No description
Find a file
Zachary Harrold 46b8e904f4
Added Method to Allow Pipelined Asset Loading (#10565)
# Objective

- Fixes #10518

## Solution

I've added a method to `LoadContext`, `load_direct_with_reader`, which
mirrors the behaviour of `load_direct` with a single key difference: it
is provided with the `Reader` by the caller, rather than getting it from
the contained `AssetServer`. This allows for an `AssetLoader` to process
its `Reader` stream, and then directly hand the results off to the
`LoadContext` to handle further loading. The outer `AssetLoader` can
control how the `Reader` is interpreted by providing a relevant
`AssetPath`.

For example, a Gzip decompression loader could process the asset
`images/my_image.png.gz` by decompressing the bytes, then handing the
decompressed result to the `LoadContext` with the new path
`images/my_image.png.gz/my_image.png`. This intuitively reflects the
nature of contained assets, whilst avoiding unintended behaviour, since
the generated path cannot be a real file path (a file and folder of the
same name cannot coexist in most file-systems).

```rust
#[derive(Asset, TypePath)]
pub struct GzAsset {
    pub uncompressed: ErasedLoadedAsset,
}

#[derive(Default)]
pub struct GzAssetLoader;

impl AssetLoader for GzAssetLoader {
    type Asset = GzAsset;
    type Settings = ();
    type Error = GzAssetLoaderError;
    fn load<'a>(
        &'a self,
        reader: &'a mut Reader,
        _settings: &'a (),
        load_context: &'a mut LoadContext,
    ) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> {
        Box::pin(async move {
            let compressed_path = load_context.path();
            let file_name = compressed_path
                .file_name()
                .ok_or(GzAssetLoaderError::IndeterminateFilePath)?
                .to_string_lossy();
            let uncompressed_file_name = file_name
                .strip_suffix(".gz")
                .ok_or(GzAssetLoaderError::IndeterminateFilePath)?;
            let contained_path = compressed_path.join(uncompressed_file_name);

            let mut bytes_compressed = Vec::new();

            reader.read_to_end(&mut bytes_compressed).await?;

            let mut decoder = GzDecoder::new(bytes_compressed.as_slice());

            let mut bytes_uncompressed = Vec::new();

            decoder.read_to_end(&mut bytes_uncompressed)?;

            // Now that we have decompressed the asset, let's pass it back to the
            // context to continue loading

            let mut reader = VecReader::new(bytes_uncompressed);

            let uncompressed = load_context
                .load_direct_with_reader(&mut reader, contained_path)
                .await?;

            Ok(GzAsset { uncompressed })
        })
    }

    fn extensions(&self) -> &[&str] {
        &["gz"]
    }
}
```

Because this example is so prudent, I've included an
`asset_decompression` example which implements this exact behaviour:

```rust
fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .init_asset::<GzAsset>()
        .init_asset_loader::<GzAssetLoader>()
        .add_systems(Startup, setup)
        .add_systems(Update, decompress::<Image>)
        .run();
}

fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
    commands.spawn(Camera2dBundle::default());

    commands.spawn((
        Compressed::<Image> {
            compressed: asset_server.load("data/compressed_image.png.gz"),
            ..default()
        },
        Sprite::default(),
        TransformBundle::default(),
        VisibilityBundle::default(),
    ));
}

fn decompress<A: Asset>(
    mut commands: Commands,
    asset_server: Res<AssetServer>,
    mut compressed_assets: ResMut<Assets<GzAsset>>,
    query: Query<(Entity, &Compressed<A>)>,
) {
    for (entity, Compressed { compressed, .. }) in query.iter() {
        let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else {
            continue;
        };

        let uncompressed = uncompressed.take::<A>().unwrap();

        commands
            .entity(entity)
            .remove::<Compressed<A>>()
            .insert(asset_server.add(uncompressed));
    }
}
```

A key limitation to this design is how to type the internally loaded
asset, since the example `GzAssetLoader` is unaware of the internal
asset type `A`. As such, in this example I store the contained asset as
an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset`
to handle typing the final result, which is the purpose of the
`decompress` system. This limitation can be worked around by providing
type information to the `GzAssetLoader`, such as `GzAssetLoader<Image,
ImageAssetLoader>`, but this would require registering the asset loader
for every possible decompression target.

Aside from this limitation, nested asset containerisation works as an
end user would expect; if the user registers a `TarAssetLoader`, and a
`GzAssetLoader`, then they can load assets with compound
containerisation, such as `images.tar.gz`.

---

## Changelog

- Added `LoadContext::load_direct_with_reader`
- Added `asset_decompression` example

