# Objective
I found several words in code and docs are incorrect. This should be fixed.
## Solution
- Fix several minor typos
Co-authored-by: Chris Ohk <utilforever@gmail.com>
# Objective
> ℹ️ **This is an adoption of #4081 by @james7132**
Fixes#4080.
Provide a way to pre-parse reflection paths so as to avoid having to parse at each call to `GetPath::path` (or similar method).
## Solution
Adds the `ParsedPath` struct (named `FieldPath` in the original PR) that parses and caches the sequence of accesses to a reflected element. This is functionally similar to the `GetPath` trait, but removes the need to parse an unchanged path more than once.
### Additional Changes
Included in this PR from the original is cleaner code as well as the introduction of a new pathing operation: field access by index. This allows struct and struct variant fields to be accessed in a more performant (albeit more fragile) way if needed. This operation is faster due to not having to perform string matching. As an example, if we wanted the third field on a struct, we'd write `#2`—where `#` denotes indexed access and `2` denotes the desired field index.
This PR also contains improved documentation for `GetPath` and friends, including renaming some of the methods to be more clear to the end-user with a reduced risk of getting them mixed up.
### Future Work
There are a few things that could be done as a separate PR (order doesn't matter— they could be followup PRs or done in parallel). These are:
- [x] ~~Add support for `Tuple`. Currently, we hint that they work but they do not.~~ See #7324
- [ ] Cleanup `ReflectPathError`. I think it would be nicer to give `ReflectPathError` two variants: `ReflectPathError::ParseError` and `ReflectPathError::AccessError`, with all current variants placed within one of those two. It's not obvious when one might expect to receive one type of error over the other, so we can help by explicitly categorizing them.
---
## Changelog
- Cleaned up `GetPath` logic
- Added `ParsedPath` for cached reflection paths
- Added new reflection path syntax: struct field access by index (example syntax: `foo#1`)
- Renamed methods on `GetPath`:
- `path` -> `reflect_path`
- `path_mut` -> `reflect_path_mut`
- `get_path` -> `path`
- `get_path_mut` -> `path_mut`
## Migration Guide
`GetPath` methods have been renamed according to the following:
- `path` -> `reflect_path`
- `path_mut` -> `reflect_path_mut`
- `get_path` -> `path`
- `get_path_mut` -> `path_mut`
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
# Objective
Enums are now reflectable, but are not accessible via reflection paths.
This would allow us to do things like:
```rust
#[derive(Reflect)]
struct MyStruct {
data: MyEnum
}
#[derive(Reflect)]
struct MyEnum {
Foo(u32, u32),
Bar(bool)
}
let x = MyStruct {
data: MyEnum::Foo(123),
};
assert_eq!(*x.get_path::<u32>("data.1").unwrap(), 123);
```
## Solution
Added support for enums in reflection paths.
##### Note
This uses a simple approach of just getting the field with the given accessor. It does not do matching or anything else to ensure the enum is the intended variant. This means that the variant must be known ahead of time or matched outside the reflection path (i.e. path to variant, perform manual match, and continue pathing).
---
## Changelog
- Added support for enums in reflection paths
# Objective
There are times where we want to simply take an owned `dyn Reflect` and cast it to a type `T`.
Currently, this involves doing:
```rust
let value = value.take::<T>().unwrap_or_else(|value| {
T::from_reflect(&*value).unwrap_or_else(|| {
panic!(
"expected value of type {} to convert to type {}.",
value.type_name(),
std::any::type_name::<T>()
)
})
});
```
This is a common operation that could be easily be simplified.
## Solution
Add the `FromReflect::take_from_reflect` method. This first tries to `take` the value, calling `from_reflect` iff that fails.
```rust
let value = T::take_from_reflect(value).unwrap_or_else(|value| {
panic!(
"expected value of type {} to convert to type {}.",
value.type_name(),
std::any::type_name::<T>()
)
});
```
Based on suggestion from @soqb on [Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1041046880316043374).
---
## Changelog
- Add `FromReflect::take_from_reflect` method
# Objective
This a follow-up to #6894, see https://github.com/bevyengine/bevy/pull/6894#discussion_r1045203113
The goal is to avoid cloning any string when getting a `&TypeRegistration` corresponding to a string which is being deserialized. As a bonus code duplication is also reduced.
