# Objective
fix webgpu+chrome(119) textureSample in non-uniform control flow error
## Solution
modify view transmission texture sampling to use textureSampleLevel.
there are no mips for the view transmission texture, so this doesn't
change the result, but it removes the need for the samples to be in
uniform control flow.
note: in future we may add a mipchain to the transmission texture to
improve the blur effect. if uniformity analysis hasn't improved, this
would require switching to manual derivative calculations (which is
something we plan to do anyway).
## Objective
- Split different types of gizmos into their own files
## Solution
- Move `arc_2d` and `Arc2dBuilder` into `arcs.rs`
- turns out there's no 3d arc function! I'll add one Soon(TM) in another
MR
## Changelog
- Changed
- moved `gizmos::Arc2dBuilder` to `gizmos::arcs::Arc2dBuilder`
## Migration Guide
- `gizmos::Arc2dBuilder` -> `gizmos::arcs::Arc2dBuilder`
# Objective
Problems:
* The clipped, non-visible regions of UI nodes are interactive.
* `RelativeCursorPostion` is set relative to the visible part of the
node. It should be relative to the whole node.
* The `RelativeCursorPostion::mouse_over` method returns `true` when the
mouse is over a clipped part of a node.
fixes#10470
## Solution
Intersect a node's bounding rect with its clipping rect before checking
if it contains the cursor.
Added the field `normalized_visible_node_rect` to
`RelativeCursorPosition`. This is set to the bounds of the unclipped
area of the node rect by `ui_focus_system` expressed in normalized
coordinates relative to the entire node.
Instead of checking if the normalized cursor position lies within a unit
square, it instead checks if it is contained by
`normalized_visible_node_rect`.
Added outlines to the `overflow` example that appear when the cursor is
over the visible part of the images, but not the clipped area.
---
## Changelog
* `ui_focus_system` intersects a node's bounding rect with its clipping
rect before checking if mouse over.
* Added the field `normalized_visible_node_rect` to
`RelativeCursorPosition`. This is set to the bounds of the unclipped
area of the node rect by `ui_focus_system` expressed in normalized
coordinates relative to the entire node.
* `RelativeCursorPostion` is calculated relative to the whole node's
position and size, not only the visible part.
* `RelativeCursorPosition::mouse_over` only returns true when the mouse
is over an unclipped region of the UI node.
* Removed the `Deref` and `DerefMut` derives from
`RelativeCursorPosition` as it is no longer a single field struct.
* Added some outlines to the `overflow` example that respond to
`Interaction` changes.
## Migration Guide
The clipped areas of UI nodes are no longer interactive.
`RelativeCursorPostion` is now calculated relative to the whole node's
position and size, not only the visible part. Its `mouse_over` method
only returns true when the cursor is over an unclipped part of the node.
`RelativeCursorPosition` no longer implements `Deref` and `DerefMut`.
# Objective
- Fixes#10695
## Solution
Fixed obvious blunder in `PartialEq` implementation for
`UntypedAssetId`'s where the `TypeId` was not included in the
comparison. This was not picked up in the unit tests I added because
they only tested over a single asset type.
# Objective
- I've been experimenting with different patterns to try and make async
tasks more convenient. One of the better ones I've found is to return a
command queue to allow for deferred &mut World access. It can be
convenient to check for task completion in a normal system, but it is
hard to do something with the command queue after getting it back. This
pr adds a `append` to Commands. This allows appending the returned
command queue onto the system's commands.
## Solution
- I edited the async compute example to use the new `append`, but not
sure if I should keep the example changed as this might be too
opinionated.
## Future Work
- It would be very easy to pull the pattern used in the example out into
a plugin or a external crate, so users wouldn't have to add the checking
system.
---
## Changelog
- add `append` to `Commands` and `CommandQueue`
# Objective
Enables warning on `clippy::undocumented_unsafe_blocks` across the
workspace rather than only in `bevy_ecs`, `bevy_transform` and
`bevy_utils`. This adds a little awkwardness in a few areas of code that
have trivial safety or explain safety for multiple unsafe blocks with
one comment however automatically prevents these comments from being
missed.
## Solution
This adds `undocumented_unsafe_blocks = "warn"` to the workspace
`Cargo.toml` and fixes / adds a few missed safety comments. I also added
`#[allow(clippy::undocumented_unsafe_blocks)]` where the safety is
explained somewhere above.
