert_simple/base                             1.08    416.9±5.60µs        ? ?/sec     1.00    385.2±4.14µs        ? ?/sec
insert_simple/unbatched                        1.06   934.5±44.58µs        ? ?/sec     1.00   881.3±47.86µs        ? ?/sec
spawn_commands/2000_entities                   1.09   190.7±11.41µs        ? ?/sec     1.00    174.7±9.15µs        ? ?/sec
spawn_commands/4000_entities                   1.10   386.5±25.33µs        ? ?/sec     1.00   352.3±18.81µs        ? ?/sec
spawn_commands/6000_entities                   1.10   586.2±34.42µs        ? ?/sec     1.00   535.3±27.25µs        ? ?/sec
spawn_commands/8000_entities                   1.08   778.5±45.15µs        ? ?/sec     1.00   718.0±33.66µs        ? ?/sec
spawn_world/10000_entities                     1.04  1026.4±195.46µs        ? ?/sec    1.00  985.8±253.37µs        ? ?/sec
spawn_world/1000_entities                      1.06   103.8±20.23µs        ? ?/sec     1.00    97.6±18.22µs        ? ?/sec
spawn_world/100_entities                       1.15     11.4±4.25µs        ? ?/sec     1.00      9.9±1.87µs        ? ?/sec
spawn_world/10_entities                        1.05  1030.8±229.78ns        ? ?/sec    1.00  986.2±231.12ns        ? ?/sec
spawn_world/1_entities                         1.01   105.1±23.33ns        ? ?/sec     1.00   104.6±31.84ns        ? ?/sec
```

---

## Changelog
Changed: `Bundle::get_components` now takes a `FnMut(StorageType, OwningPtr)`. The provided storage type must be correct for the component being fetched.
2022-12-11 18:46:43 +00:00
JoJoJet
1af73624fa Simplify trait hierarchy for SystemParam (#6865)
# Objective

* Implementing a custom `SystemParam` by hand requires implementing three traits -- four if it is read-only.
* The trait `SystemParamFetch<'w, 's>` is a workaround from before we had generic associated types, and is no longer necessary.

## Solution

* Combine the trait `SystemParamFetch` with `SystemParamState`.
    * I decided to remove the `Fetch` name and keep the `State` name, since the former was consistently conflated with the latter.
* Replace the trait `ReadOnlySystemParamFetch` with `ReadOnlySystemParam`, which simplifies trait bounds in generic code.

---

## Changelog

- Removed the trait `SystemParamFetch`, moving its functionality to `SystemParamState`.
- Replaced the trait `ReadOnlySystemParamFetch` with `ReadOnlySystemParam`.

## Migration Guide

The trait `SystemParamFetch` has been removed, and its functionality has been transferred to `SystemParamState`.

```rust
// Before
impl SystemParamState for MyParamState {
    fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
}
impl<'w, 's> SystemParamFetch<'w, 's> for MyParamState {
    type Item = MyParam<'w, 's>;
    fn get_param(...) -> Self::Item;
}

// After
impl SystemParamState for MyParamState {
    type Item<'w, 's> = MyParam<'w, 's>; // Generic associated types!
    fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
    fn get_param<'w, 's>(...) -> Self::Item<'w, 's>;
}
```

The trait `ReadOnlySystemParamFetch` has been replaced with `ReadOnlySystemParam`.

```rust
// Before
unsafe impl ReadOnlySystemParamFetch for MyParamState {}

// After
unsafe impl<'w, 's> ReadOnlySystemParam for MyParam<'w, 's> {}
```
2022-12-11 18:34:14 +00:00
Boxy
bac0d89059 remove a doc(hidden) on read only version of derive(WorldQuery) (#6877)
having `doc(hidden)` on the read only version of a generated mutable world query leads to docs on the readonly item having a dead link. It also makes it annoying to have nice docs for libraries attempting to expose derived `WorldQuery` structs as re-exporting the read only item does not cause it to appear in docs even though it would be intended for users to know about the read only world query and use it.
2022-12-07 23:10:26 +00:00
James Liu
530be10e72 Newtype ArchetypeRow and TableRow (#4878)
# Objective
Prevent future unsoundness that was seen in #6623.

## Solution
Newtype both indexes in `Archetype` and `Table` as `ArchetypeRow` and `TableRow`. This avoids weird numerical manipulation on the indices, and can be stored and treated opaquely. Also enforces the source and destination of where these indices at a type level.

---

## Changelog
Changed: `Archetype` indices and `Table` rows have been newtyped as `ArchetypeRow` and `TableRow`.
2022-12-06 01:38:21 +00:00
JoJoJet
05b498a224 Make the SystemParam derive macro more flexible (#6694)
# Objective

Currently, the `SystemParam` derive forces you to declare the lifetime parameters `<'w, 's>`, even if you don't use them.
If you don't follow this structure, the error message is quite nasty.

### Example (before):

```rust
#[derive(SystemParam)]
pub struct EventWriter<'w, 's, E: Event> {
    events: ResMut<'w, Events<E>>,
    // The derive forces us to declare the `'s` lifetime even though we don't use it,
    // so we have to add this `PhantomData` to please rustc.
    #[system_param(ignore)]
    _marker: PhantomData<&'s ()>,
}
```


## Solution

* Allow the user to omit either lifetime.
* Emit a descriptive error if any lifetimes used are invalid.

### Example (after):

