mirror of
https://github.com/bevyengine/bevy
synced 2025-01-12 13:18:55 +00:00
25 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Pablo Reinhardt
|
d96a9d15f6
|
Migrate from Query::single and friends to Single (#15872)
# Objective - closes #15866 ## Solution - Simply migrate where possible. ## Testing - Expect that CI will do most of the work. Examples is another way of testing this, as most of the work is in that area. --- ## Notes For now, this PR doesn't migrate `QueryState::single` and friends as for now, this look like another issue. So for example, QueryBuilders that used single or `World::query` that used single wasn't migrated. If there is a easy way to migrate those, please let me know. Most of the uses of `Query::single` were removed, the only other uses that I found was related to tests of said methods, so will probably be removed when we remove `Query::single`. |
||
Emerson Coskey
|
7d40e3ec87
|
Migrate bevy_sprite to required components (#15489)
# Objective Continue migration of bevy APIs to required components, following guidance of https://hackmd.io/@bevy/required_components/ ## Solution - Make `Sprite` require `Transform` and `Visibility` and `SyncToRenderWorld` - move image and texture atlas handles into `Sprite` - deprecate `SpriteBundle` - remove engine uses of `SpriteBundle` ## Testing ran cargo tests on bevy_sprite and tested several sprite examples. --- ## Migration Guide Replace all uses of `SpriteBundle` with `Sprite`. There are several new convenience constructors: `Sprite::from_image`, `Sprite::from_atlas_image`, `Sprite::from_color`. WARNING: use of `Handle<Image>` and `TextureAtlas` as components on sprite entities will NO LONGER WORK. Use the fields on `Sprite` instead. I would have removed the `Component` impls from `TextureAtlas` and `Handle<Image>` except it is still used within ui. We should fix this moving forward with the migration. |
||
Joona Aalto
|
25bfa80e60
|
Migrate cameras to required components (#15641)
# Objective Yet another PR for migrating stuff to required components. This time, cameras! ## Solution As per the [selected proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected), deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d` and `Camera3d`. Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning, as suggested by Cart [on Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273). I would personally like cameras to work a bit differently and be split into a few more components, to avoid some footguns and confusing semantics, but that is more controversial, and shouldn't block this core migration. ## Testing I ran a few 2D and 3D examples, and tried cameras with and without render graphs. --- ## Migration Guide `Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of `Camera2d` and `Camera3d`. Inserting them will now also insert the other components required by them automatically. |
||
Joona Aalto
|
54006b107b
|
Migrate meshes and materials to required components (#15524)
# Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Joona Aalto
|
de888a373d
|
Migrate lights to required components (#15554)
# Objective Another step in the migration to required components: lights! Note that this does not include `EnvironmentMapLight` or reflection probes yet, because their API hasn't been fully chosen yet. ## Solution As per the [selected proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg): - Deprecate `PointLightBundle` in favor of the `PointLight` component - Deprecate `SpotLightBundle` in favor of the `PointLight` component - Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight` component ## Testing I ran some examples with lights. --- ## Migration Guide `PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have been deprecated. Use the `PointLight`, `SpotLight`, and `DirectionalLight` components instead. Adding them will now insert the other components required by them automatically. |
||
BD103
|
97131e1909
|
Move close_on_esc to bevy_dev_tools (#12855)
# Objective - As @james7132 said [on Discord](https://discord.com/channels/691052431525675048/692572690833473578/1224626740773523536), the `close_on_esc` system is forcing `bevy_window` to depend on `bevy_input`. - `close_on_esc` is not likely to be used in production, so it arguably does not have a place in `bevy_window`. ## Solution - As suggested by @afonsolage, move `close_on_esc` into `bevy_dev_tools`. - Add an example to the documentation too. - Remove `bevy_window`'s dependency on `bevy_input`. - Add `bevy_reflect`'s `smol_str` feature to `bevy_window` because it was implicitly depended upon with `bevy_input` before it was removed. - Remove any usage of `close_on_esc` from the examples. - `bevy_dev_tools` is not enabled by default. I personally find it frustrating to run examples with additional features, so I opted to remove it entirely. - This is up for discussion if you have an alternate solution. --- ## Changelog - Moved `bevy_window::close_on_esc` to `bevy_dev_tools::close_on_esc`. - Removed usage of `bevy_dev_tools::close_on_esc` from all examples. ## Migration Guide `bevy_window::close_on_esc` has been moved to `bevy_dev_tools::close_on_esc`. You will first need to enable `bevy_dev_tools` as a feature in your `Cargo.toml`: ```toml [dependencies] bevy = { version = "0.14", features = ["bevy_dev_tools"] } ``` Finally, modify any imports to use `bevy_dev_tools` instead: ```rust // Old: // use bevy:🪟:close_on_esc; // New: use bevy::dev_tools::close_on_esc; App::new() .add_systems(Update, close_on_esc) // ... .run(); ``` |
||