There are a couple of safety comments I added I'm not 100% sure about in
`bevy_animation` and `bevy_render/src/view` and I'm not sure about the
use of `#[allow(clippy::undocumented_unsafe_blocks)]` compared to adding
comments like `// SAFETY: See above`.
# Objective
First, some terminology:
- **Minor radius**: The radius of the tube of a torus, i.e. the
"half-thickness"
- **Major radius**: The distance from the center of the tube to the
center of the torus
- **Inner radius**: The radius of the hole (if it exists), `major_radius
- minor_radius`
- **Outer radius**: The radius of the overall shape, `major_radius +
minor_radius`
- **Ring torus**: The familiar donut shape with a hole in the center,
`major_radius > minor_radius`
- **Horn torus**: A torus that doesn't have a hole but also isn't
self-intersecting, `major_radius == minor_radius`
- **Spindle torus**: A self-intersecting torus, `major_radius <
minor_radius`
Different tori from [Wikipedia](https://en.wikipedia.org/wiki/Torus),
where *R* is the major radius and *r* is the minor radius:
![kuva](https://github.com/bevyengine/bevy/assets/57632562/53ead786-2402-43a7-ae8a-5720e6e54dcc)
Currently, Bevy's torus is represented by a `radius` and `ring_radius`.
I believe these correspond to the outer radius and minor radius, but
they are rather confusing and inconsistent names, and they make the
assumption that the torus always has a ring.
I also couldn't find any other big engines using this representation;
[Godot](https://docs.godotengine.org/en/stable/classes/class_torusmesh.html)
and [Unity
ProBuilder](https://docs.unity3d.com/Packages/com.unity.probuilder@4.0/manual/Torus.html)
use the inner and outer radii, while
[Unreal](https://docs.unrealengine.com/5.3/en-US/BlueprintAPI/GeometryScript/Primitives/AppendTorus/)
uses the minor and major radii.
[Blender](https://docs.blender.org/manual/en/latest/modeling/meshes/primitives.html#torus)
supports both, but defaults to minor/major.
Bevy's `Torus` primitive should have an efficient, consistent, clear and
flexible representation, and the current `radius` and `ring_radius`
properties are not ideal for that.
## Solution
Change `Torus` to be represented by a `minor_radius` and `major_radius`.
- Mathematically correct and consistent
- Flexible, not restricted to ring tori
- Computations and conversions are efficient
- `inner_radius = major_radius - minor_radius`
- `outer_radius = major_radius + minor_radius`
- Mathematical formulae for things like area and volume rely on the
minor and major radii, no conversion needed
Perhaps the primary issue with this representation is that "minor
radius" and "major radius" are rather mathematical, and an inner/outer
radius can be more intuitive in some cases. However, this can be
mitigated with constructors and helpers.
# Objective
Make the impl block for RemovedSystem generic so that the methods can be
called for systems that have inputs or outputs.
## Solution
Simply adding generics to the impl block.
# Objective
Adds `.entry` to `EntityWorldMut` with `Entry`, `OccupiedEntry` and
`VacantEntry` for easier in-situ modification, based on `HashMap.entry`.
Fixes#10635
## Solution
This adds the `entry` method to `EntityWorldMut` which returns an
`Entry`. This is an enum of `OccupiedEntry` and `VacantEntry` and has
the methods `and_modify`, `insert_entry`, `or_insert`, `or_insert_with`
and `or_default`. The only difference between `OccupiedEntry` and
`VacantEntry` is the type, they are both a mutable reference to the
`EntityWorldMut` and a marker for the component type, `HashMap` also
stores things to make it quicker to access the data in `OccupiedEntry`
but I wasn't sure if we had anything it would be logical to store to
make accessing/modifying the component faster? As such, the differences
are that `OccupiedEntry` assumes the entity has the component (because
nothing else can have an `EntityWorldMut` so it can't be changed outside
the entry api) and has different methods.
All the methods are based very closely off `hashbrown::HashMap` (because
its easier to read the source of) with a couple of quirks like
`OccupiedEntry.insert` doesn't return the old value because we don't
appear to have an api for mem::replacing components.
---
## Changelog
- Added a new function `EntityWorldMut.entry` which returns an `Entry`,
allowing easier in-situ modification of a component.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
# Objective
Partially Addresses #10612
fix: add clippy::doc_markdown linting to cargo workspace
Rather than do all the warnings in `tools/ci/src/main.rs` in one-shot,
just wanted to have an initial pr adding the first one to get the form
correct as some may trigger build errors and require changes to get
merged more easily.