## Notes

- While I believe my implementation of a Gzip asset loader is
reasonable, I haven't included it as a public feature of `bevy_asset` to
keep the scope of this PR as focussed as possible.
- I have included `flate2` as a `dev-dependency` for the example; it is
not included in the main dependency graph.
2023-11-16 17:47:31 +00:00
.cargo Change recommended linker: zld to lld for MacOS (#7496) 2023-02-06 18:24:12 +00:00
.github add test on Android 14 / Pixel 8 (#10148) 2023-10-17 14:52:11 +00:00
assets Added Method to Allow Pipelined Asset Loading (#10565) 2023-11-16 17:47:31 +00:00
benches Optimize Entity::eq (#10519) 2023-11-14 02:06:21 +00:00
crates Added Method to Allow Pipelined Asset Loading (#10565) 2023-11-16 17:47:31 +00:00
docs Add "update screenshots" to release checklist (#10369) 2023-11-04 18:43:15 +00:00
docs-template Improve WebGPU unstable flags docs (#10163) 2023-10-18 17:30:44 +00:00
errors Add some more docs for bevy_text. (#9873) 2023-10-27 18:53:57 +00:00
examples Added Method to Allow Pipelined Asset Loading (#10565) 2023-11-16 17:47:31 +00:00
src Schedule-First: the new and improved add_systems (#8079) 2023-03-18 01:45:34 +00:00
tests Deferred Renderer (#9258) 2023-10-12 22:10:38 +00:00
tools support required features in wasm examples showcase (#10577) 2023-11-16 01:50:25 +00:00
.gitattributes Enforce linux-style line endings for .rs and .toml (#3197) 2021-11-26 21:05:35 +00:00
.gitignore Fix example showcase (#10366) 2023-11-04 01:33:51 +00:00
Cargo.toml Added Method to Allow Pipelined Asset Loading (#10565) 2023-11-16 17:47:31 +00:00
CHANGELOG.md 0.12 Changelog (#10361) 2023-11-04 01:57:29 +00:00
clippy.toml Use clippy::doc_markdown more. (#10286) 2023-10-27 22:49:02 +00:00
CODE_OF_CONDUCT.md Update CODE_OF_CONDUCT.md 2020-08-19 20:25:58 +01:00
CONTRIBUTING.md Add examples page build instructions (#8413) 2023-04-17 16:13:24 +00:00
CREDITS.md Add morph targets (#8158) 2023-06-22 20:00:01 +00:00
deny.toml check for all-features with cargo-deny (#10544) 2023-11-14 13:51:19 +00:00
LICENSE-APACHE Let the project page support GitHub's new ability to display open source licenses (#4966) 2022-06-08 17:55:57 +00:00
LICENSE-MIT Let the project page support GitHub's new ability to display open source licenses (#4966) 2022-06-08 17:55:57 +00:00
README.md Fix orphaned contributing paragraph (#10174) 2023-10-18 15:52:04 +00:00
rustfmt.toml Cargo fmt with unstable features (#1903) 2021-04-21 23:19:34 +00:00

Bevy

License Crates.io Downloads Docs CI Discord

What is Bevy?

Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!

WARNING

Bevy is still in the early stages of development. Important features are missing. Documentation is sparse. A new version of Bevy containing breaking changes to the API is released approximately once every 3 months. We provide migration guides, but we can't guarantee migrations will always be easy. Use only if you are willing to work in this environment.

MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is generally close to "the latest stable release" of Rust.

Design Goals

  • Capable: Offer a complete 2D and 3D feature set
  • Simple: Easy for newbies to pick up, but infinitely flexible for power users
  • Data Focused: Data-oriented architecture using the Entity Component System paradigm
  • Modular: Use only what you need. Replace what you don't like
  • Fast: App logic should run quickly, and when possible, in parallel
  • Productive: Changes should compile quickly ... waiting isn't fun

About

  • Features: A quick overview of Bevy's features.
  • News: A development blog that covers our progress, plans and shiny new features.

Docs

  • The Bevy Book: Bevy's official documentation. The best place to start learning Bevy.
  • Bevy Rust API Docs: Bevy's Rust API docs, which are automatically generated from the doc comments in this repo.
  • Official Examples: Bevy's dedicated, runnable examples, which are great for digging into specific concepts.
  • Community-Made Learning Resources: More tutorials, documentation, and examples made by the Bevy community.

Community

Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.

  • Discord: Bevy's official discord server.
  • Reddit: Bevy's official subreddit.
  • GitHub Discussions: The best place for questions about Bevy, answered right here!
  • Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.

Contributing

If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!

For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!

Getting Started

We recommend checking out The Bevy Book for a full tutorial.

Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:

# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout

To draw a window with standard functionality enabled, use:

use bevy::prelude::*;

fn main(){
  App::new()
    .add_plugins(DefaultPlugins)
    .run();
}

Fast Compiles

Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.

Libraries Used

Bevy is only possible because of the hard work put into these foundational technologies:

  • wgpu: modern / low-level / cross-platform graphics library based on the WebGPU API.
  • glam-rs: a simple and fast 3D math library for games and graphics
  • winit: cross-platform window creation and management in Rust

Bevy Cargo Features

This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.

Third Party Plugins

Plugins are very welcome to extend Bevy's features. Guidelines are available to help integration and usage.

Thanks and Alternatives

Additionally, we would like to thank the Amethyst, macroquad, coffee, ggez, Fyrox, and Piston projects for providing solid examples of game engine development in Rust. If you are looking for a Rust game engine, it is worth considering all of your options. Each engine has different design goals, and some will likely resonate with you more than others.

This project is tested with BrowserStack.

License

Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:

at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.

Some of the engine's code carries additional copyright notices and license terms due to their external origins. These are generally BSD-like, but exact details vary by crate: If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed. The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms. The license field of each crate will also reflect this. For example, bevy_mikktspace has code under the Zlib license (as well as a copyright notice when choosing the MIT license).

The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.

Your contributions

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.