Alice Cecile
|
599e5e4e76
|
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
Alice Cecile
|
de004da8d5
|
Rename bevy_render::Color to LegacyColor (#12069)
# Objective The migration process for `bevy_color` (#12013) will be fairly involved: there will be hundreds of affected files, and a large number of APIs. ## Solution To allow us to proceed granularly, we're going to keep both `bevy_color::Color` (new) and `bevy_render::Color` (old) around until the migration is complete. However, simply doing this directly is confusing! They're both called `Color`, making it very hard to tell when a portion of the code has been ported. As discussed in #12056, by renaming the old `Color` type, we can make it easier to gradually migrate over, one API at a time. ## Migration Guide THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK. This change should not be shipped to end users: delete this section in the final migration guide! --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
Carter Anderson
|
dd619a1087
|
New Exposure and Lighting Defaults (and calibrate examples) (#11868)
# Objective After adding configurable exposure, we set the default ev100 value to `7` (indoor). This brought us out of sync with Blender's configuration and defaults. This PR changes the default to `9.7` (bright indoor or very overcast outdoors), as I calibrated in #11577. This feels like a very reasonable default. The other changes generally center around tweaking Bevy's lighting defaults and examples to play nicely with this number, alongside a few other tweaks and improvements. Note that for artistic reasons I have reverted some examples, which changed to directional lights in #11581, back to point lights. Fixes #11577 --- ## Changelog - Changed `Exposure::ev100` from `7` to `9.7` to better match Blender - Renamed `ExposureSettings` to `Exposure` - `Camera3dBundle` now includes `Exposure` for discoverability - Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the middle-to-top of those ranges instead of near the bottom - Added new `AMBIENT_DAYLIGHT` constant and set that as the new `DirectionalLight` default illuminance. - `PointLight` and `SpotLight` now have a default `intensity` of 1,000,000 lumens. This makes them actually useful in the context of the new "semi-outdoor" exposure and puts them in the "cinema lighting" category instead of the "common household light" category. They are also reasonably close to the Blender default. - `AmbientLight` default has been bumped from `20` to `80`. ## Migration Guide - The increased `Exposure::ev100` means that all existing 3D lighting will need to be adjusted to match (DirectionalLights, PointLights, SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust the `Exposure::ev100` on your cameras to work nicely with your current lighting values. If you are currently relying on default intensity values, you might need to change the intensity to achieve the same effect. Note that in Bevy 0.12, point/spot lights had a different hard coded ev100 value than directional lights. In Bevy 0.13, they use the same ev100, so if you have both in your scene, the _scale_ between these light types has changed and you will likely need to adjust one or both of them. |
||
Joona Aalto
|
0166db33f7
|
Deprecate shapes in bevy_render::mesh::shape (#11773)
# Objective #11431 and #11688 implemented meshing support for Bevy's new geometric primitives. The next step is to deprecate the shapes in `bevy_render::mesh::shape` and to later remove them completely for 0.14. ## Solution Deprecate the shapes and reduce code duplication by utilizing the primitive meshing API for the old shapes where possible. Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet: - `Box` is more of an AABB with min/max extents - `Plane` supports a subdivision count - `Quad` has a `flipped` property These types have not been changed to utilize the new primitives yet. --- ## Changelog - Deprecated all shapes in `bevy_render::mesh::shape` - Changed all examples to use new primitives for meshing ## Migration Guide Bevy has previously used rendering-specific types like `UVSphere` and `Quad` for primitive mesh shapes. These have now been deprecated to use the geometric primitives newly introduced in version 0.13. Some examples: ```rust let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0)); let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0)); let before = meshes.add(shape::Quad::default()); let after = meshes.add(Rectangle::default()); let before = meshes.add(shape::Plane::from_size(5.0)); // The surface normal can now also be specified when using `new` let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0)); let before = meshes.add( Mesh::try_from(shape::Icosphere { radius: 0.5, subdivisions: 5, }) .unwrap(), ); let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap()); ``` |
||