```rust
#[derive(SystemParam)]
pub struct EventWriter<'w, E: Event> {
    events: ResMut<'w, Events<E>>,
}
```

---

## Changelog

* The `SystemParam` derive is now more flexible, allowing you to omit unused lifetime parameters.
2022-12-05 20:15:03 +00:00
Nicola Papale
1967c3ddef Fix Entity hygiene in WorldQuery (#6614)
# Objective

Fix #6593

## Solution

Fully qualify `Entity` in the `WorldQuery` macro
2022-11-14 14:01:16 +00:00
github-actions[bot]
920543c824 Release 0.9.0 (#6568)
Preparing next release
This PR has been auto-generated
2022-11-12 20:01:29 +00:00
Boxy
30e35764a1 Replace WorldQueryGats trait with actual gats (#6319)
# Objective

Replace `WorldQueryGats` trait with actual gats

## Solution

Replace `WorldQueryGats` trait with actual gats

---

## Changelog

- Replaced `WorldQueryGats` trait with actual gats

## Migration Guide

- Replace usage of `WorldQueryGats` assoc types with the actual gats on `WorldQuery` trait
2022-11-03 16:33:05 +00:00
CGMossa
1f22d54489 Fixed docs for derive(WorldQuery). (#5283)
For `derive(WorldQuery)`, there are three structs generated, `Item`, `Fetch` and `State`. 
These inherit the visibility of the derived structure, thus `#![warn(missing_docs)]` would
warn about missing documentation for these structures.

- [ ] I'd like some advice on what to write here, as I personally don't really understand `Fetch` nor `State`.
2022-11-01 23:44:55 +00:00
Jakob Hellermann
e71c4d2802 fix nightly clippy warnings (#6395)
# Objective

- fix new clippy lints before they get stable and break CI

## Solution

- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`

## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
2022-10-28 21:03:01 +00:00
James Liu
fe7ebd4326 Clean up Fetch code (#4800)
# Objective
Clean up code surrounding fetch by pulling out the common parts into the iteration code.

## Solution
Merge `Fetch::table_fetch` and `Fetch::archetype_fetch` into a single API: `Fetch::fetch(&mut self, entity: &Entity, table_row: &usize)`. This provides everything any fetch requires to internally decide which storage to read from and get the underlying data. All of these functions are marked as `#[inline(always)]` and the arguments are passed as references to attempt to optimize out the argument that isn't being used.

External to `Fetch`, Query iteration has been changed to keep track of the table row and entity outside of fetch, which moves a lot of the expensive bookkeeping `Fetch` structs had previously done internally into the outer loop.

~~TODO: Benchmark, docs~~ Done.

---

## Changelog
Changed: `Fetch::table_fetch` and `Fetch::archetype_fetch` have been merged into a single `Fetch::fetch` function.

## Migration Guide
TODO

Co-authored-by: Brian Merchant <bhmerchang@gmail.com>
Co-authored-by: Saverio Miroddi <saverio.pub2@gmail.com>
2022-10-28 09:25:50 +00:00
Boxy
54cf45c5b3 Avoid making Fetchs Clone (#5593)
# Objective

- Do not implement `Copy` or `Clone` for `Fetch` types as this is kind of sus soundness wise (it feels like cloning an `IterMut` in safe code to me). Cloning a fetch seems important to think about soundness wise when doing it so I prefer this over adding a `Clone` bound to the assoc type definition (i.e. `type Fetch: Clone`) even though that would also solve the other listed things here.
- Remove a bunch of `QueryFetch<'w, Q>: Clone` bounds from our API as now all fetches can be "cloned" for use in `iter_combinations`. This should also help avoid the type inference regression ptrification introduced where `for<'a> QueryFetch<'a, Q>: Trait` bounds misbehave since we no longer need any of those kind of higher ranked bounds (although in practice we had none anyway).
- Stop being able to "forget" to implement clone for fetches, we've had a lot of issues where either `derive(Clone)` was used instead of a manual impl (so we ended up with too tight bounds on the impl) or flat out forgot to implement Clone at all. With this change all fetches are able to be cloned for `iter_combinations` so this will no longer be possible to mess up.

On an unrelated note, while making this PR I realised we probably want safety invariants on `archetype/table_fetch` that nothing aliases the table_row/archetype_index according to the access we set.

---

## Changelog

`Clone` and `Copy` were removed from all `Fetch` types.

## Migration Guide

- Call `WorldQuery::clone_fetch` instead of `fetch.clone()`. Make sure to add safety comments :)
2022-10-26 13:16:25 +00:00
Marc-Stefan Cassola
7a41efa227 implemented #[bundle(ignore)] (#6123)
# Objective

Fixes #5559

Replaces #5628

## Solution

Because the generated method from_components() creates an instance of Self my implementation requires any field type that is marked to be ignored to implement Default.

---

## Changelog

Added the possibility to ignore fields in a bundle with `#[bundle(ignore)]`. Typically used when `PhantomData` needs to be added to a `Bundle`.
2022-10-24 14:33:45 +00:00
Daniel McNab
1a2aedd165 Implement Bundle for Component. Use Bundle tuples for insertion (#2975)
@BoxyUwU this is your fault. 

Also cart didn't arrive in time to tell us not to do this.

# Objective

- Fix #2974

## Solution

- The first commit just does the actual change
- Follow up commits do steps to prove that this method works to unify as required, but this does not remove `insert_bundle`.

## Changelog

### Changed
Nested bundles now collapse automatically, and every `Component` now implements `Bundle`.
This means that you can combine bundles and components arbitrarily, for example:
```rust
// before:
.insert(A).insert_bundle(MyBBundle{..})
// after:
.insert_bundle((A, MyBBundle {..}))
```

Note that there will be a follow up PR that removes the current `insert` impl and renames `insert_bundle` to `insert`.

### Removed
The `bundle` attribute in `derive(Bundle)`.

## Migration guide

In `derive(Bundle)`, the `bundle` attribute has been removed. Nested bundles are not collapsed automatically. You should remove `#[bundle]` attributes.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-09-20 20:17:08 +00:00
Alice Cecile
c96b7ffb50 Remove ambiguity sets (#5916)
# Objective

Ambiguity sets are used to ignore system order ambiguities between groups of systems. However, they are not very useful: they are clunky, poorly integrated, and generally hampered by the difficulty using (or discovering) the ambiguity detector.

As a first step to the work in #4299, we're removing them.

## Migration Guide

Ambiguity sets have been removed.
2022-09-09 17:21:50 +00:00
Javier Goday
46f68161f7 #5817: derive_bundle macro is not hygienic (#5835)
# Objective
- Fixes #5817.
- Removes std::vec::Vec ambiguities in derive_bundle macro

## Solution
Prepend :: to standard library full Vec qualified type name (::std::vec::Vec)
2022-08-30 02:07:47 +00:00
ira
992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
github-actions[bot]
444150025d Bump Version after Release (#5576)
Bump version after release
This PR has been auto-generated
2022-08-05 02:03:05 +00:00
Boxy
eabcd27d93 make WorldQuery very flat (#5205)
# Objective

Simplify the worldquery trait hierarchy as much as possible by putting it all in one trait. If/when gats are stabilised this can be trivially migrated over to use them, although that's not why I made this PR, those reasons are:
- Moves all of the conceptually related unsafe code for a worldquery next to eachother
- Removes now unnecessary traits simplifying the "type system magic" in bevy_ecs

---

## Changelog

All methods/functions/types/consts on `FetchState` and `Fetch` traits have been moved to the `WorldQuery` trait and the other traits removed. `WorldQueryGats` now only contains an `Item` and `Fetch` assoc type.

## Migration Guide
Implementors should move items in impls to the `WorldQuery/Gats` traits and remove any `Fetch`/`FetchState` impls
Any use sites of items in the `Fetch`/`FetchState` traits should be updated to use the `WorldQuery` trait items instead


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-04 21:51:02 +00:00
github-actions[bot]
856588ed7c Release 0.8.0 (#5490)
Preparing next release
This PR has been auto-generated
2022-07-30 14:07:30 +00:00
JoJoJet
44e9cd4bfc Add attribute to ignore fields of derived labels (#5366)
# Objective

Fixes #5362 

## Solution

Add the attribute `#[label(ignore_fields)]` for `*Label` types.

```rust
#[derive(SystemLabel)]
pub enum MyLabel {
    One,

    // Previously this was not allowed since labels cannot contain data.
    #[system_label(ignore_fields)]
    Two(PhantomData<usize>),
}
```

## Notes

This label makes it possible for equality to behave differently depending on whether or not you are treating the type as a label. For example:

```rust
#[derive(SystemLabel, PartialEq, Eq)]
#[system_label(ignore_fields)]
pub struct Foo(usize);
```

If you compare it as a label, it will ignore the wrapped fields as the user requested. But if you compare it as a `Foo`, the derive will incorrectly compare the inner fields. I see a few solutions

1. Do nothing. This is technically intended behavior, but I think we should do our best to prevent footguns.
2. Generate impls of `PartialEq` and `Eq` along with the `#[derive(Label)]` macros. This is a breaking change as it requires all users to remove these derives from their types.
3. Only allow `PhantomData` to be used with `ignore_fields` -- seems needlessly prescriptive.

---

## Changelog

* Added the `ignore_fields` attribute to the derive macros for `*Label` types.
* Added an example showing off different forms of the derive macro.

<!--
## Migration Guide

> This section is optional. If there are no breaking changes, you can delete this section.

- If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change.
-->
2022-07-19 05:21:19 +00:00
harudagondi
1dbb1f7b20 Allow iter combinations on custom world queries (#5286)
# Objective

- `.iter_combinations_*()` cannot be used on custom derived `WorldQuery`, so this fixes that
- Fixes #5284

## Solution

- `#[derive(Clone)]` on the `Fetch` of the proc macro derive.
- `#[derive(Clone)]` for `AnyOf` to satisfy tests.
2022-07-13 15:37:27 +00:00
ira
4847f7e3ad Update codebase to use IntoIterator where possible. (#5269)
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.