## Solution
- adding the doc_markdown and removing it from the ci check as it'll now
be a build error during normal compilation.
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Fixes#10629
- `UntypedAssetId` and `AssetId` (along with `UntypedHandle` and
`Handle`) do not hash to the same values when pointing to the same
`Asset`. Additionally, comparison and conversion between these types
does not follow idiomatic Rust standards.
## Solution
- Added new unit tests to validate/document expected behaviour
- Added trait implementations to make working with Un/Typed values more
ergonomic
- Ensured hashing and comparison between Un/Typed values is consistent
- Removed `From` trait implementations that panic, and replaced them
with `TryFrom`
---
## Changelog
- Ensured `Handle::<A>::hash` and `UntypedHandle::hash` will produce the
same value for the same `Asset`
- Added non-panicing `Handle::<A>::try_typed`
- Added `PartialOrd` to `UntypedHandle` to match `Handle<A>` (this will
return `None` for `UntypedHandles` for differing `Asset` types)
- Added `TryFrom<UntypedHandle>` for `Handle<A>`
- Added `From<Handle<A>>` for `UntypedHandle`
- Removed panicing `From<Untyped...>` implementations. These are
currently unused within the Bevy codebase, and shouldn't be used
externally, hence removal.
- Added cross-implementations of `PartialEq` and `PartialOrd` for
`UntypedHandle` and `Handle<A>` allowing direct comparison when
`TypeId`'s match.
- Near-identical changes to `AssetId` and `UntypedAssetId`
## Migration Guide
If you relied on any of the panicing `From<Untyped...>` implementations,
simply call the existing `typed` methods instead. Alternatively, use the
new `TryFrom` implementation instead to directly expose possible
mistakes.
## Notes
I've made these changes since `Handle` is such a fundamental type to the
entire `Asset` ecosystem within Bevy, and yet it had pretty unclear
behaviour with no direct testing. The fact that hashing untyped vs typed
versions of the same handle would produce different values is something
I expect to cause a very subtle bug for someone else one day.
I haven't included it in this PR to avoid any controversy, but I also
believe the `typed_unchecked` methods should be removed from these
types, or marked as `unsafe`. The `texture_atlas` example currently uses
it, and I believe it is a bad choice. The performance gained by not
type-checking before conversion would be entirely dwarfed by the act of
actually loading an asset and creating its handle anyway. If an end user
is in a tight loop repeatedly calling `typed_unchecked` on an
`UntypedHandle` for the entire runtime of their application, I think the
small performance drop caused by that safety check is ~~a form of cosmic
justice~~ reasonable.
# Objective
- Standardize fmt for toml files
## Solution
- Add [taplo](https://taplo.tamasfe.dev/) to CI (check for fmt and diff
for toml files), for context taplo is used by the most popular extension
in VScode [Even Better
TOML](https://marketplace.visualstudio.com/items?itemName=tamasfe.even-better-toml
- Add contribution section to explain toml fmt with taplo.
Now to pass CI you need to run `taplo fmt --option indent_string=" "` or
if you use vscode have the `Even Better TOML` extension with 4 spaces
for indent
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- The current shader code is misleading since it makes it look like a
struct is passed to the bind group 0 but in reality only the color is
passed. They just happen to have the exact same memory layout so wgsl
doesn't complain and it works.
- The struct is defined after the `impl Material` block which is
backwards from pretty much every other usage of the `impl` block in
bevy.
## Solution
- Remove the unnecessary struct in the shader
- move the impl block
## Objective
- Give all the intuitive groups of gizmos their own file
- don't be a breaking change
- don't change Gizmos interface
- eventually do arcs too
- future types of gizmos should be in their own files
- see also https://github.com/bevyengine/bevy/issues/9400
## Solution
- Moved `gizmos.circle`, `gizmos.2d_circle`, and assorted helpers into
`circles.rs`
- Can also do arcs in this MR if y'all want; just figured I should do
one thing at a time.
## Changelog
- Changed
- `gizmos::CircleBuilder` moved to `gizmos::circles::Circle2dBuilder`
- `gizmos::Circle2dBuilder` moved to `gizmos::circles::Circle2dBuilder`
## Migration Guide
- change `gizmos::CircleBuilder` to `gizmos::circles::Circle2dBuilder`
- change `gizmos::Circle2dBuilder` to `gizmos::circles::Circle2dBuilder`
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
This PR adds some helpers for `Triangle2d` to work with its winding
order. This could also be extended to polygons (and `Triangle3d` once
it's added).