Joona Aalto
|
a795de30b4
|
Use impl Into<A> for Assets::add (#10878)
# Motivation When spawning entities into a scene, it is very common to create assets like meshes and materials and to add them via asset handles. A common setup might look like this: ```rust fn setup( mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>, mut materials: ResMut<Assets<StandardMaterial>>, ) { commands.spawn(PbrBundle { mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ..default() }); } ``` Let's take a closer look at the part that adds the assets using `add`. ```rust mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ``` Here, "mesh" and "material" are both repeated three times. It's very explicit, but I find it to be a bit verbose. In addition to being more code to read and write, the extra characters can sometimes also lead to the code being formatted to span multiple lines even though the core task, adding e.g. a primitive mesh, is extremely simple. A way to address this is by using `.into()`: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }.into()), material: materials.add(Color::RED.into()), ``` This is fine, but from the names and the type of `meshes`, we already know what the type should be. It's very clear that `Cube` should be turned into a `Mesh` because of the context it's used in. `.into()` is just seven characters, but it's so common that it quickly adds up and gets annoying. It would be nice if you could skip all of the conversion and let Bevy handle it for you: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ``` # Objective Make adding assets more ergonomic by making `Assets::add` take an `impl Into<A>` instead of `A`. ## Solution `Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this works: ```rust commands.spawn(PbrBundle { mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ..default() }); ``` I also changed all examples to use this API, which increases consistency as well because `Mesh::from` and `into` were being used arbitrarily even in the same file. This also gets rid of some lines of code because formatting is nicer. --- ## Changelog - `Assets::add` now takes an `impl Into<A>` instead of `A` - Examples don't use `T::from(K)` or `K.into()` when adding assets ## Migration Guide Some `into` calls that worked previously might now be broken because of the new trait bounds. You need to either remove `into` or perform the conversion explicitly with `from`: ```rust // Doesn't compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()), // These compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }), let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })), ``` ## Concerns I believe the primary concerns might be: 1. Is this too implicit? 2. Does this increase codegen bloat? Previously, the two APIs were using `into` or `from`, and now it's "nothing" or `from`. You could argue that `into` is slightly more explicit than "nothing" in cases like the earlier examples where a `Color` gets converted to e.g. a `StandardMaterial`, but I personally don't think `into` adds much value even in this case, and you could still see the actual type from the asset type. As for codegen bloat, I doubt it adds that much, but I'm not very familiar with the details of codegen. I personally value the user-facing code reduction and ergonomics improvements that these changes would provide, but it might be worth checking the other effects in more detail. Another slight concern is migration pain; apps might have a ton of `into` calls that would need to be removed, and it did take me a while to do so for Bevy itself (maybe around 20-40 minutes). However, I think the fact that there *are* so many `into` calls just highlights that the API could be made nicer, and I'd gladly migrate my own projects for it. |
||
JMS55
|
70b0eacc3b
|
Keep track of when a texture is first cleared (#10325)
# Objective - Custom render passes, or future passes in the engine (such as https://github.com/bevyengine/bevy/pull/10164) need a better way to know and indicate to the core passes whether the view color/depth/prepass attachments have been cleared or not yet this frame, to know if they should clear it themselves or load it. ## Solution - For all render targets (depth textures, shadow textures, prepass textures, main textures) use an atomic bool to track whether or not each texture has been cleared this frame. Abstracted away in the new ColorAttachment and DepthAttachment wrappers. --- ## Changelog - Changed `ViewTarget::get_color_attachment()`, removed arguments. - Changed `ViewTarget::get_unsampled_color_attachment()`, removed arguments. - Removed `Camera3d::clear_color`. - Removed `Camera2d::clear_color`. - Added `Camera::clear_color`. - Added `ExtractedCamera::clear_color`. - Added `ColorAttachment` and `DepthAttachment` wrappers. - Moved `ClearColor` and `ClearColorConfig` from `bevy::core_pipeline::clear_color` to `bevy::render::camera`. - Core render passes now track when a texture is first bound as an attachment in order to decide whether to clear or load it. ## Migration Guide - Remove arguments to `ViewTarget::get_color_attachment()` and `ViewTarget::get_unsampled_color_attachment()`. - Configure clear color on `Camera` instead of on `Camera3d` and `Camera2d`. - Moved `ClearColor` and `ClearColorConfig` from `bevy::core_pipeline::clear_color` to `bevy::render::camera`. - `ViewDepthTexture` must now be created via the `new()` method --------- Co-authored-by: vero <email@atlasdostal.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
tygyh