```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {

// To
for _ in &list {
for _ in &mut list {
```

We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.

## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :) 


Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-07-11 15:28:50 +00:00
Jakob Hellermann
d38a8dfdd7 add more SAFETY comments and lint for missing ones in bevy_ecs (#4835)
# Objective

`SAFETY` comments are meant to be placed before `unsafe` blocks and should contain the reasoning of why in this case the usage of unsafe is okay. This is useful when reading the code because it makes it clear which assumptions are required for safety, and makes it easier to spot possible unsoundness holes. It also forces the code writer to think of something to write and maybe look at the safety contracts of any called unsafe methods again to double-check their correct usage.

There's a clippy lint called `undocumented_unsafe_blocks` which warns when using a block without such a comment. 

## Solution

- since clippy expects `SAFETY` instead of `SAFE`, rename those
- add `SAFETY` comments in more places
- for the last remaining 3 places, add an `#[allow()]` and `// TODO` since I wasn't comfortable enough with the code to justify their safety
- add ` #![warn(clippy::undocumented_unsafe_blocks)]` to `bevy_ecs`


### Note for reviewers

The first commit only renames `SAFETY` to `SAFE` so it doesn't need a thorough review.
cb042a416e..55cef2d6fa is the diff for all other changes.

### Safety comments where I'm not too familiar with the code

774012ece5/crates/bevy_ecs/src/entity/mod.rs (L540-L546)

774012ece5/crates/bevy_ecs/src/world/entity_ref.rs (L249-L252)

### Locations left undocumented with a `TODO` comment

5dde944a30/crates/bevy_ecs/src/schedule/executor_parallel.rs (L196-L199)

5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L287-L289)

5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L413-L415)

Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
2022-07-04 14:44:24 +00:00
Jakob Hellermann
49ff42cc69 fix new clippy lints (#5160)
# Objective

- Nightly clippy lints should be fixed before they get stable and break CI
  
## Solution

- fix new clippy lints
- ignore `significant_drop_in_scrutinee` since it isn't relevant in our loop https://github.com/rust-lang/rust-clippy/issues/8987
```rust
for line in io::stdin().lines() {
    ...
}
```

Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
2022-07-01 13:41:23 +00:00
Boxy
407c080e59 Replace ReadOnlyFetch with ReadOnlyWorldQuery (#4626)
# Objective

- Fix a type inference regression introduced by #3001
- Make read only bounds on world queries more user friendly

ptrification required you to write `Q::Fetch: ReadOnlyFetch` as `for<'w> QueryFetch<'w, Q>: ReadOnlyFetch` which has the same type inference problem as `for<'w> QueryFetch<'w, Q>: FilterFetch<'w>` had, i.e. the following code would error:
```rust
#[derive(Component)]
struct Foo;

fn bar(a: Query<(&Foo, Without<Foo>)>) {
    foo(a);
}

fn foo<Q: WorldQuery>(a: Query<Q, ()>)
where
    for<'w> QueryFetch<'w, Q>: ReadOnlyFetch,
{
}
```
`for<..>` bounds are also rather user unfriendly..

## Solution

Remove the `ReadOnlyFetch` trait in favour of a `ReadOnlyWorldQuery` trait, and remove `WorldQueryGats::ReadOnlyFetch` in favor of `WorldQuery::ReadOnly` allowing the previous code snippet to be written as:
```rust
#[derive(Component)]
struct Foo;

fn bar(a: Query<(&Foo, Without<Foo>)>) {
    foo(a);
}

fn foo<Q: ReadOnlyWorldQuery>(a: Query<Q, ()>) {}
``` 
This avoids the `for<...>` bound which makes the code simpler and also fixes the type inference issue.

The reason for moving the two functions out of `FetchState` and into `WorldQuery` is to allow the world query `&mut T` to share a `State` with the `&T` world query so that it can have `type ReadOnly = &T`. Presumably it would be possible to instead have a `ReadOnlyRefMut<T>` world query and then do `type ReadOnly = ReadOnlyRefMut<T>` much like how (before this PR) we had a `ReadOnlyWriteFetch<T>`. A side benefit of the current solution in this PR is that it will likely make it easier in the future to support an API such as `Query<&mut T> -> Query<&T>`. The primary benefit IMO is just that `ReadOnlyRefMut<T>` and its associated fetch would have to reimplement all of the logic that the `&T` world query impl does but this solution avoids that :)

---

## Changelog/Migration Guide

The trait `ReadOnlyFetch` has been replaced with `ReadOnlyWorldQuery` along with the `WorldQueryGats::ReadOnlyFetch` assoc type which has been replaced with `<WorldQuery::ReadOnly as WorldQueryGats>::Fetch`
- Any where clauses such as `QueryFetch<Q>: ReadOnlyFetch` should be replaced with `Q: ReadOnlyWorldQuery`.
- Any custom world query impls should implement `ReadOnlyWorldQuery` insead of `ReadOnlyFetch`

Functions `update_component_access` and `update_archetype_component_access` have been moved from the `FetchState` trait to `WorldQuery`
- Any callers should now call `Q::update_component_access(state` instead of `state.update_component_access` (and `update_archetype_component_access` respectively)
- Any custom world query impls should move the functions from the `FetchState` impl to `WorldQuery` impl

`WorldQuery` has been made an `unsafe trait`, `FetchState` has been made a safe `trait`. (I think this is how it should have always been, but regardless this is _definitely_ necessary now that the two functions have been moved to `WorldQuery`)
- If you have a custom `FetchState` impl make it a normal `impl` instead of `unsafe impl`
- If you have a custom `WorldQuery` impl make it an `unsafe impl`, if your code was sound before it is going to still be sound
2022-06-13 23:35:54 +00:00
Boxy
e528b63e11 merge matches_archetype and matches_table (#4807)
# Objective

the code in these fns are always identical so stop having two functions

## Solution

make them the same function

---

## Changelog

change `matches_archetype` and `matches_table` to `fn matches_component_set(&self, &SparseArray<ComponentId, usize>) -> bool` then do extremely boring updating of all `FetchState` impls

## Migration Guide

- move logic of `matches_archetype` and `matches_table` into `matches_component_set` in any manual `FetchState` impls
2022-05-30 16:41:32 +00:00
Daniel McNab
38a940dbbe Make derived SystemParam readonly if possible (#4650)
Required for https://github.com/bevyengine/bevy/pull/4402.

# Objective

- derived `SystemParam` implementations were never `ReadOnlySystemParamFetch`
- We want them to be, e.g. for `EventReader`

## Solution

- If possible, 'forward' the impl of `ReadOnlySystemParamFetch`.
2022-05-09 16:09:33 +00:00
Daniel McNab
ec805e9e07 Apply buffers in ParamSet (#4677)
# Objective

- Fix https://github.com/bevyengine/bevy/issues/4676

## Solution

- Fixes https://github.com/bevyengine/bevy/issues/4676
- I have no reason to think this isn't sound, but `ParamSet` is a bit spooky
2022-05-06 18:52:26 +00:00
James Liu
3e24b725af Pointerfication followup: Type safety and cleanup (#4621)
# Objective
The `Ptr` types gives free access to the underlying `NonNull<u8>`, which adds more publicly visible pointer wrangling than there needs to be. There are also a few edge cases where Ptr types could be more readily utilized for properly validating the soundness of ECS operations.

## Solution
 - Replace `*Ptr(Mut)::inner` with `cast` which requires a concrete type to give the pointer. This function could also have a `debug_assert` with an alignment check to ensure that the pointer is aligned properly, but is currently not included.
 - Use `OwningPtr::read` in ECS macros over casting the inner pointer around.
2022-05-03 20:07:58 +00:00
robtfm
b9f738da8d move system_param fetch struct into anonymous scope to avoid name collisions (#4100)
# Objective

avoid naming collisions with user structs when deriving ``system_param``.

## Solution

~rename the fetch struct created by ``#[derive(system_param)]`` from ``{}State`` to ``{}SysParamState``.~
place the fetch struct into an anonymous scope.

## Migration Guide

For code that was using a system param's fetch struct, such as ``EventReader``'s ``EventReaderState``, the fetch struct can now be identified via the SystemParam trait associated type ``Fetch``, e.g. for ``EventReader<T>`` it can be identified as ``<EventReader<'static, 'static, T> as SystemParam>::Fetch``
2022-05-02 18:26:50 +00:00
Yutao Yuan
2c145826a3 Fix type parameter name conflicts of derive(Bundle) (#4636)
# Objective

This code currently fails to compile with error ``the name `T` is already used for a generic parameter in this item's generic parameters``, because `T` is also used in code generated by `derive(Bundle)`.