## Solution
The manual deserialization of a string and lookup into the type registry has been moved into a separate `TypeRegistrationDeserializer` type, which implements `DeserializeSeed` with a `Visitor` that accepts any string with `visit_str`, even ones that may not live longer than that function call.
`BorrowedStr` has been removed since it's no longer used.
---
## Changelog
- The type `TypeRegistrationDeserializer` has been added, which simplifies getting a `&TypeRegistration` while deserializing a string.
# Objective
- Fixes#7061
## Solution
- Add and implement `insert` and `remove` methods for `List`.
---
## Changelog
- Added `insert` and `remove` methods to `List`.
- Changed the `push` and `pop` methods on `List` to have default implementations.
## Migration Guide
- Manual implementors of `List` need to implement the new methods `insert` and `remove` and
consider whether to use the new default implementation of `push` and `pop`.
Co-authored-by: radiish <thesethskigamer@gmail.com>
# Objective
Fixes#6891
## Solution
Replaces deserializing map keys as `&str` with deserializing them as `String`.
This bug seems to occur when using something like `File` or `BufReader` rather than bytes or a string directly (I only tested `File` and `BufReader` for `rmp-serde` and `serde_json`). This might be an issue with other `Read` impls as well (except `&[u8]` it seems).
We already had passing tests for Message Pack but none that use a `File` or `BufReader`. This PR also adds or modifies tests to check for this in the future.
This change was also based on [feedback](https://github.com/bevyengine/bevy/pull/4561#discussion_r957385136) I received in a previous PR.
---
## Changelog
- Fix bug where scene deserialization using certain readers could fail (e.g. `BufReader`, `File`, etc.)
# Objective
This is an adoption of #5792. Fixes#5791.
## Solution
Implemented all the required reflection traits for `VecDeque`, taking from `Vec`'s impls.
---
## Changelog
Added: `std::collections::VecDeque` now implements `Reflect` and all relevant traits.
Co-authored-by: james7132 <contact@jamessliu.com>
# Objective
Resolves#4597 (based on the work from #6056 and a refresh of #4147)
When using reflection, we may often end up in a scenario where we have a Dynamic representing a certain type. Unfortunately, we can't just call `MyType::from_reflect` as we do not have knowledge of the concrete type (`MyType`) at runtime.
Such scenarios happen when we call `Reflect::clone_value`, use the reflection deserializers, or create the Dynamic type ourselves.
## Solution
Add a `ReflectFromReflect` type data struct.
This struct allows us to easily convert Dynamic representations of our types into their respective concrete instances.
```rust
#[derive(Reflect, FromReflect)]
#[reflect(FromReflect)] // <- Register `ReflectFromReflect`
struct MyStruct(String);
let type_id = TypeId::of::<MyStruct>();
// Register our type
let mut registry = TypeRegistry::default();
registry.register::<MyStruct>();
// Create a concrete instance
let my_struct = MyStruct("Hello world".to_string());
// `Reflect::clone_value` will generate a `DynamicTupleStruct` for tuple struct types
let dynamic_value: Box<dyn Reflect> = my_struct.clone_value();
assert!(!dynamic_value.is::<MyStruct>());
// Get the `ReflectFromReflect` type data from the registry
let rfr: &ReflectFromReflect = registry
.get_type_data::<ReflectFromReflect>(type_id)
.unwrap();
// Call `FromReflect::from_reflect` on our Dynamic value
let concrete_value: Box<dyn Reflect> = rfr.from_reflect(&dynamic_value);
assert!(concrete_value.is::<MyStruct>());
```
### Why this PR?
###### Why now?
The three main reasons I closed#4147 were that:
1. Registering `ReflectFromReflect` is clunky (deriving `FromReflect` *and* registering `ReflectFromReflect`)
2. The ecosystem and Bevy itself didn't seem to pay much attention to deriving `FromReflect`
3. I didn't see a lot of desire from the community for such a feature
However, as time has passed it seems 2 and 3 are not really true anymore. Bevy is internally adding lots more `FromReflect` derives, which should make this feature all the more useful. Additionally, I have seen a growing number of people look for something like `ReflectFromReflect`.
I think 1 is still an issue, but not a horrible one. Plus it could be made much, much better using #6056. And I think splitting this feature out of #6056 could lead to #6056 being adopted sooner (or at least make the need more clear to users).
###### Why not just re-open #4147?
The main reason is so that this PR can garner more attention than simply re-opening the old one. This helps bring fresh eyes to the PR for potentially more perspectives/reviews.