## Solution
- Add `WindingOrder` enum with `Clockwise`, `Counterclockwise` and
`Invalid` variants
- `Invalid` is for cases where the winding order can not be reliably
computed, i.e. the points lie on a single line and the area is zero
- Add `Triangle2d::winding_order` method that uses a signed surface area
to determine the winding order
- Add `Triangle2d::reverse` method that reverses the winding order by
swapping the second and third vertices
The API looks like this:
```rust
let mut triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-0.5, -1.2),
Vec2::new(-1.0, -1.0),
);
assert_eq!(triangle.winding_order(), WindingOrder::Clockwise);
// Reverse winding order
triangle.reverse();
assert_eq!(triangle.winding_order(), WindingOrder::Counterclockwise);
```
I also added tests to make sure the methods work correctly. For now,
they live in the same file as the primitives.
## Open questions
- Should it be `Counterclockwise` or `CounterClockwise`? The first one
is more correct but perhaps a bit less readable. Counter-clockwise is
also a valid spelling, but it seems to be a lot less common than
counterclockwise.
- Is `WindingOrder::Invalid` a good name? Parry uses
`TriangleOrientation::Degenerate`, but I'm not a huge fan, at least as a
non-native English speaker. Any better suggestions?
- Is `WindingOrder` fine in `bevy_math::primitives`? It's not specific
to a dimension, so I put it there for now.
# Objective
Fix the `bevy_asset/file_watcher` feature in practice depending on
multithreading, while not informing the user of it.
**As I understand it** (I didn't check it), the file watcher feature
depends on spawning a concurrent thread to receive file update events
from the `notify-debouncer-full` crate. But if multithreading is
disabled, that thread will never have time to read the events and
consume them.
- Fixes#10573
## Solution
Add a `compile_error!` causing compilation failure if `file_watcher` is
enabled while `multi-threaded` is disabled.
This is considered better than adding a dependency on `multi-threaded`
on the `file_watcher`, as (according to @mockersf) toggling on/off
`multi-threaded` has a non-zero chance of changing behavior. And we
shouldn't implicitly change behavior. A compilation failure prevents
compilation of code that is invalid, while informing the user of the
steps needed to fix it.
# Objective
- Sometimes it's very useful to know if a `Transform` contains any `NaN`
or infinite values. It's a bit boiler-plate heavy to check translation,
rotation and scale individually.
## Solution
- Add a new method `is_finite` that returns true if, and only if
translation, rotation and scale all are finite.
- It's a natural extension of `Quat::is_finite`, and `Vec3::is_finite`,
which return true if, and only if all their components' `is_finite()`
returns true.
---
## Changelog
- Added `Transform::is_finite`
# Objective
The `map_async` method involves a type `BufferAsyncError`:
https://docs.rs/bevy/latest/bevy/render/render_resource/struct.BufferSlice.html#method.map_async
This type is not re-exported in Bevy, so if a user wants to store a
struct involving this type they have to add wgpu manually to their
manifest.
## Solution
- Re-export wgpu::BufferAsyncError
---
## Changelog
### Added
- Re-export wgpu::BufferAsyncError
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796
## Solution
- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```
## Changelog
- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```
---------
Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
# Objective
- Follow up on https://github.com/bevyengine/bevy/pull/10519, diving
deeper into optimising `Entity` due to the `derive`d `PartialOrd`
`partial_cmp` not being optimal with codegen:
https://github.com/rust-lang/rust/issues/106107
- Fixes#2346.
## Solution
Given the previous PR's solution and the other existing LLVM codegen
bug, there seemed to be a potential further optimisation possible with
`Entity`. In exploring providing manual `PartialOrd` impl, it turned out
initially that the resulting codegen was not immediately better than the
derived version. However, once `Entity` was given `#[repr(align(8)]`,
the codegen improved remarkably, even more once the fields in `Entity`
were rearranged to correspond to a `u64` layout (Rust doesn't
automatically reorder fields correctly it seems). The field order and
`align(8)` additions also improved `to_bits` codegen to be a single
`mov` op. In turn, this led me to replace the previous
"non-shortcircuiting" impl of `PartialEq::eq` to use direct `to_bits`
comparison.
The result was remarkably better codegen across the board, even for
hastable lookups.