```rust
#[derive(Bundle)]
struct MyBundle<T: Component> {
    component: T,
}
```

## Solution

Add double underscores to type parameter names in `derive(Bundle)`.
2022-05-02 11:58:51 +00:00
TheRawMeatball
73c78c3667 Use lifetimed, type erased pointers in bevy_ecs (#3001)
# Objective

`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.

## Solution

Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.

The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.

## Changelog

TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.

- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
    - this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
    - was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
    - this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
    - allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
    - required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
    - allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
    - this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
    - `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
    - allows the fetches to store borrows of world data instead of using raw pointers

## Migration guide

- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using

### Type inference regression

in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:

```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
    --> crates/bevy_pbr/src/render/light.rs:1413:30
     |
1413 |             main_view_query: QueryState::new(world),
     |                              ^^^^^^^^^^^^^^^ expected `bool`, found `()`
     |
     = note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
    --> crates/bevy_ecs/src/query/state.rs:49:32
     |
49   |     for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
     |                                ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```

---

Made with help from @BoxyUwU and @alice-i-cecile 

Co-authored-by: Boxy <supbscripter@gmail.com>
2022-04-27 23:44:06 +00:00
Nicola Papale
71a246ce9e Improve QueryIter size_hint hints (#4244)
## Objective

This fixes #1686.

`size_hint` can be useful even if a little niche. For example,
`collect::<Vec<_>>()` uses the `size_hint` of Iterator it collects from
to pre-allocate a memory slice large enough to not require re-allocating
when pushing all the elements of the iterator.

## Solution

To this effect I made the following changes:
* Add a `IS_ARCHETYPAL` associated constant to the `Fetch` trait,
  this constant tells us when it is safe to assume that the `Fetch`
  relies exclusively on archetypes to filter queried entities
* Add `IS_ARCHETYPAL` to all the implementations of `Fetch`
* Use that constant in `QueryIter::size_hint` to provide a more useful

## Migration guide

The new associated constant is an API breaking change. For the user,
if they implemented a custom `Fetch`, it means they have to add this
associated constant to their implementation. Either `true` if it doesn't limit
the number of entities returned in a query beyond that of archetypes, or
`false` for when it does.
2022-04-27 18:02:06 +00:00
CGMossa
7a0f46c21b fixes complaints about missing docs (#4551)
# Objective

When using `derive(WorldQuery)`, then clippy complains with the following:

```rust
warning: missing documentation for a struct
  --> src\wild_boar_type\marker_vital_status.rs:35:17
   |
35 | #[derive(Debug, WorldQuery)]
   |                 ^^^^^^^^^^
   |
   = note: this warning originates in the derive macro `WorldQuery` (in Nightly builds, run with -Z macro-backtrace for more info)
```

## Solution

* Either `#[doc(hidden)]` or
* Add a generic documentation line to it.

I don't know what is preferred, but I'd gladly add it in here.
2022-04-22 08:45:04 +00:00
Yutao Yuan
8d67832dfa Bump Bevy to 0.8.0-dev (#4505)
# Objective

We should bump our version to 0.8.0-dev after releasing 0.7.0, according to our release checklist.

## Solution

Do it.
2022-04-17 23:04:52 +00:00
Carter Anderson
83c6ffb73c release 0.7.0 (#4487) 2022-04-15 18:05:37 +00:00
Christian Hughes
16133de8cd WorldQuery derive macro now respects visibility (#4125)
## Objective

Fixes #4122.

## Solution

Inherit the visibility of the struct being derived for the `xxItem`, `xxFetch`, `xxState` structs.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-04-13 21:50:45 +00:00
TheRawMeatball
032b0f4bac Fix derive(SystemParam) macro (#4400)
Fixes the issue seen in #4398
2022-04-04 19:22:28 +00:00
bilsen
63fee2572b ParamSet for conflicting SystemParam:s (#2765)
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.

## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.


Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
2022-03-29 23:39:38 +00:00
Alice Cecile
7ce3ae43e3 Bump Bevy to 0.7.0-dev (#4230)
# Objective

- The [dev docs](https://dev-docs.bevyengine.org/bevy/index.html#) show version 0.6.0, which is actively misleading.

[Image of the problem](https://cdn.discordapp.com/attachments/695741366520512563/953513612943704114/Screenshot_20220316-154100_Firefox-01.jpeg)

Noticed by @ickk, fix proposed by @mockersf.

## Solution

- Bump the version across all Bevy crates to 0.7.0 dev.
- Set a reminder in the Release Checklist to remember to do this each release.
2022-03-19 03:54:15 +00:00
Daniel McNab
6e61fef67d Obviate the need for RunSystem, and remove it (#3817)
# Objective

- Fixes #3300
- `RunSystem` is messy

## Solution

- Adds the trick theorised in https://github.com/bevyengine/bevy/issues/3300#issuecomment-991791234

P.S. I also want this for an experimental refactoring of `Assets`, to remove the duplication of `Events<AssetEvent<T>>`


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-15 02:16:55 +00:00
Daniel McNab
c1a4a2f6c5 Remove the config api (#3633)
# Objective

- Fix the ugliness of the `config` api. 
- Supercedes #2440, #2463, #2491

## Solution

- Since #2398, capturing closure systems have worked.
- Use those instead where we needed config before
- Remove the rest of the config api. 
- Related: #2777
2022-02-25 03:10:59 +00:00
Vladyslav Batyrenko
ba6b74ba20 Implement WorldQuery derive macro (#2713)
# Objective

- Closes #786
- Closes #2252
- Closes #2588

This PR implements a derive macro that allows users to define their queries as structs with named fields.

## Example

```rust
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct NumQuery<'w, T: Component, P: Component> {
    entity: Entity,
    u: UNumQuery<'w>,
    generic: GenericQuery<'w, T, P>,
}

#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct UNumQuery<'w> {
    u_16: &'w u16,
    u_32_opt: Option<&'w u32>,
}

#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct GenericQuery<'w, T: Component, P: Component> {
    generic: (&'w T, &'w P),
}

#[derive(WorldQuery)]
#[world_query(filter)]
struct NumQueryFilter<T: Component, P: Component> {
    _u_16: With<u16>,
    _u_32: With<u32>,
    _or: Or<(With<i16>, Changed<u16>, Added<u32>)>,
    _generic_tuple: (With<T>, With<P>),
    _without: Without<Option<u16>>,
    _tp: PhantomData<(T, P)>,
}

fn print_nums_readonly(query: Query<NumQuery<u64, i64>, NumQueryFilter<u64, i64>>) {
    for num in query.iter() {
        println!("{:#?}", num);
    }
}

#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct MutNumQuery<'w, T: Component, P: Component> {
    i_16: &'w mut i16,
    i_32_opt: Option<&'w mut i32>,
}

fn print_nums(mut query: Query<MutNumQuery, NumQueryFilter<u64, i64>>) {
    for num in query.iter_mut() {
        println!("{:#?}", num);
    }
}
```

## TODOs:
- [x] Add support for `&T` and `&mut T`
  - [x] Test
- [x] Add support for optional types
  - [x] Test
- [x] Add support for `Entity`
  - [x] Test
- [x] Add support for nested `WorldQuery`
  - [x] Test
- [x] Add support for tuples
  - [x] Test
- [x] Add support for generics
  - [x] Test
- [x] Add support for query filters
  - [x] Test
- [x] Add support for `PhantomData`
  - [x] Test
- [x] Refactor `read_world_query_field_type_info`
- [x] Properly document `readonly` attribute for nested queries and the static assertions that guarantee safety
  - [x] Test that we never implement `ReadOnlyFetch` for types that need mutable access
  - [x] Test that we insert static assertions for nested `WorldQuery` that a user marked as readonly
2022-02-24 00:19:49 +00:00
James Liu
5afda8df6f Fix all_tuples macro for non-0/1 starts (#4002)
# Objective
`all_tuples` panics when the start count is set to anything other than 0 or 1. Fix this bug.

## Solution
Originally part of #2381, this PR fixes the slice indexing used by the proc macro.
2022-02-21 23:49:08 +00:00
danieleades
d8974e7c3d small and mostly pointless refactoring (#2934)
What is says on the tin.