|
fd308571c4
|
Remove unnecessary path prefixes (#10749)
# Objective - Shorten paths by removing unnecessary prefixes ## Solution - Remove the prefixes from many paths which do not need them. Finding the paths was done automatically using built-in refactoring tools in Jetbrains RustRover. |
||
Carter Anderson
|
aefe1f0739
|
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com> |
||
JoJoJet
|
fd1af7c8b8
|
Replace multiple calls to add_system with add_systems (#8001)
|
||
woodroww
|
1bd390806f |
added subdivisions to shape::Plane (#7546)
# Objective There was issue #191 requesting subdivisions on the shape::Plane. I also could have used this recently. I then write the solution. Fixes #191 ## Solution I changed the shape::Plane to include subdivisions field and the code to create the subdivisions. I don't know how people are counting subdivisions so as I put in the doc comments 0 subdivisions results in the original geometry of the Plane. Greater then 0 results in the number of lines dividing the plane. I didn't know if it would be better to create a new struct that implemented this feature, say SubdivisionPlane or change Plane. I decided on changing Plane as that was what the original issue was. It would be trivial to alter this to use another struct instead of altering Plane. The issues of migration, although small, would be eliminated if a new struct was implemented. ## Changelog ### Added Added subdivisions field to shape::Plane ## Migration Guide All the examples needed to be updated to initalize the subdivisions field. Also there were two tests in tests/window that need to be updated. A user would have to update all their uses of shape::Plane to initalize the subdivisions field. |
||
Aceeri
|
ddfafab971 |
Windows as Entities (#5589)
# Objective Fix https://github.com/bevyengine/bevy/issues/4530 - Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component. - Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open) ## Solution - Move all properties of window descriptor to ~components~ a component. - Replace `WindowId` with `Entity`. - ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~ Check each field individually to see what we need to update, events are still kept for user convenience. --- ## Changelog - `WindowDescriptor` renamed to `Window`. - Width/height consolidated into a `WindowResolution` component. - Requesting maximization/minimization is done on the [`Window::state`] field. - `WindowId` is now `Entity`. ## Migration Guide - Replace `WindowDescriptor` with `Window`. - Change `width` and `height` fields in a `WindowResolution`, either by doing ```rust WindowResolution::new(width, height) // Explicitly // or using From<_> for tuples for convenience (1920., 1080.).into() ``` - Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so: ```rust let window = commands.spawn(Window { ... }).id(); // open window commands.entity(window).despawn(); // close window ``` ## Unresolved - ~How do we tell when a window is minimized by a user?~ ~Currently using the `Resize(0, 0)` as an indicator of minimization.~ No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized. ## Future work - Move `exit_on_close` functionality out from windowing and into app(?) - https://github.com/bevyengine/bevy/issues/5621 - https://github.com/bevyengine/bevy/issues/7099 - https://github.com/bevyengine/bevy/issues/7098 Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Aceeri
|
8ad9a7c7c4 |
Rename camera "priority" to "order" (#6908)
# Objective The documentation for camera priority is very confusing at the moment, it requires a bit of "double negative" kind of thinking. # Solution Flipping the wording on the documentation to reflect more common usecases like having an overlay camera and also renaming it to "order", since priority implies that it will override the other camera rather than have both run. |
||
Carter Anderson
|
1bb751cb8d |
Plugins own their settings. Rework PluginGroup trait. (#6336)