---
## Changelog
* Added `ReflectFromReflect`
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
Fixes#6866.
## Solution
Docs now should describe what the _front_, _first_, _back_, and _last_ elements are for an implementor of the `bevy::reflect::list::List` Trait. Further, the docs should describe how `bevy::reflect::list::List::push` and `bevy::reflect::list::List::pop` should act on these elements.
Co-authored-by: Linus Käll <linus.kall.business@gmail.com>
# Objective
- Fixes#3004
## Solution
- Replaced all the types with their fully quallified names
- Replaced all trait methods and inherent methods on dyn traits with their fully qualified names
- Made a new file `fq_std.rs` that contains structs corresponding to commonly used Structs and Traits from `std`. These structs are replaced by their respective fully qualified names when used inside `quote!`
# Objective
> Followup to [this](https://github.com/bevyengine/bevy/pull/6755#discussion_r1032671178) comment
Rearrange the impls in the `impls/std.rs` file.
The issue was that I had accidentally misplaced the impl for `Option<T>` and put it between the `Cow<'static, str>` impls. This is just a slight annoyance and readability issue.
## Solution
Move the `Option<T>` and `&'static Path` impls around to be more readable.
# Objective
Fixes#6739
## Solution
Implement the required traits. They cannot be implemented for `Path` directly, since it is a dynamically-sized type.
# Objective
> Part of #6573
When serializing a `DynamicScene` we end up treating almost all non-value types as though their type data doesn't exist. This is because when creating the `DynamicScene` we call `Reflect::clone_value` on the components, which generates a Dynamic type for all non-value types.
What this means is that the `glam` types are treated as though their `ReflectSerialize` registrations don't exist. However, the deserializer _does_ pick up the registration and attempts to use that instead. This results in the deserializer trying to operate on "malformed" data, causing this error:
```
WARN bevy_asset::asset_server: encountered an error while loading an asset: Expected float
```
## Solution
Ideally, we should better handle the serialization of possibly-Dynamic types. However, this runs into issues where the `ReflectSerialize` expects the concrete type and not a Dynamic representation, resulting in a panic:
0aa4147af6/crates/bevy_reflect/src/type_registry.rs (L402-L413)
Since glam types are so heavily used in Bevy (specifically in `Transform` and `GlobalTransform`), it makes sense to just a quick fix in that enables them to be used properly in scenes while a proper solution is found.
This PR simply removes all `ReflectSerialize` and `ReflectDeserialize` registrations from the glam types that are reflected as structs.
---
## Changelog
- Remove `ReflectSerialize` and `ReflectDeserialize` registrations from most glam types
## Migration Guide
This PR removes `ReflectSerialize` and `ReflectDeserialize` registrations from most glam types. This means any code relying on either of those type data existing for those glam types will need to not do that.
This also means that some serialized glam types will need to be updated. For example, here is `Affine3A`:
```rust
// BEFORE
(
"glam::f32::affine3a::Affine3A": (1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0),
// AFTER
"glam::f32::affine3a::Affine3A": (
matrix3: (
x_axis: (
x: 1.0,
y: 0.0,
z: 0.0,
),
y_axis: (
x: 0.0,
y: 1.0,
z: 0.0,
),
z_axis: (
x: 0.0,
y: 0.0,
z: 1.0,
),
),
translation: (
x: 0.0,
y: 0.0,
z: 0.0,
),
)
)
```
# Objective
Fixes#6713
Binary deserialization is failing for unit structs as well as structs with all ignored/skipped fields.
## Solution
Add a check for the number of possible fields in a struct before deserializing. If empty, don't attempt to deserialize any fields (as there will be none).
Note: ~~This does not apply to enums as they do not properly handle skipped fields (see #6721).~~ Enums still do not properly handle skipped fields, but I decided to include the logic for it anyways to account for `#[reflect(ignore)]`'d fields in the meantime.
---
## Changelog
- Fix bug where deserializing unit structs would fail for non-self-describing formats
# Objective
Currently, `Ptr` and `PtrMut` can only be constructed via unsafe code. This means that downgrading a reference to an untyped pointer is very cumbersome, despite being a very simple operation.
## Solution
Define conversions for easily and safely constructing untyped pointers. This is the non-owned counterpart to `OwningPtr::make`.