This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.

that said, deriving `Default` for a couple of structs is a nice easy win
2022-02-13 22:33:55 +00:00
MinerSebas
69e9a47d92 SystemParam Derive fixes (#2838)
# Objective

A user on Discord couldn't derive SystemParam for this Struct:

```rs
#[derive(SystemParam)]
pub struct SpatialQuery<'w, 's, Q: WorldQuery + Send + Sync + 'static, F: WorldQuery + Send + Sync + 'static = ()>
where
    F::Fetch: FilterFetch,
{
    query: Query<'w, 's, (C, &'static Transform), F>,
}
```

## Solution

1. The `where`-clause is now also copied to the `SystemParamFetch` impl Block.
2. The `SystemParamState` impl Block no longer gets any defaults for generics


Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
2022-02-03 03:32:02 +00:00
Ted Driggs
8e1f660e1d Don't panic in macro shape validation (#3647)
# Objective
Emitting compile errors produces cleaner messages than panicking in a proc-macro.

## Solution
- Replace match-with-panic code with call to new `bevy_macro_utils::get_named_struct_fields` function
- Replace one use of match-with-panic for enums with inline match

_Aside:_ I'm also the maintainer of [`darling`](https://docs.rs/darling), a crate which provides a serde-like API for parsing macro inputs. I avoided using it here because it seemed like overkill, but if there are plans to add lots more attributes/macros then that might be a good way of offloading macro error handling.
2022-01-15 22:14:43 +00:00
Carter Anderson
2ee38cb9e0 Release 0.6.0 (#3587) 2022-01-08 10:18:22 +00:00
Yilin Wei
d44c3cd150 Fix error message for the Component macro's component storage attribute. (#3534)
# Objective

Fixes the error message for the `component` attribute when users use the wrong literals.
2022-01-02 23:28:18 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
Carter Anderson
8009af3879 Merge New Renderer 2021-11-22 23:57:42 -08:00
Yoh Deadfall
ffde86efa0 Update to edition 2021 on master (#3028)
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.

Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
2021-10-27 00:12:14 +00:00
François
2f4bcc5bf7 Update for edition 2021 (#2997)
# Objective

- update for Edition 2021

## Solution

- remove the `resolver = "2"`
- update for https://doc.rust-lang.org/edition-guide/rust-2021/reserving-syntax.html by adding a few ` `
2021-10-25 18:00:13 +00:00
Paweł Grabarz
07ed1d053e Implement and require #[derive(Component)] on all component structs (#2254)
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.

In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.

This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.

One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.


Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-10-03 19:23:44 +00:00
Carter Anderson
11b41206eb Add upstream bevy_ecs and prepare for custom-shaders merge (#2815)
This updates the `pipelined-rendering` branch to use the latest `bevy_ecs` from `main`. This accomplishes a couple of goals:

1. prepares for upcoming `custom-shaders` branch changes, which were what drove many of the recent bevy_ecs changes on `main`
2. prepares for the soon-to-happen merge of `pipelined-rendering` into `main`. By including bevy_ecs changes now, we make that merge simpler / easier to review. 

I split this up into 3 commits:

1. **add upstream bevy_ecs**: please don't bother reviewing this content. it has already received thorough review on `main` and is a literal copy/paste of the relevant folders (the old folders were deleted so the directories are literally exactly the same as `main`).
2. **support manual buffer application in stages**: this is used to enable the Extract step. we've already reviewed this once on the `pipelined-rendering` branch, but its worth looking at one more time in the new context of (1).
3. **support manual archetype updates in QueryState**: same situation as (2).
2021-09-14 06:14:19 +00:00
Zicklag
e290a7e29c Implement Sub-App Labels (#2695)
This is a rather simple but wide change, and it involves adding a new `bevy_app_macros` crate. Let me know if there is a better way to do any of this!

---

# Objective

- Allow adding and accessing sub-apps by using a label instead of an index

## Solution

- Migrate the bevy label implementation and derive code to the `bevy_utils` and `bevy_macro_utils` crates and then add a new `SubAppLabel` trait to the `bevy_app` crate that is used when adding or getting a sub-app from an app.
2021-08-24 00:31:21 +00:00
Carter Anderson
9d453530fa System Param Lifetime Split (#2605)
# Objective

Enable using exact World lifetimes during read-only access . This is motivated by the new renderer's need to allow read-only world-only queries to outlive the query itself (but still be constrained by the world lifetime).

For example:
115b170d1f/pipelined/bevy_pbr2/src/render/mod.rs (L774)

## Solution

Split out SystemParam state and world lifetimes and pipe those lifetimes up to read-only Query ops (and add into_inner for Res). According to every safety test I've run so far (except one), this is safe (see the temporary safety test commit). Note that changing the mutable variants to the new lifetimes would allow aliased mutable pointers (try doing that to see how it affects the temporary safety tests).

The new state lifetime on SystemParam does make `#[derive(SystemParam)]` more cumbersome (the current impl requires PhantomData if you don't use both lifetimes). We can make this better by detecting whether or not a lifetime is used in the derive and adjusting accordingly, but that should probably be done in its own pr.  

## Why is this a draft?

The new lifetimes break QuerySet safety in one very specific case (see the query_set system in system_safety_test). We need to solve this before we can use the lifetimes given.

This is due to the fact that QuerySet is just a wrapper over Query, which now relies on world lifetimes instead of `&self` lifetimes to prevent aliasing (but in systems, each Query has its own implied lifetime, not a centralized world lifetime).  I believe the fix is to rewrite QuerySet to have its own World lifetime (and own the internal reference). This will complicate the impl a bit, but I think it is doable. I'm curious if anyone else has better ideas.

Personally, I think these new lifetimes need to happen. We've gotta have a way to directly tie read-only World queries to the World lifetime. The new renderer is the first place this has come up, but I doubt it will be the last. Worst case scenario we can come up with a second `WorldLifetimeQuery<Q, F = ()>` parameter to enable these read-only scenarios, but I'd rather not add another type to the type zoo.
2021-08-15 20:51:53 +00:00
Carter Anderson
a89a954a17 Not me ... us (#2654)
I don't see much of a reason at this point to boost my name over anyone elses. We are all Bevy Contributors.
2021-08-15 20:08:52 +00:00
Piotr Balcer
b13472dae4 fix missing paths in ECS SystemParam derive macro v2 (#2550)
This is an updated version of #1434 PR. I've encountered this macro problem while trying to use @woubuc's bevy-event-set crate.

Co-authored-by: Piotr Balcer <piotr@balcer.eu>
2021-08-11 01:32:58 +00:00
bjorn3
86cc70b902 Refactor ECS to reduce the dependency on a 1-to-1 mapping between components and real rust types (#2490)
# Objective

There is currently a 1-to-1 mapping between components and real rust types. This means that it is impossible for multiple components to be represented by the same rust type or for a component to not have a rust type at all. This means that component types can't be defined in languages other than rust like necessary for scripting or sandboxed (wasm?) plugins.

## Solution

Refactor `ComponentDescriptor` and `Bundle` to remove `TypeInfo`. `Bundle` now uses `ComponentId` instead. `ComponentDescriptor` is now always created from a rust type instead of through the `TypeInfo` indirection. A future PR may make it possible to construct a `ComponentDescriptor` from it's fields without a rust type being involved.
2021-07-28 19:29:12 +00:00
Carter Anderson
13ca00178a bevy_render now uses wgpu directly 2021-07-24 16:43:37 -07:00
Carter Anderson
e167a1d9cf Relicense Bevy under the dual MIT or Apache-2.0 license (#2509)
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.

* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
  * Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive. 
  * People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach. 
  * I like keeping the root clean and noise free
  * There is precedent for putting the apache and mit license text in sub folders (amethyst) 
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.

As a follow-up we should update the website to properly describe the new license.

Closes #2373
2021-07-23 21:11:51 +00:00
Carter Anderson
a20dc36c8c Add new SystemState and rename old SystemState to SystemMeta (#2283)
This enables `SystemParams` to be used outside of function systems. Anything can create and store `SystemState`, which enables efficient "param state cached" access to `SystemParams`.