The current baseline codegen is as follows:
https://godbolt.org/z/zTW1h8PnY
Assuming the following example struct that mirrors with the existing
`Entity` definition:
```rust
#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
pub struct FakeU64 {
high: u32,
low: u32,
}
```
the output for `to_bits` is as follows:
```
example::FakeU64::to_bits:
shl rdi, 32
mov eax, esi
or rax, rdi
ret
```
Changing the struct to:
```rust
#[derive(Clone, Copy, Eq)]
#[repr(align(8))]
pub struct FakeU64 {
low: u32,
high: u32,
}
```
and providing manual implementations for `PartialEq`/`PartialOrd`/`Ord`,
`to_bits` now optimises to:
```
example::FakeU64::to_bits:
mov rax, rdi
ret
```
The full codegen example for this PR is here for reference:
https://godbolt.org/z/n4Mjx165a
To highlight, `gt` comparison goes from
```
example::greater_than:
cmp edi, edx
jae .LBB3_2
xor eax, eax
ret
.LBB3_2:
setne dl
cmp esi, ecx
seta al
or al, dl
ret
```
to
```
example::greater_than:
cmp rdi, rsi
seta al
ret
```
As explained on Discord by @scottmcm :
>The root issue here, as far as I understand it, is that LLVM's
middle-end is inexplicably unwilling to merge loads if that would make
them under-aligned. It leaves that entirely up to its target-specific
back-end, and thus a bunch of the things that you'd expect it to do that
would fix this just don't happen.
## Benchmarks
Before discussing benchmarks, everything was tested on the following
specs:
AMD Ryzen 7950X 16C/32T CPU
64GB 5200 RAM
AMD RX7900XT 20GB Gfx card
Manjaro KDE on Wayland
I made use of the new entity hashing benchmarks to see how this PR would
improve things there. With the changes in place, I first did an
implementation keeping the existing "non shortcircuit" `PartialEq`
implementation in place, but with the alignment and field ordering
changes, which in the benchmark is the `ord_shortcircuit` column. The
`to_bits` `PartialEq` implementation is the `ord_to_bits` column. The
main_ord column is the current existing baseline from `main` branch.
![Screenshot_20231114_132908](https://github.com/bevyengine/bevy/assets/3116268/cb9090c9-ff74-4cc5-abae-8e4561332261)
My machine is not super set-up for benchmarking, so some results are
within noise, but there's not just a clear improvement between the
non-shortcircuiting implementation, but even further optimisation taking
place with the `to_bits` implementation.
On my machine, a fair number of the stress tests were not showing any
difference (indicating other bottlenecks), but I was able to get a clear
difference with `many_foxes` with a fox count of 10,000:
Test with `cargo run --example many_foxes --features
bevy/trace_tracy,wayland --release -- --count 10000`:
![Screenshot_20231114_144217](https://github.com/bevyengine/bevy/assets/3116268/89bdc21c-7209-43c8-85ae-efbf908bfed3)
On avg, a framerate of about 28-29FPS was improved to 30-32FPS. "This
trace" represents the current PR's perf, while "External trace"
represents the `main` branch baseline.
## Changelog
Changed: micro-optimized Entity align and field ordering as well as
providing manual `PartialOrd`/`Ord` impls to help LLVM optimise further.
## Migration Guide
Any `unsafe` code relying on field ordering of `Entity` or sufficiently
cursed shenanigans should change to reflect the different internal
representation and alignment requirements of `Entity`.
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: NathanW <nathansward@comcast.net>
Bevy introduced unintentional breaking behaviour along with the v0.12.0
release regarding the `App::set_runner` API. See: #10385, #10389 for
details. We weren't able to catch this before release because this API
is only used internally in one or two places (the very places which
motivated the break).
This commit adds a regression test to help guarantee some expected
behaviour for custom runners, namely that `app::update` won't be called
before the runner has a chance to initialise state.
# Objective
There is no easy way to discard some amount for `Time<Fixed>`'s
overstep. This can be useful for online games when the client receives
information about a tick (which happens when you get a FPS drop or the
ping changes for example) it has not yet processed, it can discard
overstep equal to the number of ticks it can jump ahead.
Currently the workaround would be to create a new `Time<Fixed>` copy the
old timestep, advance it by the overstep amount that would remain after
subtracting the discarded amount, and using `.context_mut()` to
overwrite the old context with the new one. If you overwrite the whole
`Time<Fixed>` or forget to copy over the timestep you can introduce
undesirable side effects.