Before:
```rust
let ptr = unsafe { PtrMut::new(NonNull::from(&mut value).cast()) };
```
After:
```rust
let ptr = PtrMut::from(&mut value);
```
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Implements removal of entries from a `dyn Map`
- Fixes#6563
## Solution
- Adds a `remove` method to the `Map` trait which takes in a `&dyn Reflect` key and returns the value removed if it was present.
---
## Changelog
- Added `Map::remove`
## Migration Guide
- Implementors of `Map` will need to implement the `remove` method.
Co-authored-by: radiish <thesethskigamer@gmail.com>
# Objective
Using `Reflect` we can easily switch between a specific reflection trait object, such as a `dyn Struct`, to a `dyn Reflect` object via `Reflect::as_reflect` or `Reflect::as_reflect_mut`.
```rust
fn do_something(value: &dyn Reflect) {/* ... */}
let foo: Box<dyn Struct> = Box::new(Foo::default());
do_something(foo.as_reflect());
```
However, there is no way to convert a _boxed_ reflection trait object to a `Box<dyn Reflect>`.
## Solution
Add a `Reflect::into_reflect` method which allows converting a boxed reflection trait object back into a boxed `Reflect` trait object.
```rust
fn do_something(value: Box<dyn Reflect>) {/* ... */}
let foo: Box<dyn Struct> = Box::new(Foo::default());
do_something(foo.into_reflect());
```
---
## Changelog
- Added `Reflect::into_reflect`
# Objective
There is no way to gen an owned value of `Reflect`.
## Solution
Add it! This was originally a part of #6421, but @MrGVSV asked me to create a separate for it to implement reflect diffing.
---
## Changelog
### Added
- `Reflect::reflect_owned` to get an owned version of `Reflect`.
# Objective
- adding a new `.register` should not overwrite old type data
- separate crates should both be able to register the same type
I ran into this while debugging why `register::<Handle<T>>` removed the `ReflectHandle` type data from a prior `register_asset_reflect`.
## Solution
- make `register` do nothing if called again for the same type
- I also removed some unnecessary duplicate registrations
# Objective
Closes#5934
Currently it is not possible to de/serialize data to non-self-describing formats using reflection.
## Solution
Add support for non-self-describing de/serialization using reflection.
This allows us to use binary formatters, like [`postcard`](https://crates.io/crates/postcard):
```rust
#[derive(Reflect, FromReflect, Debug, PartialEq)]
struct Foo {
data: String
}
let mut registry = TypeRegistry::new();
registry.register::<Foo>();
let input = Foo {
data: "Hello world!".to_string()
};
// === Serialize! === //
let serializer = ReflectSerializer::new(&input, ®istry);
let bytes: Vec<u8> = postcard::to_allocvec(&serializer).unwrap();
println!("{:?}", bytes); // Output: [129, 217, 61, 98, ...]
// === Deserialize! === //
let deserializer = UntypedReflectDeserializer::new(®istry);
let dynamic_output = deserializer
.deserialize(&mut postcard::Deserializer::from_bytes(&bytes))
.unwrap();
let output = <Foo as FromReflect>::from_reflect(dynamic_output.as_ref()).unwrap();
assert_eq!(expected, output); // OK!
```
#### Crates Tested
- ~~[`rmp-serde`](https://crates.io/crates/rmp-serde)~~ Apparently, this _is_ self-describing
- ~~[`bincode` v2.0.0-rc.1](https://crates.io/crates/bincode/2.0.0-rc.1) (using [this PR](https://github.com/bincode-org/bincode/pull/586))~~ This actually works for the latest release (v1.3.3) of [`bincode`](https://crates.io/crates/bincode) as well. You just need to be sure to use fixed-int encoding.
- [`postcard`](https://crates.io/crates/postcard)
## Future Work
Ideally, we would refactor the `serde` module, but I don't think I'll do that in this PR so as to keep the diff relatively small (and to avoid any painful rebases). This should probably be done once this is merged, though.
Some areas we could improve with a refactor:
* Split deserialization logic across multiple files
* Consolidate helper functions/structs
* Make the logic more DRY
---
## Changelog
- Add support for non-self-describing de/serialization using reflection.
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
This reverts commit 53d387f340.
# Objective
Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.
Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
- `ReflectDefault` can be used to create default values for reflected types
- `std` primitives that are `Default`-constructable should register `ReflectDefault`
## Solution
- register `ReflectDefault`
# Objective
Fixes#6378
`bevy_transform` is missing a feature corresponding to the `serialize` feature on the `bevy` crate.