It adds a `ReadOnlySystemParamFetch` trait, which enables safe `SystemState::get` calls without unique world access.

I renamed the old `SystemState` to `SystemMeta` to enable us to mirror the `QueryState` naming convention (but I'm happy to discuss alternative names if people have other ideas). I initially pitched this as `ParamState`, but given that it needs to include full system metadata, that doesn't feel like a particularly accurate name.

```rust
#[derive(Eq, PartialEq, Debug)]
struct A(usize);

#[derive(Eq, PartialEq, Debug)]
struct B(usize);

let mut world = World::default();
world.insert_resource(A(42));
world.spawn().insert(B(7));

// we get nice lifetime elision when declaring the type on the left hand side
let mut system_state: SystemState<(Res<A>, Query<&B>)> = SystemState::new(&mut world);
let (a, query) = system_state.get(&world);
assert_eq!(*a, A(42), "returned resource matches initial value");
assert_eq!(
    *query.single().unwrap(),
    B(7),
    "returned component matches initial value"
);

// mutable system params require unique world access
let mut system_state: SystemState<(ResMut<A>, Query<&mut B>)> = SystemState::new(&mut world);
let (a, query) = system_state.get_mut(&mut world);

// static lifetimes are required when declaring inside of structs
struct SomeContainer {
  state: SystemState<(Res<'static, A>, Res<'static, B>)>
}

// this can be shortened using type aliases, which will be useful for complex param tuples
type MyParams<'a> = (Res<'a, A>, Res<'a, B>);
struct SomeContainer {
  state: SystemState<MyParams<'static>>
}

// It is the user's responsibility to call SystemState::apply(world) for parameters that queue up work   
let mut system_state: SystemState<(Commands, Query<&B>)> = SystemState::new(&mut world);
{
  let (mut commands, query) = system_state.get(&world);
  commands.insert_resource(3.14);
}
system_state.apply(&mut world);
```

## Future Work

* Actually use SystemState inside FunctionSystem. This would be trivial, but it requires FunctionSystem to wrap SystemState in Option in its current form (which complicates system metadata lookup). I'd prefer to hold off until we adopt something like the later designs linked in #1364, which enable us to contruct Systems using a World reference (and also remove the need for `.system`).
* Consider a "scoped" approach to automatically call SystemState::apply when systems params are no longer being used (either a container type with a Drop impl, or a function that takes a closure for user logic operating on params).
2021-06-02 19:57:38 +00:00
Yoh Deadfall
653c10371e Use bevy_reflect as path in case of no direct references (#1875)
Fixes #1844


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-05-19 19:03:36 +00:00
Zicklag
6508b4ed25 Hide Derived SystemParam State Struct From Docs (#1984)
This makes sure the automatically generated MyStructState type is not
shown in the rustdoc when deriving SystemParam on MyStruct.
2021-04-22 23:09:59 +00:00
Logan Magee
d508923eb7 Allow deriving SystemParam on private types (#1936)
Examples creating a public type to derive `SystemParam` on were updated
to create a private type where a public one is no longer needed.

Resolves #1869
2021-04-16 18:40:49 +00:00
Yoh Deadfall
22314923d9 Angle bracket annotated types to support generics (#1919)
Fixes #1873. Types should be enclosed in angular brackets to avoid ambiquity and to correctly resolve associated functions.
2021-04-15 00:16:40 +00:00
Daniel McNab
a137df7d57 Fix SytemParam handling of Commands (#1899)
Fixes https://github.com/bevyengine/bevy/issues/1896
2021-04-14 23:58:27 +00:00
Yoh Deadfall
04a37f722a Moved events to ECS (#1823)
Fixes #1809. It makes it also possible to use `derive` for `SystemParam` inside ECS and avoid manual implementation. An alternative solution to macro changes is to use `use crate as bevy_ecs;` in `event.rs`.
2021-04-13 20:36:37 +00:00
Carter Anderson
97d8e4e179 Release 0.5.0 (#1835) 2021-04-06 18:48:48 +00:00
François
3e285d5c0b allow deriving bundle for struct with generics with where clause (#1811)
fixes #1777 

Seems the `_where_clause` parameter to lost somewhere, adding it back
2021-04-03 23:30:30 +00:00
François
276a81cc30 allow up to 16 parameters for systems (#1805)
fixes #1772 

1st commit: the limit was at 11 as the macro was not using a range including the upper end. I changed that as it feels the purpose of the macro is clearer that way.

2nd commit: as suggested in the `// TODO`, I added a `Config` trait to go to 16 elements tuples. This means that if someone has a custom system parameter with a config that is not a tuple or an `Option`, they will have to implement `Config` for it instead of the standard `Default`.
2021-04-03 23:13:54 +00:00
Jakob Hellermann
ad60046982 fix clippy lints (#1756) 2021-03-25 20:48:18 +00:00
Alexander Sepity
d3e020a1e7 System sets and run criteria v2 (#1675)
I'm opening this prematurely; consider this an RFC that predates RFCs and therefore not super-RFC-like.

This PR does two "big" things: decouple run criteria from system sets, reimagine system sets as weapons of mass system description.

### What it lets us do:

* Reuse run criteria within a stage.
* Pipe output of one run criteria as input to another.
* Assign labels, dependencies, run criteria, and ambiguity sets to many systems at the same time.

### Things already done:
* Decoupled run criteria from system sets.
* Mass system description superpowers to `SystemSet`.
* Implemented `RunCriteriaDescriptor`.
* Removed `VirtualSystemSet`.
* Centralized all run criteria of `SystemStage`.
* Extended system descriptors with per-system run criteria.
* `.before()` and `.after()` for run criteria.
* Explicit order between state driver and related run criteria. Fixes #1672.
* Opt-in run criteria deduplication; default behavior is to panic.
* Labels (not exposed) for state run criteria; state run criteria are deduplicated.

### API issues that need discussion:

* [`FixedTimestep::step(1.0).label("my label")`](eaccf857cd/crates/bevy_ecs/src/schedule/run_criteria.rs (L120-L122)) and [`FixedTimestep::step(1.0).with_label("my label")`](eaccf857cd/crates/bevy_core/src/time/fixed_timestep.rs (L86-L89)) are both valid but do very different things.

---

I will try to maintain this post up-to-date as things change. Do check the diffs in "edited" thingy from time to time.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-03-24 20:11:55 +00:00
Alice Cecile
6121e5f933 Reliable change detection (#1471)
# Problem Definition

The current change tracking (via flags for both components and resources) fails to detect changes made by systems that are scheduled to run earlier in the frame than they are.

This issue is discussed at length in [#68](https://github.com/bevyengine/bevy/issues/68) and [#54](https://github.com/bevyengine/bevy/issues/54).

This is very much a draft PR, and contributions are welcome and needed.

# Criteria
1. Each change is detected at least once, no matter the ordering.
2. Each change is detected at most once, no matter the ordering.
3. Changes should be detected the same frame that they are made.
4. Competitive ergonomics. Ideally does not require opting-in.
5. Low CPU overhead of computation.
6. Memory efficient. This must not increase over time, except where the number of entities / resources does.
7. Changes should not be lost for systems that don't run.
8. A frame needs to act as a pure function. Given the same set of entities / components it needs to produce the same end state without side-effects.

**Exact** change-tracking proposals satisfy criteria 1 and 2.
**Conservative** change-tracking proposals satisfy criteria 1 but not 2.
**Flaky** change tracking proposals satisfy criteria 2 but not 1.

# Code Base Navigation

There are three types of flags: 
- `Added`: A piece of data was added to an entity / `Resources`.
- `Mutated`: A piece of data was able to be modified, because its `DerefMut` was accessed
- `Changed`: The bitwise OR of `Added` and `Changed`

The special behavior of `ChangedRes`, with respect to the scheduler is being removed in [#1313](https://github.com/bevyengine/bevy/pull/1313) and does not need to be reproduced.