## Solution
Introduce a `discard_overstep` method, which discards the provided
amount of overstep. It uses satuarting_sub to avoid errors (negative
`Duration`s do not exist).
---
## Changelog
- Added `discard_overstep` function to `Time<Fixed>`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fix the asset hack for wasm examples so that they work on the website
- Use patches instead of sed for wasm hacks so that it fails explicitly
when they need to be updated
# Objective
- Allow bevy applications that does not have any assets folder to start
from a read-only directory. (typically installed to a systems folder)
Fixes#10613
## Solution
- warn instead of panic when assets folder creation fails.
# Objective
- Currently, in 0.12 there is an issue that it is not possible to build
bevy for Wasm with feature "file_watcher" enabled. It still would not
compile, but now with proper explanation.
- Fixes https://github.com/bevyengine/bevy/issues/10507
## Solution
- Remove `notify-debouncer-full` dependency on WASM platform entirely.
- Compile with "file_watcher" feature now on platform `wasm32` gives
meaningful compile error.
---
## Changelog
### Fixed
- Compile with "file_watcher" feature now on platform `wasm32` gives
meaningful compile error.
# Add and implement constructors for Primitives
- Adds more Primitive types and adds a constructor for almost all of
them
- Works towards finishing #10572
## Solution
- Created new primitives
- Torus
- Conical Frustum
- Cone
- Ellipse
- Implemented constructors (`Primitive::new`) for almost every single
other primitive.
---------
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Handy to have a constant instead of `VolumeLevel::new(0.0)`
- `VolumeLevel::new` is not `const`
## Solution
- Adds a `VolumeLevel::ZERO` constant, which we have for most of our
other types where it makes sense.
---
## Changelog
- Add `VolumeLevel::ZERO`
# Objective
The way `bevy_app` works was changed unnecessarily in #9826 whose
changes should have been specific to `bevy_winit`.
I'm somewhat disappointed that happened and we can see in
https://github.com/bevyengine/bevy/pull/10195 that it made things more
complicated.
Even worse, in #10385 it's clear that this breaks the clean abstraction
over another engine someone built with Bevy!
Fixes#10385.
## Solution
- Move the changes made to `bevy_app` in #9826 to `bevy_winit`
- Revert the changes to `ScheduleRunnerPlugin` and the `run_once` runner
in #10195 as they're no longer necessary.
While this code is breaking relative to `0.12.0`, it reverts the
behavior of `bevy_app` back to how it was in `0.11`.
Due to the nature of the breakage relative to `0.11` I hope this will be
considered for `0.12.1`.
# Objective
- Fix the panic on using Images in UiMaterials due to assets not being
loaded.
- Fixes#10513
## Solution
- add `let else` statement that `return`s or `continue`s instead of
unwrapping, causing a panic.
# Objective
- Fixes#10518
## Solution
I've added a method to `LoadContext`, `load_direct_with_reader`, which
mirrors the behaviour of `load_direct` with a single key difference: it
is provided with the `Reader` by the caller, rather than getting it from
the contained `AssetServer`. This allows for an `AssetLoader` to process
its `Reader` stream, and then directly hand the results off to the
`LoadContext` to handle further loading. The outer `AssetLoader` can
control how the `Reader` is interpreted by providing a relevant
`AssetPath`.
For example, a Gzip decompression loader could process the asset
`images/my_image.png.gz` by decompressing the bytes, then handing the
decompressed result to the `LoadContext` with the new path
`images/my_image.png.gz/my_image.png`. This intuitively reflects the
nature of contained assets, whilst avoiding unintended behaviour, since
the generated path cannot be a real file path (a file and folder of the
same name cannot coexist in most file-systems).
```rust
#[derive(Asset, TypePath)]
pub struct GzAsset {
pub uncompressed: ErasedLoadedAsset,
}
#[derive(Default)]
pub struct GzAssetLoader;
impl AssetLoader for GzAssetLoader {
type Asset = GzAsset;
type Settings = ();
type Error = GzAssetLoaderError;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
_settings: &'a (),
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> {
Box::pin(async move {
let compressed_path = load_context.path();
let file_name = compressed_path
.file_name()
.ok_or(GzAssetLoaderError::IndeterminateFilePath)?