## Solution
Adds a `serialize` feature to `bevy_transform`.
Derives `serde::Serialize` and `Deserialize` when feature is enabled.
# Objective
- fix new clippy lints before they get stable and break CI
## Solution
- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`
## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
# Objective
When running the scene example, you might notice we end up printing out the following:
```ron
// ...
{
"scene::ComponentB": (
value: "hello",
_time_since_startup: (
secs: 0,
nanos: 0,
),
),
},
// ...
```
We should not be printing out `_time_since_startup` as the field is marked with `#[reflect(skip_serializing)]`:
```rust
#[derive(Component, Reflect)]
#[reflect(Component)]
struct ComponentB {
pub value: String,
#[reflect(skip_serializing)]
pub _time_since_startup: Duration,
}
```
This is because when we create the `DynamicScene`, we end up calling `Reflect::clone_value`:
82126697ee/crates/bevy_scene/src/dynamic_scene_builder.rs (L114-L114)
This results in non-Value types being cloned into Dynamic types, which means the `TypeId` returned from `reflected_value.type_id()` is not the same as the original component's.
And this meant we were not able to locate the correct `TypeRegistration`.
## Solution
Use `TypeInfo::type_id()` instead of calling `Any::type_id()` on the value directly.
---
## Changelog
* Fix a bug introduced in `0.9.0-dev` where scenes disregarded component's type registrations
# Objective
Resolves#6197
Make it so that doc comments can be retrieved via reflection.
## Solution
Adds the new `documentation` feature to `bevy_reflect` (disabled by default).
When enabled, documentation can be found using `TypeInfo::doc` for reflected types:
```rust
/// Some struct.
///
/// # Example
///
/// ```ignore
/// let some_struct = SomeStruct;
/// ```
#[derive(Reflect)]
struct SomeStruct;
let info = <SomeStruct as Typed>::type_info();
assert_eq!(
Some(" Some struct.\n\n # Example\n\n ```ignore\n let some_struct = SomeStruct;\n ```"),
info.docs()
);
```
### Notes for Reviewers
The bulk of the files simply added the same 16 lines of code (with slightly different documentation). Most of the real changes occur in the `bevy_reflect_derive` files as well as in the added tests.
---
## Changelog
* Added `documentation` feature to `bevy_reflect`
* Added `TypeInfo::docs` method (and similar methods for all info types)
# Objective
Currently, surprising behavior happens when specifying `#[reflect(...)]` or `#[reflect_value(...)]` multiple times. Rather than merging the traits lists from all attributes, only the trait list from the last attribute is used. For example, in the following code, only the `Debug` and `Hash` traits are reflected and not `Default` or `PartialEq`:
```rs
#[derive(Debug, PartialEq, Hash, Default, Reflect)]
#[reflect(PartialEq, Default)]
#[reflect(Debug, Hash)]
struct Foo;
```
This is especially important when some traits should only be reflected under certain circumstances. For example, this previously had surprisingly behavior when the "serialize" feature is enabled:
```rs
#[derive(Debug, Hash, Reflect)]
#[reflect(Debug, Hash)]
#[cfg_attr(
feature = "serialize",
derive(Serialize, Deserialize),
reflect(Serialize, Deserialize)
]
struct Foo;
```
In addition, compile error messages generated from using the derive macro often point to the `#[derive(Reflect)]` rather than to the source of the error. It would be a lot more helpful if the compiler errors pointed to what specifically caused the error rather than just to the derive macro itself.
## Solution
Merge the trait lists in all `#[reflect(...)]` and `#[reflect_value(...)]` attributes. Additionally, make `#[reflect]` and `#[reflect_value]` mutually exclusive.
Additionally, span information is carried throughout some parts of the code now to ensure that error messages point to more useful places and better indicate what caused those errors. For example, `#[reflect(Hash, Hash)]` points to the second `Hash` as the source of an error. Also, in the following example, the compiler error now points to the `Hash` in `#[reflect(Hash)]` rather than to the derive macro:
```rs
#[derive(Reflect)]
#[reflect(Hash)] // <-- compiler error points to `Hash` for lack of a `Hash` implementation
struct Foo;
```
---
## Changelog
Changed
- Using multiple `#[reflect(...)]` or `#[reflect_value(...)]` attributes now merges the trait lists. For example, `#[reflect(Debug, Hash)] #[reflect(PartialEq, Default)]` is equivalent to `#[reflect(Debug, Hash, PartialEq, Default)]`.