`ChangedRes` and friends can be found in "bevy_ecs/core/resources/resource_query.rs".

The `Flags` trait for Components can be found in "bevy_ecs/core/query.rs".

`ComponentFlags` are stored in "bevy_ecs/core/archetypes.rs", defined on line 446.

# Proposals

**Proposal 5 was selected for implementation.**

## Proposal 0: No Change Detection

The baseline, where computations are performed on everything regardless of whether it changed.

**Type:** Conservative

**Pros:**
- already implemented
- will never miss events
- no overhead

**Cons:**
- tons of repeated work
- doesn't allow users to avoid repeating work (or monitoring for other changes)

## Proposal 1: Earlier-This-Tick Change Detection

The current approach as of Bevy 0.4. Flags are set, and then flushed at the end of each frame.

**Type:** Flaky

**Pros:**
- already implemented
- simple to understand
- low memory overhead (2 bits per component)
- low time overhead (clear every flag once per frame)

**Cons:**
- misses systems based on ordering
- systems that don't run every frame miss changes
- duplicates detection when looping
- can lead to unresolvable circular dependencies

## Proposal 2: Two-Tick Change Detection

Flags persist for two frames, using a double-buffer system identical to that used in events.

A change is observed if it is found in either the current frame's list of changes or the previous frame's.

**Type:** Conservative

**Pros:**
- easy to understand
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)

**Cons:**
- can result in a great deal of duplicated work
- systems that don't run every frame miss changes
- duplicates detection when looping

## Proposal 3: Last-Tick Change Detection

Flags persist for two frames, using a double-buffer system identical to that used in events.

A change is observed if it is found in the previous frame's list of changes.

**Type:** Exact

**Pros:**
- exact
- easy to understand
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)

**Cons:**
- change detection is always delayed, possibly causing painful chained delays
- systems that don't run every frame miss changes
- duplicates detection when looping

## Proposal 4: Flag-Doubling Change Detection

Combine Proposal 2 and Proposal 3. Differentiate between `JustChanged` (current behavior) and `Changed` (Proposal 3).

Pack this data into the flags according to [this implementation proposal](https://github.com/bevyengine/bevy/issues/68#issuecomment-769174804).

**Type:** Flaky + Exact

**Pros:**
- allows users to acc
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)

**Cons:**
- users must specify the type of change detection required
- still quite fragile to system ordering effects when using the flaky `JustChanged` form
- cannot get immediate + exact results
- systems that don't run every frame miss changes
- duplicates detection when looping

## [SELECTED] Proposal 5: Generation-Counter Change Detection

A global counter is increased after each system is run. Each component saves the time of last mutation, and each system saves the time of last execution. Mutation is detected when the component's counter is greater than the system's counter. Discussed [here](https://github.com/bevyengine/bevy/issues/68#issuecomment-769174804). How to handle addition detection is unsolved; the current proposal is to use the highest bit of the counter as in proposal 1.

**Type:** Exact (for mutations), flaky (for additions)

**Pros:**
- low time overhead (set component counter on access, set system counter after execution)
- robust to systems that don't run every frame
- robust to systems that loop

**Cons:**
- moderately complex implementation
- must be modified as systems are inserted dynamically
- medium memory overhead (4 bytes per component + system)
- unsolved addition detection

## Proposal 6: System-Data Change Detection

For each system, track which system's changes it has seen. This approach is only worth fully designing and implementing if Proposal 5 fails in some way.  

**Type:** Exact

**Pros:**
- exact
- conceptually simple

**Cons:**
- requires storing data on each system
- implementation is complex
- must be modified as systems are inserted dynamically

## Proposal 7: Total-Order Change Detection

Discussed [here](https://github.com/bevyengine/bevy/issues/68#issuecomment-754326523). This proposal is somewhat complicated by the new scheduler, but I believe it should still be conceptually feasible. This approach is only worth fully designing and implementing if Proposal 5 fails in some way.  

**Type:** Exact

**Pros:**
- exact
- efficient data storage relative to other exact proposals

**Cons:**
- requires access to the scheduler
- complex implementation and difficulty grokking
- must be modified as systems are inserted dynamically

# Tests

- We will need to verify properties 1, 2, 3, 7 and 8. Priority: 1 > 2 = 3 > 8 > 7
- Ideally we can use identical user-facing syntax for all proposals, allowing us to re-use the same syntax for each.
- When writing tests, we need to carefully specify order using explicit dependencies.
- These tests will need to be duplicated for both components and resources.
- We need to be sure to handle cases where ambiguous system orders exist.

`changing_system` is always the system that makes the changes, and `detecting_system` always detects the changes.

The component / resource changed will be simple boolean wrapper structs.

## Basic Added / Mutated / Changed

2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs before `detecting_system`
- verify at the end of tick 2

## At Least Once

2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs after `detecting_system`
- verify at the end of tick 2

## At Most Once

2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs once before `detecting_system`
- increment a counter based on the number of changes detected
- verify at the end of tick 2

## Fast Detection
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs before `detecting_system`
- verify at the end of tick 1

## Ambiguous System Ordering Robustness
2 x 3 x 2 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs [before/after] `detecting_system` in tick 1
- `changing_system` runs [after/before] `detecting_system` in tick 2

## System Pausing
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs in tick 1, then is disabled by run criteria
- `detecting_system` is disabled by run criteria until it is run once during tick 3
- verify at the end of tick 3

## Addition Causes Mutation

2 design:
- Resources vs. Components
- `adding_system_1` adds a component / resource
- `adding system_2` adds the same component / resource
- verify the `Mutated` flag at the end of the tick
- verify the `Added` flag at the end of the tick

First check tests for: https://github.com/bevyengine/bevy/issues/333
Second check tests for: https://github.com/bevyengine/bevy/issues/1443

## Changes Made By Commands

- `adding_system` runs in Update in tick 1, and sends a command to add a component 
- `detecting_system` runs in Update in tick 1 and 2, after `adding_system`
- We can't detect the changes in tick 1, since they haven't been processed yet
- If we were to track these changes as being emitted by `adding_system`, we can't detect the changes in tick 2 either, since `detecting_system` has already run once after `adding_system` :( 

# Benchmarks

See: [general advice](https://github.com/bevyengine/bevy/blob/master/docs/profiling.md), [Criterion crate](https://github.com/bheisler/criterion.rs)

There are several critical parameters to vary: 
1. entity count (1 to 10^9)
2. fraction of entities that are changed (0% to 100%)
3. cost to perform work on changed entities, i.e. workload (1 ns to 1s)

1 and 2 should be varied between benchmark runs. 3 can be added on computationally.

We want to measure:
- memory cost
- run time

We should collect these measurements across several frames (100?) to reduce bootup effects and accurately measure the mean, variance and drift.

Entity-component change detection is much more important to benchmark than resource change detection, due to the orders of magnitude higher number of pieces of data.

No change detection at all should be included in benchmarks as a second control for cases where missing changes is unacceptable.

## Graphs
1. y: performance, x: log_10(entity count), color: proposal, facet: performance metric. Set cost to perform work to 0. 
2. y: run time, x: cost to perform work, color: proposal, facet: fraction changed. Set number of entities to 10^6
3. y: memory, x: frames, color: proposal

# Conclusions
1. Is the theoretical categorization of the proposals correct according to our tests?
2. How does the performance of the proposals compare without any load?
3. How does the performance of the proposals compare with realistic loads?
4. At what workload does more exact change tracking become worth the (presumably) higher overhead?
5. When does adding change-detection to save on work become worthwhile?
6. Is there enough divergence in performance between the best solutions in each class to ship more than one change-tracking solution?

# Implementation Plan

1. Write a test suite.
2. Verify that tests fail for existing approach.
3. Write a benchmark suite.
4. Get performance numbers for existing approach.
5. Implement, test and benchmark various solutions using a Git branch per proposal.
6. Create a draft PR with all solutions and present results to team.
7. Select a solution and replace existing change detection.