.to_string_lossy();
let uncompressed_file_name = file_name
.strip_suffix(".gz")
.ok_or(GzAssetLoaderError::IndeterminateFilePath)?;
let contained_path = compressed_path.join(uncompressed_file_name);
let mut bytes_compressed = Vec::new();
reader.read_to_end(&mut bytes_compressed).await?;
let mut decoder = GzDecoder::new(bytes_compressed.as_slice());
let mut bytes_uncompressed = Vec::new();
decoder.read_to_end(&mut bytes_uncompressed)?;
// Now that we have decompressed the asset, let's pass it back to the
// context to continue loading
let mut reader = VecReader::new(bytes_uncompressed);
let uncompressed = load_context
.load_direct_with_reader(&mut reader, contained_path)
.await?;
Ok(GzAsset { uncompressed })
})
}
fn extensions(&self) -> &[&str] {
&["gz"]
}
}
```
Because this example is so prudent, I've included an
`asset_decompression` example which implements this exact behaviour:
```rust
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.init_asset::<GzAsset>()
.init_asset_loader::<GzAssetLoader>()
.add_systems(Startup, setup)
.add_systems(Update, decompress::<Image>)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn(Camera2dBundle::default());
commands.spawn((
Compressed::<Image> {
compressed: asset_server.load("data/compressed_image.png.gz"),
..default()
},
Sprite::default(),
TransformBundle::default(),
VisibilityBundle::default(),
));
}
fn decompress<A: Asset>(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut compressed_assets: ResMut<Assets<GzAsset>>,
query: Query<(Entity, &Compressed<A>)>,
) {
for (entity, Compressed { compressed, .. }) in query.iter() {
let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else {
continue;
};
let uncompressed = uncompressed.take::<A>().unwrap();
commands
.entity(entity)
.remove::<Compressed<A>>()
.insert(asset_server.add(uncompressed));
}
}
```
A key limitation to this design is how to type the internally loaded
asset, since the example `GzAssetLoader` is unaware of the internal
asset type `A`. As such, in this example I store the contained asset as
an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset`
to handle typing the final result, which is the purpose of the
`decompress` system. This limitation can be worked around by providing
type information to the `GzAssetLoader`, such as `GzAssetLoader<Image,
ImageAssetLoader>`, but this would require registering the asset loader
for every possible decompression target.
Aside from this limitation, nested asset containerisation works as an
end user would expect; if the user registers a `TarAssetLoader`, and a
`GzAssetLoader`, then they can load assets with compound
containerisation, such as `images.tar.gz`.
---
## Changelog
- Added `LoadContext::load_direct_with_reader`
- Added `asset_decompression` example
## Notes
- While I believe my implementation of a Gzip asset loader is
reasonable, I haven't included it as a public feature of `bevy_asset` to
keep the scope of this PR as focussed as possible.
- I have included `flate2` as a `dev-dependency` for the example; it is
not included in the main dependency graph.
# Objective
Addresses #[10438](https://github.com/bevyengine/bevy/issues/10438)
The objective was to include the failing path in the error for the user
to see.
## Solution
Add a `path` field to the `ReadAssetBytesError::Io` variant to expose
the failing path in the error message.
## Migration Guide
- The `ReadAssetBytesError::Io` variant now contains two named fields
instead of converting from `std::io::Error`.
1. `path`: The requested (failing) path (`PathBuf`)
2. `source`: The source `std::io::Error`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fixes#10532
## Solution
I've updated the various `Event` send methods to return the sent
`EventId`(s). Since these methods previously returned nothing, and this
information is cheap to copy, there should be minimal negative
consequences to providing this additional information. In the case of
`send_batch`, an iterator is returned built from `Range` and `Map`,
which only consumes 16 bytes on the stack with no heap allocations for
all batch sizes. As such, the cost of this information is negligible.
These changes are reflected for `EventWriter` and `World`. For `World`,
the return types are optional to account for the possible lack of an
`Events` resource. Again, these methods previously returned no
information, so its inclusion should only be a benefit.
## Usage
Now when sending events, the IDs of those events is available for
immediate use:
```rust
// Example of a request-response system where the requester can track handled requests.