- Multiple `#[reflect(...)]` and `#[reflect_value(...)]` attributes were previously accepted, but only the last attribute was respected.
- Using both `#[reflect(...)]` and `#[reflect_value(...)]` was previously accepted, but had surprising behavior. This is no longer accepted.
- Improved error messages for `#[derive(Reflect)]` by propagating useful span information. Many errors should now point to the source of those errors rather than to the derive macro.
# Objective
Currently, arrays cannot indexed using the reflection path API.
This change makes them behave like lists so `x.get_path("list[0]")` will behave the same way, whether x.list is a "List" (e.g. a Vec) or an array.
## Solution
When syntax is encounterd `[ <idx> ]` we check if the referenced type is either a `ReflectRef::List` or `ReflectRef::Array` (or `ReflectMut` for the mutable case). Since both provide the identical API for accessing entries, we do the same for both, although it requires code duplication as far as I can tell.
This was born from working on #5764, but since this seems to be an easier fix (and I am not sure if I can actually solve #5812) I figured it might be worth to split this out.
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
# Objective
Add traits to events in `bevy_input` and `bevy_windows`: `Copy`, `Serialize`/`Deserialize`, `PartialEq`, and `Eq`, as requested in https://github.com/bevyengine/bevy/issues/6022, https://github.com/bevyengine/bevy/issues/6023, https://github.com/bevyengine/bevy/issues/6024.
## Solution
Added the traits to events in `bevy_input` and `bevy_windows`. Added dependency of `serde` in `Cargo.toml` of `bevy_input`.
## Migration Guide
If one has been `.clone()`'ing `bevy_input` events, Clippy will now complain about that. Just remove `.clone()` to solve.
## Other Notes
Some events in `bevy_input` had `f32` fields, so `Eq` trait was not derived for them.
Some events in `bevy_windows` had `String` fields, so `Copy` trait was not derived for them.
Co-authored-by: targrub <62773321+targrub@users.noreply.github.com>
# Objective
When trying derive `Debug` for type that has `DynamicEnum` it wasn't possible, since neither of `DynamicEnum`, `DynamicTuple`, `DynamicVariant` or `DynamicArray` implements `Debug`.
## Solution
Implement Debug for those types, using `derive` macro
---
## Changelog
- `DynamicEnum`, `DynamicTuple`, `DynamicVariant` and `DynamicArray` now implements `Debug`
# Objective
- To address problems outlined in https://github.com/bevyengine/bevy/issues/5245
## Solution
- Introduce `reflect(skip_serializing)` on top of `reflect(ignore)` which disables automatic serialisation to scenes, but does not disable reflection of the field.
---
## Changelog
- Adds:
- `bevy_reflect::serde::type_data` module
- `SerializationData` structure for describing which fields are to be/not to be ignored, automatically registers as type_data for struct-based types
- the `skip_serialization` flag for `#[reflect(...)]`
- Removes:
- ability to ignore Enum variants in serialization, since that didn't work anyway
## Migration Guide
- Change `#[reflect(ignore)]` to `#[reflect(skip_serializing)]` where disabling reflection is not the intended effect.
- Remove ignore/skip attributes from enum variants as these won't do anything anymore
# Objective
Fixes Issue #6005.
## Solution
Replaced WorldQuery with ReadOnlyWorldQuery on F generic in Query filters and QueryState to restrict its trait bound.
## Migration Guide
Query filter (`F`) generics are now bound by `ReadOnlyWorldQuery`, rather than `WorldQuery`. If for some reason you were requesting `Query<&A, &mut B>`, please use `Query<&A, With<B>>` instead.
# Objective
- I'm currently working on being able to call methods on reflect types (https://github.com/jakobhellermann/bevy_reflect_fns)
- for that, I'd like to add methods to the `Input<KeyCode>` resource (which I'm doing by registering type data)
- implementing `Reflect` is currently a requirement for having type data in the `TypeRegistry`
## Solution
- derive `Reflect` for `KeyCode` and `Input`
- uses `#[reflect_value]` for `Input`, since it's fields aren't supposed to be observable
- using reflect_value would need `Clone` bounds on `T`, but since all the methods (`.pressed` etc) already require `T: Copy`, I unified everything to requiring `Copy`
- add `Send + Sync + 'static` bounds, also required by reflect derive
## Unrelated improvements
I can extract into a separate PR if needed.