Co-authored-by: Brice DAVIER <bricedavier@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-03-19 17:53:26 +00:00
TheRawMeatball
ea9c7d58ff Fix label macro for types with generics (#1498)
Fixes #1497

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-03-09 03:49:48 +00:00
Carter Anderson
3a2a68852c Bevy ECS V2 (#1525)
# Bevy ECS V2

This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:

* Complete World rewrite
* Multiple component storage types:
    * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
    * Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
    * Configure component storage type
    * Retrieve information about component size/type/name/layout/send-ness/etc
    * Components are uniquely identified by a densely packed ComponentId
    * TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
    * With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
    * Entity reservation uses a normal world reference instead of unsafe transmute
    * QuerySets no longer transmute lifetimes
    * Made traits "unsafe" where relevant
    * More thorough safety docs
* WorldCell
    * Exposes safe mutable access to multiple resources at a time in a World 
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` 
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default 
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)

Fixes #1320

## `World` Rewrite

This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!

(the only shared code between the projects is the entity id allocator, which is already basically ideal)

A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.

## Component Storage (The Problem)

Two ECS storage paradigms have gained a lot of traction over the years:

* **Archetypal ECS**: 
    * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
    * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
    * Enables super-fast Query iteration due to its cache-friendly data layout
    * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
    * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
    * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
    * Adding/removing components is a cheap, constant time operation 

Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.

Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:

1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize

Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.

## Hybrid Component Storage (The Solution)

In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):

* **Tables** (aka "archetypal" storage)
    * The default storage. If you don't configure anything, this is what you get
    * Fast iteration by default
    * Slower add/remove operations
* **Sparse Sets**
    * Opt-in
    * Slower iteration
    * Faster add/remove operations

These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":

```rust
world.register_component(
    ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```

## Archetypes

Archetypes are now "just metadata" ... they no longer store components directly. They do store:

* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
    * Archetypes are uniquely defined by their component layouts
    * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
    * For now each archetype has exactly one table (which can have no components),
    * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
        * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
        * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
    * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
    * used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)  

## The "Archetype Graph"

Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.

The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.

Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.

As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.

## Stateful Queries

World queries are now stateful. This allows us to:

1. Cache archetype (and table) matches
    * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
    * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
    * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)

As a result, the direct `World` query api now looks like this:

```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```

Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).

However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.

## Stateful SystemParams

Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). 

SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.

Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).

(credit goes to @DJMcNab for the initial idea and draft pr here #1364)

## Configurable SystemParams

@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:

```rust

fn foo(value: Local<usize>) {    
}

app.add_system(foo.system().config(|c| c.0 = Some(10)));
```

## Uber Fast "for_each" Query Iterators

Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. 

```rust
fn system(query: Query<(&A, &mut B)>) {
    // you now have the option to do this for a speed boost
    query.for_each_mut(|(a, mut b)| {
    });

    // however normal iterators are still available
    for (a, mut b) in query.iter_mut() {
    }
}
```

I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.

We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).

## Component Metadata

`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.

## Significantly Cheaper `Access<T>`

We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.

This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.

## Merged Resources into World

Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).

Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.

I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).

This pr merges Resources into World:

```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```

Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.

_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!

## WorldCell

WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:

```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```

This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.

World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. 

WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. 

The api is currently limited to resource access, but it can and should be extended to queries / entity component access.

## Resource Scopes

WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!

Instead developers can use a "resource scope"

```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```

This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.

If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.

## Query Conflicts Use ComponentId Instead of ArchetypeComponentId

For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:

```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```

But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```

The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.

In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.

To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.

## EntityRef / EntityMut

World entity operations on `main` require that the user passes in an `entity` id to each operation:

```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```

This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).

These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:

```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
    .insert(A) // insert a single component into the entity
    .insert_bundle((B, C)) // insert a bundle of components into the entity
    .id() // id returns the Entity id

// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
    .insert(D)
    .insert_bundle(SomeBundle::default());
{
    // returns EntityRef (or panics if the entity does not exist)
    let d = world.entity(entity)
        .get::<D>() // gets the D component
        .unwrap();
    // world.get still exists for ergonomics
    let d = world.get::<D>(entity).unwrap();
}

// These variants return Options if you want to check existence instead of panicing 
world.get_entity_mut(entity)
    .unwrap()
    .insert(E);

if let Some(entity_ref) = world.get_entity(entity) {
    let d = entity_ref.get::<D>().unwrap();
}
```

This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.

## Safety Improvements

* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs

## RemovedComponents SystemParam

The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:

```rust
fn system(removed: RemovedComponents<T>) {
    for entity in removed.iter() {
    }
} 
```

## Simpler Bundle implementation

Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.

## Unified WorldQuery and QueryFilter types

(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)

WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).

QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.

This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.

## More Granular Modules

World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).

## Remaining Draft Work (to be done in this pr)

* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
    * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
    * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~

## Potential Future Work

* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
    * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
    * this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
    * would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
    * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
    * fixedbitset could have a const constructor 
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity) 
    * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
    * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
    * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
    * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
    * this is basically just "systems" so maybe it's not worth it
* Add more world ops
    * `world.clear()`
    * `world.reserve<T: Bundle>(count: usize)`
 * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
 * Adapt Commands apis for consistency with new World apis 

## Benchmarks

key:

* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)

### Simple Insert (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)

### Simpler Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)

### Fragment Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)

### Sparse Fragmented Iter

Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes

![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
 
### Schedule (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)

### Add Remove Component (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)


### Add Remove Component Big

Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed

![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)


### Get Component

Looks up a single component value a large number of times

![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
Wouter Buckens
000dd4c1c2 Add docs & example for SystemParam (#1435)
It took me a little while to figure out how to use the `SystemParam` derive macro to easily create my own params. So I figured I'd add some docs and an example with what I learned.

- Fixed a bug in the `SystemParam` derive macro where it didn't detect the correct crate name when used in an example (no longer relevant, replaced by #1426 - see further)
- Added some doc comments and a short example code block in the docs for the `SystemParam` trait
- Added a more complete example with explanatory comments in examples
2021-03-03 03:11:11 +00:00
Jakob Hellermann
a1ec684131 fix bevy_ecs macro path handling (#1426)
- It now doesn't search in the dev-dependencies anymore
- and the behaviour is consistent for derive_bundle and derive_system_param
2021-02-22 09:15:27 +00:00
Jakob Hellermann
f73c6d18ef better error message on failed derive (#1491)
Before, when deriving `SystemLabel` for a type without `Clone`, the error message was:
```
the trait `SystemLabel` is not implemented for `&TransformSystem`
```
Now it is
```
the trait `Clone` is not implemented for `TransformSystem`
```
which directly shows what's needed to fix the problem.
2021-02-22 03:23:57 +00:00
Alexander Sepity
c2a427f1a3
Non-string labels (#1423 continued) (#1473)
Non-string labels
2021-02-18 13:20:37 -08:00
Wouter Buckens
b39df9a8d2
Fix missing paths in ECS SystemParam derive macro (#1434) 2021-02-11 15:59:11 -08:00
TheRawMeatball
a880b54508
Make EventReader a SystemParam (#1244)
* Add generic support for `#[derive(SystemParam)]`
* Make EventReader a SystemParam
2021-01-18 22:23:30 -08:00
Carter Anderson
3b2c6ce49b
release 0.4.0 (#1093) 2020-12-19 13:28:00 -06:00
Carter Anderson
841755aaf2
Adopt a Fetch pattern for SystemParams (#1074) 2020-12-15 21:57:16 -08:00
Joshua J. Bouw
9f4c8b1b9a
Fix errors and panics to typical Rust conventions (#968)
Fix errors and panics to typical Rust conventions
2020-12-02 11:31:16 -08:00
Carter Anderson
8675fea0f2
consolidate find-crate (#964) 2020-11-30 22:36:38 -08:00
Carter Anderson
3a6f6de277
System Inputs, Outputs, Chaining, and Registration Ergo (#876)
System Inputs, Outputs, Chaining, and Registration Ergo
2020-11-16 18:18:00 -08:00
Carter Anderson
7628f4a64e
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle (#863)
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle
2020-11-15 20:32:23 -08:00