/// A system which can make and track requests
fn requester(
mut requests: EventWriter<Request>,
mut handled: EventReader<Handled>,
mut pending: Local<HashSet<EventId<Request>>>,
) {
// Check status of previous requests
for Handled(id) in handled.read() {
pending.remove(&id);
}
if !pending.is_empty() {
error!("Not all my requests were handled on the previous frame!");
pending.clear();
}
// Send a new request and remember its ID for later
let request_id = requests.send(Request::MyRequest { /* ... */ });
pending.insert(request_id);
}
/// A system which handles requests
fn responder(
mut requests: EventReader<Request>,
mut handled: EventWriter<Handled>,
) {
for (request, id) in requests.read_with_id() {
if handle(request).is_ok() {
handled.send(Handled(id));
}
}
}
```
In the above example, a `requester` system can send request events, and
keep track of which ones are currently pending by `EventId`. Then, a
`responder` system can act on that event, providing the ID as a
reference that the `requester` can use. Before this PR, it was not
trivial for a system sending events to keep track of events by ID. This
is unfortunate, since for a system reading events, it is trivial to
access the ID of a event.
---
## Changelog
- Updated `Events`:
- Added `send_batch`
- Modified `send` to return the sent `EventId`
- Modified `send_default` to return the sent `EventId`
- Updated `EventWriter`
- Modified `send_batch` to return all sent `EventId`s
- Modified `send` to return the sent `EventId`
- Modified `send_default` to return the sent `EventId`
- Updated `World`
- Modified `send_event` to return the sent `EventId` if sent, otherwise
`None`.
- Modified `send_event_default` to return the sent `EventId` if sent,
otherwise `None`.
- Modified `send_event_batch` to return all sent `EventId`s if sent,
otherwise `None`.
- Added unit test `test_send_events_ids` to ensure returned `EventId`s
match the sent `Event`s
- Updated uses of modified methods.
## Migration Guide
### `send` / `send_default` / `send_batch`
For the following methods:
- `Events::send`
- `Events::send_default`
- `Events::send_batch`
- `EventWriter::send`
- `EventWriter::send_default`
- `EventWriter::send_batch`
- `World::send_event`
- `World::send_event_default`
- `World::send_event_batch`
Ensure calls to these methods either handle the returned value, or
suppress the result with `;`.
```rust
// Now fails to compile due to mismatched return type
fn send_my_event(mut events: EventWriter<MyEvent>) {
events.send_default()
}
// Fix
fn send_my_event(mut events: EventWriter<MyEvent>) {
events.send_default();
}
```
This will most likely be noticed within `match` statements:
```rust
// Before
match is_pressed {
true => events.send(PlayerAction::Fire),
// ^--^ No longer returns ()
false => {}
}
// After
match is_pressed {
true => {
events.send(PlayerAction::Fire);
},
false => {}
}
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
# Objective
- Examples with required features fail to build
- If you're fixing a specific issue, say "Fixes #X".
## Solution
- Pass them along when building examples for wasm showcase
- Also mark example `hot_asset_reloading` as not wasm compatible as it
isn't even with the right features enabled
# Objective
Give us the ability to load untyped assets in AssetLoaders.
## Solution
Basically just copied the code from `load`, but used
`asset_server.load_untyped` instead internally.
## Changelog
Added `load_untyped` method to `LoadContext`
# Objective
- Implement a subset of
https://github.com/bevyengine/rfcs/blob/main/rfcs/12-primitive-shapes.md#feature-name-primitive-shapes
## Solution
- Define a very basic set of primitives in bevy_math
- Assume a 0,0,0 origin for most shapes
- Use radius and half extents to avoid unnecessary computational
overhead wherever they get used
- Provide both Boxed and const generics variants for shapes with
variable sizes
- Boxed is useful if a 3rd party crate wants to use something like
enum-dispatch for all supported primitives
- Const generics is useful when just working on a single primitive, as
it causes no allocs
#### Some discrepancies from the RFC:
- Box was changed to Cuboid, because Box is already used for an alloc
type
- Skipped Cone because it's unclear where the origin should be for
different uses
- Skipped Wedge because it's too niche for an initial PR (we also don't
implement Torus, Pyramid or a Death Star (there's an SDF for that!))
- Skipped Frustum because while it would be a useful math type, it's not
really a common primitive
- Skipped Triangle3d and Quad3d because those are just rotated 2D shapes
## Future steps
- Add more primitives
- Add helper methods to make primitives easier to construct (especially
when half extents are involved)
- Add methods to calculate AABBs for primitives (useful for physics, BVH
construction, for the mesh AABBs, etc)
- Add wrappers for common and cheap operations, like extruding 2D shapes
and translating them
- Use the primitives to generate meshes
- Provide signed distance functions and gradients for primitives (maybe)
---
## Changelog
- Added a collection of primitives to the bevy_math crate
---------
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>