- the `Reflect` derive would previously ignore `#[reflect_value]` and only accept `#[reflect_value()]` which was a bit confusing
- the generated code used `val.clone()` on a reference, which is fine if `val` impls `Clone`, but otherwise also compiles with a worse error message. Change to `std::clone::Clone::clone(val)` instead which gives a neat `T does not implement Clone` error
# Objective
The documentation on `Reflect` doesn't account for the recently added reflection traits: [`Array`](https://github.com/bevyengine/bevy/pull/4701) and [`Enum`](https://github.com/bevyengine/bevy/pull/4761).
## Solution
Updated the documentation for `Reflect` to account for the `Array` and `Enum`.
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Update ron to 0.8.0
- Fix breaking changes
- Closes#5862
## Solution
- Removed now non-existing method call (behavior is now the same without it)
# Objective
Promote the `Rect` utility of `sprite::Rect`, which defines a rectangle
by its minimum and maximum corners, to the `bevy_math` crate to make it
available as a general math type to all crates without the need to
depend on the `bevy_sprite` crate.
Fixes#5575
## Solution
Move `sprite::Rect` into `bevy_math` and fix all uses.
Implement `Reflect` for `Rect` directly into the `bevy_reflect` crate by
having `bevy_reflect` depend on `bevy_math`. This looks like a new
dependency, but the `bevy_reflect` was "cheating" for other math types
by directly depending on `glam` to reflect other math types, thereby
giving the illusion that there was no dependency on `bevy_math`. In
practice conceptually Bevy's math types are reflected into the
`bevy_reflect` crate to avoid a dependency of that crate to a "lower
level" utility crate like `bevy_math` (which in turn would make
`bevy_reflect` be a dependency of most other crates, and increase the
risk of circular dependencies). So this change simply formalizes that
dependency in `Cargo.toml`.
The `Rect` struct is also augmented in this change with a collection of
utility methods to improve its usability. A few uses cases are updated
to use those new methods, resulting is more clear and concise syntax.
---
## Changelog
### Changed
- Moved the `sprite::Rect` type into `bevy_math`.
### Added
- Added several utility methods to the `math::Rect` type.
## Migration Guide
The `bevy::sprite::Rect` type moved to the math utility crate as
`bevy::math::Rect`. You should change your imports from `use
bevy::sprite::Rect` to `use bevy::math::Rect`.
# Objective
Sometimes it's useful to be able to retrieve all the fields of a container type so that they may be processed separately. With reflection, however, we typically only have access to references.
The only alternative is to "clone" the value using `Reflect::clone_value`. This, however, returns a Dynamic type in most cases. The solution there would be to use `FromReflect` instead, but this also has a problem in that it means we need to add `FromReflect` as an additional bound.
## Solution
Add a `drain` method to all container traits. This returns a `Vec<Box<dyn Reflect>>` (except for `Map` which returns `Vec<(Box<dyn Reflect>, Box<dyn Reflect>)>`).
This allows us to do things a lot simpler. For example, if we finished processing a struct and just need a particular value:
```rust
// === OLD === //
/// May or may not return a Dynamic*** value (even if `container` wasn't a `DynamicStruct`)
fn get_output(container: Box<dyn Struct>, output_index: usize) -> Box<dyn Reflect> {
container.field_at(output_index).unwrap().clone_value()
}
// === NEW === //
/// Returns _exactly_ whatever was in the given struct
fn get_output(container: Box<dyn Struct>, output_index: usize) -> Box<dyn Reflect> {
container.drain().remove(output_index).unwrap()
}
```
### Discussion
* Is `drain` the best method name? It makes sense that it "drains" all the fields and that it consumes the container in the process, but I'm open to alternatives.
---
## Changelog
* Added a `drain` method to the following traits:
* `Struct`
* `TupleStruct`
* `Tuple`
* `Array`
* `List`
* `Map`
* `Enum`
# Objective
- The reflection `List` trait does not have a `pop` function.
- Popping elements off a list is a common use case and is almost always supported by `List`-like types.
## Solution
- Add the `pop()` method to the `List` trait and add the appropriate implementations of this function.
## Migration Guide
- Any custom type that implements the `List` trait will now need to implement the `pop` method.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#5763
## Solution
Implemented as reflect value like the current `Range`. Is there a benefit to changing everything to a reflect struct?