# Objective Fixes #5884 #2879 Alternative to #2988 #5885 #2886 "Immutable" Plugin settings are currently represented as normal ECS resources, which are read as part of plugin init. This presents a number of problems: 1. If a user inserts the plugin settings resource after the plugin is initialized, it will be silently ignored (and use the defaults instead) 2. Users can modify the plugin settings resource after the plugin has been initialized. This creates a false sense of control over settings that can no longer be changed. (1) and (2) are especially problematic and confusing for the `WindowDescriptor` resource, but this is a general problem. ## Solution Immutable Plugin settings now live on each Plugin struct (ex: `WindowPlugin`). PluginGroups have been reworked to support overriding plugin values. This also removes the need for the `add_plugins_with` api, as the `add_plugins` api can use the builder pattern directly. Settings that can be used at runtime continue to be represented as ECS resources. Plugins are now configured like this: ```rust app.add_plugin(AssetPlugin { watch_for_changes: true, ..default() }) ``` PluginGroups are now configured like this: ```rust app.add_plugins(DefaultPlugins .set(AssetPlugin { watch_for_changes: true, ..default() }) ) ``` This is an alternative to #2988, which is similar. But I personally prefer this solution for a couple of reasons: * ~~#2988 doesn't solve (1)~~ #2988 does solve (1) and will panic in that case. I was wrong! * This PR directly ties plugin settings to Plugin types in a 1:1 relationship, rather than a loose "setup resource" <-> plugin coupling (where the setup resource is consumed by the first plugin that uses it). * I'm not a huge fan of overloading the ECS resource concept and implementation for something that has very different use cases and constraints. ## Changelog - PluginGroups can now be configured directly using the builder pattern. Individual plugin values can be overridden by using `plugin_group.set(SomePlugin {})`, which enables overriding default plugin values. - `WindowDescriptor` plugin settings have been moved to `WindowPlugin` and `AssetServerSettings` have been moved to `AssetPlugin` - `app.add_plugins_with` has been replaced by using `add_plugins` with the builder pattern. ## Migration Guide The `WindowDescriptor` settings have been moved from a resource to `WindowPlugin::window`: ```rust // Old (Bevy 0.8) app .insert_resource(WindowDescriptor { width: 400.0, ..default() }) .add_plugins(DefaultPlugins) // New (Bevy 0.9) app.add_plugins(DefaultPlugins.set(WindowPlugin { window: WindowDescriptor { width: 400.0, ..default() }, ..default() })) ``` The `AssetServerSettings` resource has been removed in favor of direct `AssetPlugin` configuration: ```rust // Old (Bevy 0.8) app .insert_resource(AssetServerSettings { watch_for_changes: true, ..default() }) .add_plugins(DefaultPlugins) // New (Bevy 0.9) app.add_plugins(DefaultPlugins.set(AssetPlugin { watch_for_changes: true, ..default() })) ``` `add_plugins_with` has been replaced by `add_plugins` in combination with the builder pattern: ```rust // Old (Bevy 0.8) app.add_plugins_with(DefaultPlugins, |group| group.disable::<AssetPlugin>()); // New (Bevy 0.9) app.add_plugins(DefaultPlugins.build().disable::<AssetPlugin>()); ``` |
||
ira
|
3aaf746675 |
Example cleanup (#6131)
Co-authored-by: devil-ira <justthecooldude@gmail.com> |
||
Carter Anderson
|
01aedc8431 |
Spawn now takes a Bundle (#6054)
# Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ``` |
||
ira
|
992681b59b |
Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Carter Anderson
|
f487407e07 |
Camera Driven Rendering (#4745)
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home. |
||
Daniel McNab
|
b731ebad1b |
Allow closing windows at runtime (#3575)
# Objective Fixes #3180, builds from https://github.com/bevyengine/bevy/pull/2898 ## Solution Support requesting a window to be closed and closing a window in `bevy_window`, and handle this in `bevy_winit`. This is a stopgap until we move to windows as entites, which I'm sure I'll get around to eventually. ## Changelog ### Added - `Window::close` to allow closing windows. - `WindowClosed` to allow reacting to windows being closed. ### Changed Replaced `bevy::system::exit_on_esc_system` with `bevy:🪟:close_on_esc`. ## Fixed The app no longer exits when any window is closed. This difference is only observable when there are multiple windows. ## Migration Guide `bevy::input::system::exit_on_esc_system` has been removed. Use `bevy:🪟:close_on_esc` instead. `CloseWindow` has been removed. Use `Window::close` instead. The `Close` variant has been added to `WindowCommand`. Handle this by closing the relevant window. |
||
Daniel McNab
|
328c26d02c |
Add an example to test small window sizes (#3597)
# Objective We keep getting issues where things break at small window sizes, e.g #3368 (caused by #3153), #3596 ('caused' by #3545) ## Solution - Add a test that we can make small windows. Currently, this fails on my machine with some quite scary vulkan errors: ``` 2022-01-08T22:55:13.770261Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)] Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,60), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,56), minImageExtent = (225,56), maxImageExtent = (225,56). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274) 2022-01-08T22:55:13.770808Z ERROR wgpu_hal::vulkan::instance: objects: (type: DEVICE, hndl: 0x1adbd410a60, name: ?) 2022-01-08T22:55:13.787403Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)] Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,56), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,52), minImageExtent = (225,52), maxImageExtent = (225,52). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274) ``` etc. This might be a new issue here, although I'm surprised it's vulkan giving this error; wgpu should stop it if this is illegal. |